Notas de aulas de Mecânica dos Solos I (parte 5)

Tamanho: px
Começar a partir da página:

Download "Notas de aulas de Mecânica dos Solos I (parte 5)"

Transcrição

1 1 Noas d aulas d Mcânica dos olos I (par 5) Hlio Marcos Frnands iana Tma: Índics físicos do solo Conúdo da par 5 1 Inrodução 2 Ddução dos índics físicos do solo 3 Limis d variação dos índics físicos d acordo com Buno ilar (1980) 4 Classificação da água conida no solo 5 Rlaçõs nr os divrsos índics físicos do solo, quando s 1 6 Rlação nr o pso spcífico naural o pso spcífico sco 7 Rlação xisn nr o pso do solo úmido o pso do solo sco 8 Rlaçõs nr os divrsos índics físicos do solo, quando 1

2 2 1 Inrodução O solo na naurza é formado por 3 (rês) fass físicas, as quais são: fas sólida, fas líquida fas gasosa. O solo é formado por parículas sólidas por vazios, os quais podm sar prnchidos pla água /ou ar. Os índics físicos do solo são rlaçõs nr as divrsas fass do solo (fas sólida, fas líquida fas gasosa) m rmos d psos volums. Os índics físicos procuram caracrizar as condiçõs m qu o solo s nconra. 2 Ddução dos índics físicos A Figura 2.1a aprsna um lmno (ou pquna par) d solo consiuído das 3 (rês) fass, al como ocorr na naurza. A Figura 2.1b mosra um squma do lmno d solo, para mlhor visualização para faciliar as dduçõs dos índics físicos do solo. Figura Elmno d solo suas pars consiuins m mos d psos volums OB(s). a) Um lmno d solo pod sr comprndido como uma amosra, ou uma pquna par d um maciço rroso; b) Maciço rroso pod sr comprndido como uma camada d solo d grands dimnsõs.

3 3 i) orosidad (n) orosidad do solo é a rlação nr o volum d vazios o volum oal da amosra d solo. n porosidad (%); volum d vazios da amosra; volum oal da amosra. ii) Índic d vazios () n (2.1) Índic d vazios é a rlação nr o volum d vazios o volum d sólidos da amosra d solo. índic d vazios; volum d vazios; volum d sólidos. (2.2) iii) Grau d sauração (r) Grau d sauração é a rlação nr o volum d água o volum d vazios prsns na amosra d solo. r grau d sauração (%); volum d água; volum d vazios. r (2.3) iv) Tor d umidad () Tor d umidad é a rlação mais usada na mcânica dos solos; Tor d umidad é a rlação nr o pso da água o pso dos sólidos do solo. or d umidad (%); pso da água; pso dos sólidos. (2.4)

4 4 v) so spcífico naural () so spcífico naural é a rlação nr o pso oal do lmno d solo o volum oal do lmno d solo. pso spcífico naural; pso oal do lmno d solo; volum oal do lmno d solo. OB(s). a) od-s considrar ar 0,00 kgf; Enão, + ; b) 1 kgf 10 N (2.5) vi) so spcífico dos sólidos ( ) so spcífico dos sólidos é a rlação nr o pso dos sólidos o volum dos sólidos do lmno d solo. pso spcífico dos sólidos; pso dos sólidos; volum dos sólidos. vii) so spcífico da água ( w ) (2.6) so spcífico da água é a rlação nr o pso da água o volum da água do lmno d solo. w pso spcífico da água; pso da água; volum da água. (2.7) OB(s). a) Na maioria dos casos práicos da Engnharia pod-s omar w 1,00 g/cm 3 ; b) 1 g 1 gf (grama força).

5 5 3 Limis d variação dos índics físicos d acordo com Buno ilar (1980) D acordo com Buno ilar (1980), os índics físicos do solo variam nr os sguins limis: 1,00 < < 2,50 g/cm 3 2,50 < < 3,00 g/cm 3 0 < < 20 0 < n < 100% 0 < < 1500% 4 Classificação da água conida no solo A água conida no solo pod sr classificada m: i) Água d consiuição é a água qu faz par da sruura molcular da parícula sólida. ii) Água adsiva ou água adsorvida é a plícula d água qu nvolv adr formn à parícula sólida d solo. iii) Água livr é a água qu prnch odos os vazios do solo, o sudo da água livr é fundamnado nas lis da hidráulica. A água livr ocorr m solos abaixo do nívl d água do lnçol fráico. iv) Água higroscópica é a água qu s nconra m um solo sco ao ar livr. v) Água capilar é a água qu nos grãos finos sob, além da suprfíci do nívl d água do lnçol fráico, plos inrsícios capilars dixados plas parículas sólidas dos solos finos. OB(s). a) Inrsícios capilars são os pqunos vazios xisns nr os grãos dos solos finos; b) As águas livr, higroscópica, capilar são as águas qu são lvadas m cona na drminação do or d umidad do solo (), qu podm sr oalmn vaporadas a uma mpraura maior qu 100 o C. A Figura 4.1 ilusra as águas livr, capilar adsiva prsns no solo.

6 6 Figura Águas livr, capilar adsiva prsns no solo 5 Rlaçõs nr os divrsos índics físicos do solo, quando s 1 A Figura 5.1 mosra o lmno d solo suas pars consiuins m rmos d volums psos, considrando-s o pso do ar como dsprzívl. Figura Elmno d solo suas pars consiuins m rmos d volums psos, considrando-s o pso do ar como dsprzívl

7 7 Na Figura 5.1 m-s qu: volum oal da amosra; volum d vazios da amosra; ar volum d ar da amosra; volum d água na amosra; volum d sólidos da amosra; pso oal da amosra; pso d água da amosra; pso d sólidos da amosra. OB. O símbolo é a lra grga gama. Fazndo 1, obém-s o qu s sgu: i) Como por dfinição:, não:, pois 1 pso spcífico dos sólidos; pso d sólidos da amosra; volum d sólidos da amosra. ii) Como por dfinição:, não:, pois 1 índic d vazios; volum d vazios da amosra; volum d sólidos da amosra. iii) Como por dfinição: r, não: r., pois (vja im ii) r grau d sauração; volum d água na amosra; volum d vazios da amosra; índic d vazios.

8 8 iv) Como por dfinição:, não:.r., pois r. (vja im iii) pso spcífico da água; pso d água da amosra; volum d água na amosra; r grau d sauração; índic d vazios. Com bas na rlação nr os índics físicos, s 1, não o lmno d solo passa a sr rprsnado como mosra a Figura 5.2. Figura Elmno d solo com volums psos, quando 1 volum oal da amosra; volum d sólidos da amosra; volum d vazios da amosra; índic d vazios; r grau d sauração; pso spcífico dos sólidos; pso spcífico da água; pso oal da amosra; pso d água da amosra; pso d sólidos da amosra.

9 9 A parir dos dados da Figura 5.2, quando 1, é possívl obr novas rlaçõs nr os índics físicos; como s sgu: a) r.. (5.1) or d umidad; índic d vazios; r grau d sauração; pso spcífico da água; pso spcífico dos sólidos; pso d água da amosra; pso d sólidos da amosra. b) n (5.2) 1+ n porosidad; volum d vazios da amosra; volum oal da amosra; índic d vazios. c) + r.. w (5.3) 1+ pso spcífico naural do solo; pso oal da amosra; volum oal da amosra; índic d vazios; r grau d sauração; pso spcífico da água; pso spcífico dos sólidos.

10 10 d) so spcífico saurado ( AT ) Quando odos os vazios do solo são prnchidos com água, ou sja, r 100% ou r 1; Enão, o pso spcífico do solo passa a sr dfinido como pso spcífico saurado, é xprsso pla sguin quação: AT pso spcífico saurado; índic d vazios; pso spcífico da água; pso spcífico dos sólidos.. AT (5.4) ) so spcífico sco ( d ) Quando o solo s nconra complamn sco, ou sja, r 0%, sm nnhuma água m sus vazios; Enão o pso spcífico do solo passa a sr dfinido como pso spcífico sco, é xprsso pla sguin quação: +..0 d (5.5) d pso spcífico sco da amosra; índic d vazios da amosra; pso spcífico dos sólidos da amosra. 6 Rlação nr o pso spcífico naural o pso spcífico sco Com bas na Figura 5.2, m-s qu o pso spcífico do solo () pod sr rprsnado pla sguin quação: +..r..r + (5.6) pso spcífico naural da amosra; r grau d sauração da amosra; índic d vazios da amosra; pso spcífico da água da amosra; pso spcífico dos sólidos da amosra.

11 11 Da q.(5.1), m-s qu:.. r... r (5.7) ubsiuindo a q.(5.7) na q.(5.6), m-s qu: Raprsnação da q.(5.6):..r + (5.6) Enão, s obém: logo:.(1 + ) (5.8) 1 + ubsiuindo-s a q. (5.5) na q. (5.8), m-s qu: Raprsnação da q. (5.5): d 1+ (5.5) Enão, s obém: pso spcífico naural; d pso spcífico sco da amosra; or d umidad do solo. d.(1 + ) (5.9) OB. A q. (5.9) é muio usada nos nsaios d compacação d solos.

12 12 7 Rlação xisn nr o pso do solo úmido o pso do solo sco Como o pso spcífico naural (), o pso spcífico sco ( d ) do solo, s rlacionam com o volum oal ( ) da amosra d solo, não é possívl colocar a q.(5.9) m rmos do pso úmido do pso sco; como aprsnado a sguir: Rprsnação da q. (5.9): d.(1 + ) (5.9) forma: Considrando-s o volum oal ( ), a q. (5.9) pod sr scria da sguin d.(1 + ) Enão, s obém:.(1 ) (5.10) d + m qu pso oal da amosra; d pso da amosra sca; or d umidad da amosra. 8 Rlaçõs nr os divrsos índics físicos do solo, quando 1 Fazndo 1, obém-s o qu s sgu: i) Como por dfinição: n, não: n, pois 1 n porosidad; volum oal da amosra; volum d vazios da amosra.

13 13 ii) Como por dfinição: r, não: r.n, pois n r grau d sauração; volum d vazios da amosra; volum d água na amosra; n porosidad. iii) Como por dfinição: +, não: como: 1 n, logo: 1 n volum d sólidos da amosra; volum oal da amosra; volum d vazios da amosra; n porosidad. iv) Como por dfinição:, não:. Logo:.(1 n), pois 1-n (vja im iii) pso d sólidos da amosra; pso spcífico dos sólidos; n porosidad; volum d sólidos da amosra.

14 14 v) Como por dfinição:, não:. Logo:.r.n, pois r.n (vja im ii) pso d água da amosra; pso spcífico da água; r grau d sauração; n porosidad. Com bas na rlação nr os índics físicos, s 1, não o lmno d solo srá rprsnado como mosra a Figura 8.1. Figura Elmno d solo com volums psos, quando 1 volum oal da amosra; volum d sólidos da amosra; volum d vazios da amosra; pso spcífico dos sólidos; pso spcífico da água; r grau d sauração; n porosidad; pso oal da amosra; pso d água da amosra; pso d sólidos da amosra.

15 15 A parir da Figura 8.1, é possívl obr novas rlaçõs nr os índics físicos, como s sgu: a) n (8.1) 1 n índic d vazios; volum d vazios da amosra; volum d sólidos da amosra; n porosidad. b).r.n (8.2).(1 n) or d umidad; pso d água da amosra; pso d sólidos da amosra; r grau d sauração; n porosidad; pso spcífico da água; pso spcífico dos sólidos. c).r.n +.(1 n) (8.3) pso spcífico naural; pso oal da amosra; volum oal da amosra; r grau d sauração; n porosidad; pso spcífico da água; pso spcífico dos sólidos. Rfrências Bibliográficas BUENO, B..; ILAR, O. M. Mcânica dos solos. Aposila 69. içosa - MG: Univrsidad Fdral d içosa, p. CAUTO, H.. Mcânica dos solos suas aplicaçõs (fundamnos). ol d., Rio d Janiro - RJ: Livros Técnicos Ciníficos Ediora. A., p. (Bibliografia rincipal) CRAIG, R. F. Mcânica dos solos. 7. d., Rio d Janiro - RJ: LTC - Livros Técnicos Ciníficos

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Dparamno Mamáica Disciplina Anális Mamáica Curso Engnharia Informáica º Smsr º Ficha nº : Cálculo ingral m IR Drmin a soma d Rimann da função

Leia mais

Capítulo 6 Decaimento Radioativo

Capítulo 6 Decaimento Radioativo Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai

Leia mais

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo FLUXO RADIAL

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo FLUXO RADIAL Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Minas d Ptrólo PMI 1673 - Mcânica d Fluidos Aplicada a Rsrvatórios Prof. Eduardo César Sanson REGIMES DE FLUXO REGIMES DE FLUXO A SEREM

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL Univrsidad Fdral d Alagoas Cntro d cnologia Curso d Engnharia Civil Disciplina: Mcânica dos Sólidos Código: ECIV030 Profssor: Eduardo Nobr Lags orção m Barras d Sção ransvrsal Dlgada Fchada Mació/AL Sção

Leia mais

Probabilidade II Aula 6

Probabilidade II Aula 6 obabilidad II Aula 6 Março d 9 Mônica Barros, DSc Conúdo Mais sobr momnos condicionais Cálculo d valors srados aravés do condicionamno numa variávl rlação nr valors srados condicionais incondicionais fórmulas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM º CICLO D DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tma II Introdução ao Cálculo Difrncial II Aula nº 4 do plano d trabalho nº 9 Rsolvr os rcícios 87, 88, 89, 90 9 os rcícios 9

Leia mais

O modelo Von Bertalanffy adaptado para suínos de corte

O modelo Von Bertalanffy adaptado para suínos de corte O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: lucasdolivira@gmail.com

Leia mais

7. Aplicação do Principio do Máximo

7. Aplicação do Principio do Máximo 7. Aplicação do Principio do Máximo Ns capiulo vamos implmnar um algorimo qu uiliz a oria do Principio do Máximo para drminar o conjuno dos sados aingívis. Com o rsulados obidos vamos nar fazr um parallo

Leia mais

( 1). β β. 4.2 Funções Densidades Con2nuas

( 1). β β. 4.2 Funções Densidades Con2nuas 4 Funçõs Dnsidads Connuas Dnsidad Eponncial A dnsidad ponncial é u:lizada comumn para sablcr sruuras d probabilidads m primnos cujos nos são siuados na ra ral [, ] Uma aplicação gral comum corrspond à

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri FENOMENOS DE TRANSPORTE o Smsr d 03 Prof. Maurício Fabbri 3ª SÉRIE DE EXERCÍCIOS Transpor d calor por convcção O ransin ponncial simpls Consrvação da nrgia 0-3. O coficin d ransfrência d calor Lia o marial

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA I

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA I UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL GEOTECNIA I Aula 03 Augusto Romanini Sinop - MT 2017/2 Vrsão: 2.0 AULAS Aula 00

Leia mais

TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos

TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos Univrsidad Fdral d Paraná Sr d Tcnlgia Dparamn d Engnharia Mcânica TM-82 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO Prf. Dr. Rudmar Srafim Mas 2. ISOLAMENTO TÉRMICO Islans sã mariais d baix cficin d cnduividad,

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell Méodos Elromagnéicos agoso d 9 Fundamnos Equaçõs d Mawll no domínio do mpo da frqüência Onda plana édison K. ao Equaçõs d Mawll Todos os fnômnos lromagnéicos obdcm às quaçõs mpíricas d Mawll. b d h j ond

Leia mais

para Z t (lembre que = 1 B)

para Z t (lembre que = 1 B) Economria III ANE59 Lisa d Ercícios d Economria d Séris mporais Pro. Rogério Siva d Maos (Juho 6) Si: www.uj.br/rogrio_maos A. MODELOS ARIMA. Escrva por nso:. ARMA(,) para. ARMA(,) para X. ( B B ) Z (

Leia mais

ANO LECTIVO 2001/2002

ANO LECTIVO 2001/2002 ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsn o s raciocínio d orma clara, indicando odos os cálclos q ivr d ar odas as jsiicaçõs ncssárias. Qando, para m rslado, não é pdida ma aproimação,

Leia mais

Funções Hiperbólicas. Funções hiperbólicas. A função seno hiperbólico é definida por

Funções Hiperbólicas. Funções hiperbólicas. A função seno hiperbólico é definida por UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Função sno hiprbólico

Leia mais

Funções reais de n variáveis reais

Funções reais de n variáveis reais Apoio às aulas MAT II 8--6 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE FUNÇÕES REAIS DE MAIS DE UMA VARIÁVEL REAL 5/6 Manul Marins

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes:

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes: Curso d linguagm mamáica Profssor Rnao Tião 1 PUCRS. No projo Sobrmsa Musical, o Insiuo d Culura da PUCRS raliza aprsnaçõs smanais grauias para a comunidad univrsiária. O númro d músicos qu auaram na aprsnação

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

Índices Físico do Solo e Estado das areias e argilas

Índices Físico do Solo e Estado das areias e argilas Univridad d Várza Grand Índic Fíico do Solo Etado da aria argila Diciplina: Mcânica do olo Prof.: Marcl Sna Campo nagl@gmail.com Índic Fíico Elmnto Contituint d um olo O olo é um matrial contituído por

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente:

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente: 98 99 VARIÁVEIS ALEATÓRIAS DISCRETAS Vamos agora analisar m dalh algumas variávis alaórias discras, nomadamn: uniform Brnoulli binomial binomial ngaiva (ou d Pascal) gomérica hirgomérica oisson mulinomial

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

1ª. Lei da Termodinâmica para um Volume de Controle

1ª. Lei da Termodinâmica para um Volume de Controle ª. Li da Trmodinâmica ara um Volum d Conrol Grand ar do roblma d inr na ngnharia nol ima abro, ou ja, ima no quai há fluo d maa araé d ua fronira. É, orano, connin obrmo uma rão da ª. Li álida ara ima

Leia mais

Experimento 4 Indutores e circuitos RL com onda quadrada

Experimento 4 Indutores e circuitos RL com onda quadrada Exprimno 4 Induors circuios RL com onda quadrada 1. OBJETIVO O objivo dsa aula é sudar o comporamno d induors associados a rsisors m circuios alimnados com onda quadrada. 2. MATERIAL UTILIZADO osciloscópio;

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=. Prova d Conhcimntos Espcíficos 1 a QUESTÃO: (1,5 ponto) Considr a função f dfinida por Dtrmin: -x f(x). a) as quaçõs das assíntotas horizontais vrticais, caso xistam; b) as coordnadas dos pontos d máximo

Leia mais

CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL. Profª Aline Cristina Souza dos Santos

CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL. Profª Aline Cristina Souza dos Santos CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL Profª Aline Cristina Souza dos Santos (alinecris16@hotmail.com) Qual a importância de se classificar os materiais? Qual a importância de se

Leia mais

Mecânica dos Solos I 14/03/2016. Índices Físicos dos Solos. 3.1 Fases do Solo

Mecânica dos Solos I 14/03/2016. Índices Físicos dos Solos. 3.1 Fases do Solo 3.1 Fases do Solo O solo é formado pelas três fases físicas sólida, liquida e gasosa, distribuídas em diferentes proporções. Mecânica dos Solos I Índices Físicos dos Solos Fase sólida constituída por agrupamento

Leia mais

4 Procedimento Experimental e Redução de Dados

4 Procedimento Experimental e Redução de Dados 4 Procdimnto Exprimntal Rdução d ados O objtivo dst capítulo é dscrvr o quacionamnto utilizado para obtnção dos parâmtros d dsmpnho. A finalidad é grar os rsultados conform mncionados no objtivo do Capítulo

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara nstituto d Física USP Física V - Aula 3 Profssora: Mazé Bchara Aula 3 - Estados ligados m movimntos unidimnsionais 1. O poço d potncial finito: colocando as condiçõs d continuidad nas funçõs d onda suas

Leia mais

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS Tiago Novllo d Brio Fcilcam, iago-novllo@homail.com ald dos Sanos Coquiro Fcilcam, vcoquiro@yahoo.com.br Rosangla Tixira Guds UTFPR, r_guds@homail.com

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funçõs d Várias Variávis (FVV UFABC, 209-Q Pr Hazard 4 Drivadas Toal, Dircional Parcial 4. Drivadas a rspio d um vor. Dfinição 4.. Sja A R n um abro, sja f: A R, P A v R n. Digamos qu f é drivávl (ou difrnciávl

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

MACROECONOMIA III PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE EXERCÍCIOS

MACROECONOMIA III PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE EXERCÍCIOS MACROECONOMIA III PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE EXERCÍCIOS 1 Qusão: Considr o modlo d crscimno d Solow com a sguin função d 1 3 2 produção, Y K AL3. Os mrcados d faors são prfiamn compiivos

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

MATRIZES E DETERMINANTES LISTA 5

MATRIZES E DETERMINANTES LISTA 5 RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014

TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014 CESPE UnB TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014 Assunto: lógica d argumntação Prof Pachr Considrando qu P sja a proposição S o bm é público, ntão não é d ninguém, julgu os

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Hidrologia, Ambiente e Recursos Hídricos 2009 / Rodrigo Proença de Oliveira

Hidrologia, Ambiente e Recursos Hídricos 2009 / Rodrigo Proença de Oliveira Hidrologia, Ambiene e Recursos Hídricos 2009 / 2010 Rodrigo Proença de Oliveira Água no solo IST: Hidrologia, Ambiene e Recursos Hídricos Rodrigo Proença de Oliveira, 2009 2 Parícula de solo Ar Água Massa

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

Curso de Engenharia Elétrica Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:

Curso de Engenharia Elétrica Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno: Curso d Engnharia Elétrica Disciplina: Nota: Rubrica Coordnador Profssor: Rudson Alvs Aluno: Turma: EE4N Smstr: 2 sm/2015 Data: 22/04/2015 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Permeabilidade e Fluxo Unidimensional em solos

Permeabilidade e Fluxo Unidimensional em solos Prmabilidad Fluxo Unidimnsional m solos GEOTECNIA II AULA 0 Prof. MSc. Douglas M. A. Bittncourt prof.douglas.pucgo@gmail.com Prmabilidad Propridad do solo qu indica a facilidad com qu um fluido podrá passar

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Ára d Publicação: Matmática UMA MANEIRA SIMPLES DE DETERMINAR TODOS OS TERNOS PITAGÓRICOS SILVA, Rodrigo M. F. da 1 ; SILVA, Lucas da² ; FILHO, Danil Cordiro d Morais ² 1 UFCG/CCT/UAMAT/Voluntário PET-

Leia mais

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u =

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u = Capitulo 12 (ABD) Prguntas para rvisão: 5) Os formuladors d políticas dsjam mantr a inflação baixa porqu a inflação impõ psados custos sobr a conomia. Os custos da inflação antcipado inclum custos d mnu,

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Dpartamnto d Engnharia Mcânica PME-50 MECÂNICA DOS SÓLIDOS II Profs.: Cso P. Psc R. Ramos Jr. 1 a Prova 15/09/011 Duração: 100 minutos 1 a Qustão (5,0 pontos):

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Divisão (cont.) Obter TODOS os nomes dos empregados que trabalham em TODOS os projectos nos quais Joao trabalha. projectos em que Joao trabalha.

Divisão (cont.) Obter TODOS os nomes dos empregados que trabalham em TODOS os projectos nos quais Joao trabalha. projectos em que Joao trabalha. 16 Divisão (cont a opração d divisão é útil para qustõs como: Obtr TODOS os noms dos mprgados qu trabalham m TODOS os projctos nos quais Joao trabalha projctos m qu Joao trabalha projctos EBIs d mprgados

Leia mais

Segundo Letterman (1999); a adsorção de moléculas pode ser representada como uma reação química:

Segundo Letterman (1999); a adsorção de moléculas pode ser representada como uma reação química: 43 4 ADSORÇÃO 4.1. Procssos d Adsorção A adsorção é um fnômno físico-químico ond o componn m uma fas gasosa ou líquida é ransfrido para a suprfíci d uma fas sólida. Os componns qu s unm à suprfíci são

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Carregamentos Combinados (Projeto de Eixos e Árvores Contra Fadiga) Mecânica dos Materiais II

Carregamentos Combinados (Projeto de Eixos e Árvores Contra Fadiga) Mecânica dos Materiais II Carrgamntos Combinaos (Projto Eios Árvors Contra Faiga) cânica os atriais II Univrsia Brasília UnB Dpartamnto Engnharia cânica E Grupo cânica os atriais GAA Arranjo Físico Básico Dvio a ncssia montagm

Leia mais

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome *

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome * Estruturas Estruturas Também chamadas d rgistro Conjunto d uma ou mais variávis agrupadas sob um único nom * As variávis qu compõm uma strutura são chamadas campos *Damas, L. Linguagm C. Rio d Janiro:

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

( ). ( ) ( 2.2 Valor Esperado e Momentos. Função Geratriz de Momentos Seja X uma variável aleatória, então, se o valor esperado de existe

( ). ( ) ( 2.2 Valor Esperado e Momentos. Função Geratriz de Momentos Seja X uma variável aleatória, então, se o valor esperado de existe . Valo Espao omnos Função Gaiz omnos Sja uma vaiávl alaóia, não, s o valo spao xis paa oo valo m algum invalo ( h,h, h > 0, l é inio como a Função Gaiz omnos, noaa Fomalmn, x E. ( x x R (. caso isco x

Leia mais

CAPÍTULO 14. Exemplo : Mostre que y = g(x) = 1 x 2, x 1 está dado de forma implícita na equação x 2 + y 2 1 = 0.

CAPÍTULO 14. Exemplo : Mostre que y = g(x) = 1 x 2, x 1 está dado de forma implícita na equação x 2 + y 2 1 = 0. CAPÍTULO 4 TEOREMA DA FUNÇÃO IMPLÍCITA 4 Introdução No studo d funçõs da rta na rta dfinimos qu uma função y = gx x Domg stá dada implicitamnt numa quação nvolvndo as variávis x y s para todo x Domg o

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES PÁGIN 42 39 LETR C Sjam as staçõs, B C, cujos lmntos são as pssoas qu scutavam, plo mnos, uma das staçõs, B ou C. Considr o diagrama abaixo: B 31500 17000 7500

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

O E stado o d o o Solo

O E stado o d o o Solo O Etdo do Solo Índic Fíico Elmnto Contituint d um olo O oloéummtril contituídoporum conjunto d prtícul ólid, dixndo ntr i vzio qu podrão tr prcil ou totlmnt prnchido pl águ. É poi no co mi grl, um itm

Leia mais

4. Modelos matemáticos de crescimento

4. Modelos matemáticos de crescimento 2 Sumário (3ª aula) Exrcícios d consolidação (coninuação) 4. Modlos mamáicos d crscimno 4..Progrssão ariméica (variação absolua consan) 4.2.Progrssão goméricas (variação rlaiva consan) Exrcício 2) Compaibiliz

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência

Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência Dp. Armas Elcronica, Escola Naval V. - Vicor Lobo 004 Capíulo 3 Transformadas ourir ourir Discra Bibliografia Domínio da frquência Qualqur sinal () po sr composo numa soma xponnciais complxas Uma xponncial

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

2 Mecânica da Fratura Linear Elástica

2 Mecânica da Fratura Linear Elástica 5 Mcânica da Fratura Linar lástica A Mcânica da Fratura aprsnta difrnts ramos, tndo o tamanho da zona plástica m frnt à ponta da trinca como fator dtrminant para a scolha do ramo mais adquado. Dsta forma,

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Física IV. Instituto de Física - Universidade de São Paulo. Aula: Interferência

Física IV. Instituto de Física - Universidade de São Paulo. Aula: Interferência Física IV Insiuo d Física - Univrsidad d São Paulo Profssor: Valdir Guimarãs -mail: valdirg@if.usp.br Aula: Inrfrência Inrfrência d ondas Inrfrência d ondas O qu aconc quando duas ondas s combinam ou inrfrm

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

4 PROBLEMA ESTRUTURAL DINÂMICO NÃO-LINEAR

4 PROBLEMA ESTRUTURAL DINÂMICO NÃO-LINEAR 4 PROBLEMA ESTRTRAL DINÂMICO NÃO-LINEAR 4. INTRODÇÃO Ns capíulo, a dfinição das quaçõs difrnciais ordinárias d movimno, caracrizando o quilíbrio dinâmico do sisma sruural, bm como as xprssõs das marizs

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Administração da Produção II Prof. MSc. Claudio S. Martinelli Aula 1

Administração da Produção II Prof. MSc. Claudio S. Martinelli Aula 1 Adminisração Produção II Prof. MSc. Claudio S. Marinlli Aula 1 Emna O planjamno, programação conrol produção m sua lógica: planjamno capacid, planjamno agrgado, plano msr produção MRP (planjamno d rcursos

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais