Capítulo 3 Transmissão de Sinais e Filtragem

Tamanho: px
Começar a partir da página:

Download "Capítulo 3 Transmissão de Sinais e Filtragem"

Transcrição

1 Capíulo 3 Transmissão d Sinais Filragm 3.1 Rsposa d Sismas Linars Invarians no Tmpo No diagrama d blocos da Figura 3.1-1, é o sinal d nrada é o sinal d saída. Elmnos qu armaznam nrgia ouros ios inrnos podm alrar o ormao da orma d onda da nrada para a saída. Indpndnmn do qu há dnro do bloco, o sisma é caracrizado por uma rlação ciaçãorsposa nr a nrada a saída. Ns capíulo is inrss m sudar a class d sismas linars invarians no mpo SLIT. Rsposa ao Impulso Ingral d Suprposição Considra-s qu o Sisma Linar Invarian no Tmpo SLIT não nha nrgia armaznada no insan m qu o sinal d nrada é aplicado. Porano, a saída é a rsposa orçada dvido clusivamn à nrada, ou sa: F é oprador linar Linaridad: num SLIT, a q obdc ao princípio d suprposição d ios, ou sa, s suprposição d nradas individuais ond a k são consans, não, F[ ak k ] rsula m k suprposição d saídas individuais Invariância no mpo: num SLIT as caracrísicas do sisma prmancm ias com o mpo, assim, uma nrada dslocada no mpo d produz al qu, a saída ambém é dslocada no mpo, mas sua orma prmanc inalrada.

2 Rsposa mporal d um SLIT maioria dos SLITs consism d lmnos a parâmros concnrados como rsisors, capaciors induors. anális dira d um al sisma, a parir das quaçõs consiuivas d sus lmnos, conduz a uma rlação d nrada-saída, = F, na orma d quação dirncial linar: ond a n b n são coicins consans nvolvndo os valors dos lmnos. O númro d lmnos indpndns armaznadors d nrgia sablcm o valor d n, conhcido como ordm do sisma. Eis alguma diiculdad d s rair a prssão d a parir d 3.1-4, scria impliciamn m rmos d uma dada nrada. Porano, m princípio, a quação dv sr rsolvida individualmn para cada nova nrada : para cada, alra-s a quação, para cada uma is uma caminho dirn para s aingir a solução. Procurar-s-á uma orma mais simpls d s scrvr plicia diramn m rmos d! Rcordando a propridad d amosragm.5-7 d, qual sa: scrvr m rmos da ingral d convolução:, pod-s Oprador sobr a ingral Ingral do oprador comuação acima é prmiida pla linaridad do sisma: a propridad d suprposição. Dinição: unção rsposa impulsiva d um SLIT Quando a nrada do sisma é =, a saída é rprsnada por h, al qu: Rcordando qu o SLIT é invarian no mpo: não na qual s rcorru à propridad comuaiva da convolução.

3 Ingral d suprposição: Rsposa orçada d um SLIT: convolução da nrada com a rsposa impulsiva h, ou sa: 6c Como sa rlação é válida para qualqur qu sa, conclui-s qu o SLIT pod sr complamn caracrizado por sua rsposa impulsiva. Prguna: como s drmina h? Sugsão: usar =u drminar a rsposa ao dgrau:, m sguida, calcular: Prova: Dado =u 3.1-7a, não, d 3.1-6c:. Usando, vm Emplo 3.1-1: Rsposa mporal d um sisma d primira ordm Circuio como ilro passa-baia. i d i C d Ri quação dirncial do circuio é: primira ordm Rsposa ao dgrau, =u =g = F[u]: mosrar iso: usar T. Laplac O capacior comça com nsão inicial nula s carrga m dirção a g =1 com consan d mpo. rsposa impulsiva é obida a parir d: coninua...

4 Rsposa ao dgrau h dg d aplicar a rgra da cadia Rsposa impulsiva mosrar iso! g h são causais pois = para <. Considr-s agora a rsposa do circuio à uma unção pora/ pulso rangular, causal d largura o qual podrá assumir dirns valors: or ousid é iado, é variávl. coninua... 1 / h u Cálculo da convolução:, ou = sm suprposição h *Convolução nula para < << suprposição parcial *Convolução para < < = d / 1 1 / / > = suprposição oal *Convolução para > 1 1 / / / d / [ / / coninua... ]

5 Inrpração: consan ia, sinal d nrada variávl varia variar Para >> Para X com pquna largura d banda. X com pouco conúdo d ala rquência. Filragm das alas rquências, próimas às dsconinuidads. Pouca disorção do sinal d nrada. Para << X com conúdo spcral médio nas alas rquências. Disorção do sinal d nrada. X com grand largura d banda. X com muio conúdo d ala rquência. Filragm da maior par do spcro. Disorção svra do sinal d nrada. Rsposa m Frquência anális no domínio do mpo orna-s diícil para sismas d ordm suprior,, as complicaçõs mamáicas ndm a obscurcr os rsulados signiicans. anális no domínio da rquência consiui uma rramna alrnaiva qu pod proporcionar um pono d visa mais claro da rsposa do SLIT. Dinição: unção rsposa m rquência d um SLIT unção d ransrência?? Traa-s da TF da rposa impulsiva: Quando h é uma unção mporal ral, ib simria hrmiiana ou sa: Inrpração d : para. Esranho?? Vr discussão a sguir coninua...

6 Prova: considra-s o para o caso gral, ond a nrada é dada por airmação d qu 3.1-1a prsis para odos os mpos signiica qu s opra m rgim prmann. saída é obida aplicando-s usando 3.1-1: al qu = para =. Convrndo para a orma polar, m-s: sndo para c.q.d. ingral m Inrpração d : m = por dinição coninua... asor giran lmnar Rsposa m rquência: Considr-s um nrada dada por: ou, na orma d asors conugados: plicando-s 3.1.1b , m conuno o princípio d suprposição: ou Porano: para ] arg [ ] arg [ arg arg arg arg usando b usando coninua...

7 razão é válida para qualqur rquência é o gráico d ganho. Da msma orma, a dasagm arg é o gráico d as. Ganho m db: log1 log1 / Fas m graus dgrs: arg Rsposa m rquência: anális no domínio spcral Rlmbrando o orma da convolução, s, não: a qual consiui a bas da anális no domínio da rquência. Prmi usar opraçõs mamáicas simpls: S or um sinal d nrgia, não, ambém o srá, al qu: dnsidad spcral d nrgia nrgia oal orma da nrgia d Raligh Fica sablcido um novo par d ransormada d Fourir: G G d Prova: s = X=1; porano, aplicando rsula: Y =.1 = = h, d acordo com a dinição. Pono d visa do domínio da rquência: o spcro plano d X=1 coném odas as rquências m igual proporção, consqunmn, o spcro d saída Y assum a orma d. coninua... 1

8 Rsumo: Uma vz conhcidos X, a saída ambém pod sr drminada, aravés d: Inlizmn a ingração acima pod sr ão diícil quano a ingral d convolução. icácia da anális d sismas no domínio da rquência sá m podr inrir sobr o sinal d saída sm prcisar sair ds domínio. # Formas d s drminar sm nvolvr h: a Conhcndo-s a quação dirncial do sisma aplica-s a TF.3-8, ou sa: Y para s obr [ ]: X Emplo: ilro passa-baia [ 1] Y X Y X 1 1 #

9 b plicar a ransormada d Laplac subsiuir s=+ por s= s s 1 Y s X s Y s 1 1 X s 1 s 1 # c Calcular a rsposa do sisma ao asor lmnar m rgim prmann, usando Como oi viso anriormn, a rsposa dv sr do ipo a sr drminado. Subsiuindo-s na quação dirncial:, ond é um coicin a parir da qual s rai: 1 1 1/ # d rsposa do sisma ao asor m rgim prmann pod sr drminada usando-s Es méodo corrspond à anális d impdâncias Z m circuios léricos: 1. Enrada: asor: X = arg = 1 arg = 1 a rquência ica implícia Saída: asor: Y = arg = solução d circuios léricos basia-s na impdância, razão nr nrada saída: Y X Z Y ZX Z. 1 Z arg Sab-s qu:.1 arg arg arg Z arg c.q.d. vr mplo d aplicação a sguir

10 Emplo 3.1-: Rsposa m rquência d um sisma d primira ordm O circuio do Emplo nconra-s dsnhado abaio, na orma d impdâncias Z R =R Z C =1/C, subsiuindo os parâmros R C. divisor d nsão Y Z C Dsd qu Z, X Z C Z R rsula: # sndo O módulo a as d são: Filro passa-baia: Quas não aa as ampliuds das componns d baia rquência, ond <<B; Rduz drasicamn as ampliuds das componns d ala rquência, ond >>B; O parâmro B srv como uma mdida da banda d passagm ou largura d banda do ilro. nális m rquência do ilro d primira ordm Sa um sinal arbirário cuo conúdo spcral é dsprzívl para > W,, um ilro d primira ordm com largura d banda. Três casos prcisam sr sudados: a W<<B. b WB. c W>>B. o sinal d nrada não muda a Espcro do sinal d nrada a consan d mpo do ilro varia B varia Rsposa m rquência do ilro Espcro do sinal d saída Y = X

11 Domínio spcral Caso a W<<B. 1 arg na banda < W Y = X X Ocorr ransmissão sm disorção aravés do ilro. Emplo: pulso rangular d largura capíulo Banda d sinal: W=1/ S W<<B 1/<<1/ / pquno Consan pquna: o circuio rspond rapidamn ao sinal d nrada. coninua... Domínio spcral Caso b W B aumnando-s. Cai a largura d banda B Y dpnd d X. saída é ormn disorcida. saída dir da nrada Domínio mporal Pulso d nrada do ilro Vrsão disorcida do sinal d nrada coninua...

12 X Domínio spcral Caso c W>>B aumnando-s ainda mais. O spcro da nrada m valor aproimadamn consan, X, para < B. X é consan ssim, Y X X h O sinal d saída s parc com a rsposa impulsiva. Domínio mporal Ns caso, o sinal d nrada pod sr modlado aproimadamn como um impulso. W=1/ >> B Ocorr / >> Consan grand: o circuio rspond lnamn ao sinal d nrada. Rcordação: Conorm viso no Emplo 3.1-1: rsposa impulsiva Conorm viso ainda há pouco ambém no Emplo 3.1-1: rsposa ao pulso, caso <<

13 nális d diagrama d blocos Funçõs para opraçõs primiivas no domínio do mpo: ssociação d blocos ipós: os ios d carrgamno á são incorporados m cada bloco. Um simpls sguidor d nsão com ampliicador opracional pod sr usado para proporcionar isolação nr os blocos viar o carrgamno. ssociaçõs básicas: Ngaiv dback

14 Emplo 3.1-3: Zro-Ordr old sgurador d ordm zro Bloco 1 Bloco 3 Bloco Bloco 1 = caminho diro Bloco = rardo T Bloco 3 = ingrador ssociação paralla nr blocos 1 : ssociação séri nr 1 3 :, uma unção sinc m rquência. coninua... Emplo 3.1-3: Zro-Ordr old nális alrnaiva: obnção d a parir d h Por dinição, =h quando =, não, T O sinal d saída =h é obido ingrando-s sa úlima prssão: pulso d largura T ou não Usando o orma do rardo.3-: a TF do sinc: / T Tsinc T obém-s o rsulado anrior: #

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

Equações de Maxwell na Forma Fasorial

Equações de Maxwell na Forma Fasorial quaçõs d Mawll na Forma Fasorial N s o raa-s das quaçõs d Mawll na forma fasorial as rlaçõs consiuivas m mios mariais, as quais srão amplamn mprga- das ao longo o o, por raar-s d uma podrosa frramna mamáica

Leia mais

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA 3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS

Leia mais

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell Méodos Elromagnéicos agoso d 9 Fundamnos Equaçõs d Mawll no domínio do mpo da frqüência Onda plana édison K. ao Equaçõs d Mawll Todos os fnômnos lromagnéicos obdcm às quaçõs mpíricas d Mawll. b d h j ond

Leia mais

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial 6- EDO s: TEORIA E TRATAMENTO NUMÉRICO Inrodução Muios problmas imporans significaivos da ngnharia, das ciências físicas das ciências sociais, formulados m rmos mamáicos, igm a drminação d uma função qu

Leia mais

Dinâmica de Sistemas: Análise Matemática 1. Várias situações problemas do nosso cotidiano podem ser entendidas como sendo sistemas.

Dinâmica de Sistemas: Análise Matemática 1. Várias situações problemas do nosso cotidiano podem ser entendidas como sendo sistemas. inâmica d Sismas: nális amáica Capíulo Várias siuaçõs problmas do nosso coidiano podm sr nndidas como sndo sismas. nominamos d sisma um conjuno d lmnos inrligados com o objivo d dsmpnhar uma drminada função.

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

ANO LECTIVO 2001/2002

ANO LECTIVO 2001/2002 ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri FENOMENOS DE TRANSPORTE o Smsr d 03 Prof. Maurício Fabbri 3ª SÉRIE DE EXERCÍCIOS Transpor d calor por convcção O ransin ponncial simpls Consrvação da nrgia 0-3. O coficin d ransfrência d calor Lia o marial

Leia mais

Corrente elétrica, Resistência e circuitos elétricos de corrente contínua. Cargas em movimento

Corrente elétrica, Resistência e circuitos elétricos de corrente contínua. Cargas em movimento 9//17 Elricidad Magnismo IME Corrn lérica, sisência circuios léricos d corrn conínua Prof. Crisiano Olivira Ed. Basilio Jaf sala crislpo@if.usp.br Cargas m movimno Cargas m movimno Corrn lérica O caminho

Leia mais

3. Análise de Circuitos Elétricos Simples

3. Análise de Circuitos Elétricos Simples REDES CIRCUITOS: 3. Anális d Circuios Eléricos Simpls A inrconxão d dois ou mais lmnos d circuios simpls forma uma rd lérica. S a rd ivr plo mnos um caminho fchado, la é ambém um circuio lérico. ELEMENTO

Leia mais

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS Tiago Novllo d Brio Fcilcam, iago-novllo@homail.com ald dos Sanos Coquiro Fcilcam, vcoquiro@yahoo.com.br Rosangla Tixira Guds UTFPR, r_guds@homail.com

Leia mais

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se,

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se, Curo d Engnharia Elcrónica d Compuador - Elcrónica III Frquência Complxa rvião n Conidr- a xprão, σ v V co qu rprna uma inuoid com a ampliud modulada por uma xponncial. Com ral, m-, n σ>0 a ampliud d v

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Minisério da Educação Univrsidad Tcnológica Fdral do Paraná Campus Curiiba Grência d Ensino Psquisa Dparamno Acadêmico d Mamáica EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Prof. a Paula Francis Bnvids Equaçõs

Leia mais

O modelo Von Bertalanffy adaptado para suínos de corte

O modelo Von Bertalanffy adaptado para suínos de corte O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: lucasdolivira@gmail.com

Leia mais

para Z t (lembre que = 1 B)

para Z t (lembre que = 1 B) Economria III ANE59 Lisa d Ercícios d Economria d Séris mporais Pro. Rogério Siva d Maos (Juho 6) Si: www.uj.br/rogrio_maos A. MODELOS ARIMA. Escrva por nso:. ARMA(,) para. ARMA(,) para X. ( B B ) Z (

Leia mais

2. Análise de Circuitos Elétricos Simples. Curto circuito e circuito aberto. Amperímetros e voltímetros

2. Análise de Circuitos Elétricos Simples. Curto circuito e circuito aberto. Amperímetros e voltímetros REDES CIRCUITOS:. Anális d Circuios Eléricos Simpls A inrconxão d dois ou mais lmnos d circuios simpls forma uma rd lérica. S a rd ir plo mnos um caminho fchado, la é ambém um circuio lérico. ELEMENTO

Leia mais

Sinais e Sistemas Lineares

Sinais e Sistemas Lineares ES 43 Sinais Sismas Sinais Sismas Linars Prof. Aluizio Fauso Ribiro Araújo Dpo. of Sismas d Compuação Cnro d Informáica - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Sinais Tamanho d um Sinal Opraçõs

Leia mais

Apontamentos de Análise de Sinais

Apontamentos de Análise de Sinais LICENCIUR EM ENGENHRI DE SISEMS DE ELECOMUNICÇÕES E ELECRÓNIC ponamnos d nális d Sinais Módulo Prof. José maral Vrsão. -- Scção d Comunicaçõs Procssamno d Sinal ISEL-CEDE, Gabin C da@isl.p Índic OBJECIVOS....

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Aula Teórica nº 32 LEM-2006/2007. Prof. responsável de EO: Mário J. Pinheiro. Oscilações eléctricas num circuito RLC

Aula Teórica nº 32 LEM-2006/2007. Prof. responsável de EO: Mário J. Pinheiro. Oscilações eléctricas num circuito RLC Aula órica nº 3 LEM-6/7 Prof. rponávl d EO: Mário J. Pinhiro Ocilaçõ lécrica num circuio RLC Conidr- agora um condnador inicialmn carrgado com a carga q qu no inan é dcarrgado obr um circuio lécrico d

Leia mais

Secção 8. Equações diferenciais não lineares.

Secção 8. Equações diferenciais não lineares. Scção 8. Equaçõs difrnciais não linars. (Farlow: Sc. 8. a 8.3) Esa scção srá ddicada às EDOs não linars, as quais são gralmn d rsolução analíica difícil ou msmo impossívl. Não vamos porano nar rsolvê-las

Leia mais

Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência

Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência Dp. Armas Elcronica, Escola Naval V. - Vicor Lobo 004 Capíulo 3 Transformadas ourir ourir Discra Bibliografia Domínio da frquência Qualqur sinal () po sr composo numa soma xponnciais complxas Uma xponncial

Leia mais

A DERIVADA DE UM INTEGRAL

A DERIVADA DE UM INTEGRAL A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Este texto trata do estudo analítico de sistemas de controle. Falando de forma geral, ele consiste de quatro partes:

Este texto trata do estudo analítico de sistemas de controle. Falando de forma geral, ele consiste de quatro partes: . Mamáica.. Sima Fíico Modlo E o raa do udo analíico d ima d conrol. Falando d forma gral, l coni d quaro par:. Modlagm. Dnvolvimno d quaçõ mamáica. Análi 4. Projo E capíulo dicu a dua primira par. A diinção

Leia mais

Análise Matemática III

Análise Matemática III João Paulo Pais d Almida Ilda Marisa d Sá Ris Ana Esr da Viga Rodrigus Víor Luis Prira d Sousa Anális Mamáica III Dparamno d Mamáica Escola Suprior d Tcnologia d Gsão Insiuo Poliécnico d Bragança Smbro

Leia mais

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente:

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente: 98 99 VARIÁVEIS ALEATÓRIAS DISCRETAS Vamos agora analisar m dalh algumas variávis alaórias discras, nomadamn: uniform Brnoulli binomial binomial ngaiva (ou d Pascal) gomérica hirgomérica oisson mulinomial

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

Análise no Domínio do Tempo de Sistemas Contínuos

Análise no Domínio do Tempo de Sistemas Contínuos ES 43 Sinais Sismas Anális no omínio do Tmpo d Sismas Conínuos Prof. Aluizio Fauso Ribiro Araújo po. of Sismas d Compuação Cnro d Informáia - UFPE Capíulo Sinais Sismas Eng. da Compuação Conúdo Inrodução

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

2.2 Transformada de Fourier e Espectro Contínuo

2.2 Transformada de Fourier e Espectro Contínuo 2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico

Leia mais

A TRANSFORMADA DE LAPLACE

A TRANSFORMADA DE LAPLACE A TRANSFORMADA DE APACE Prof M Ayron Barboni SUMÁRIO INTRODUÇÃO TRANSFORMADA DE APACE Dfinição Cálculo da ranformada d aplac Exrcício rolvido 4 4 Exrcício propoo 8 TRANSFORMADA INVERSA DE APACE 9 Exrcício

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

Sistemas e Sinais (LEIC) Resposta em Frequência

Sistemas e Sinais (LEIC) Resposta em Frequência Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória

Leia mais

4. Modelos matemáticos de crescimento

4. Modelos matemáticos de crescimento 2 Sumário (3ª aula) Exrcícios d consolidação (coninuação) 4. Modlos mamáicos d crscimno 4..Progrssão ariméica (variação absolua consan) 4.2.Progrssão goméricas (variação rlaiva consan) Exrcício 2) Compaibiliz

Leia mais

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes:

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes: Curso d linguagm mamáica Profssor Rnao Tião 1 PUCRS. No projo Sobrmsa Musical, o Insiuo d Culura da PUCRS raliza aprsnaçõs smanais grauias para a comunidad univrsiária. O númro d músicos qu auaram na aprsnação

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA (REVISÕES SOBRE FUNÇÕES REAIS DE VARIÁVEL REAL) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Rvisõs sobr unçõs

Leia mais

indicando (nesse gráfico) os vectores E

indicando (nesse gráfico) os vectores E Propagação Antnas Eam 5 d Janiro d 6 Docnt Rsponsávl: Prof Carlos R Paiva Duração: 3 horas 5 d Janiro d 6 Ano Lctivo: 5 / 6 SEGUNDO EXAME Uma onda lctromagnética plana monocromática é caractrizada plo

Leia mais

TRASITÓRIOS PARTE 1 CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA. 0 q elétron. Itens. 1 Carga elétrica.

TRASITÓRIOS PARTE 1 CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA. 0 q elétron. Itens. 1 Carga elétrica. // TÂN TTÓO T TÂN // // TÂN n. nrgia poncial lérica..trabalho lérico..oncial lérico..tnão lérica.. arga lérica..apaciância lérica.. Força lérica..náli mporal.. ampo lérico.. rmiividad lérica ar.. Fluxo

Leia mais

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T

Sinais de Potência. ( t) Período: Frequência fundamental: f = T T Siais d Poêcia P lim ( ) d < Siais Priódicos ( ) ( + ) com Ζ ( ) Príodo: P Frquêcia udamal: ( ) d Exmplos Sial cosa ( ) Sial siusoidal Fas ula Im si θ c Fórmulas d Eulr xp ± jθ cosθ ± j si ( ) θ jθ θ cosθ

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA ) Drmin as Primiivas das funçõs abaio: a) b) ( ) ) ( ) d) ln ) 6ln 6 f) (sn( ) os( )) os( ) sn( ) g) h) / arg ( ) i) j) k) (sn(

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS EXATAS E DA TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA MESTRADO PROFISSIONAL

UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS EXATAS E DA TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA MESTRADO PROFISSIONAL UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS EXATAS E DA TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA MESTRADO PROFISSIONAL SAMUEL CORNELLI ANÁLISE ESTÁTICA E DINÂMICA DE PÓRTICOS ESPACIAIS

Leia mais

Curva de Phillips e o Modelo de Realimentação: Será Friedman um Neo- Estruturalista?

Curva de Phillips e o Modelo de Realimentação: Será Friedman um Neo- Estruturalista? Curva d Phillips o Modlo d Ralimnação: Srá Fridman um No- Esruuralisa? Frnando d Holanda Barbosa. Inrodução Es rabalho m dois objivos. O primiro consis m sablcr uma disinção basan clara nr o modlo d ralimnação

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física INTERFERÔMETRO DE FABRY-PEROT

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física INTERFERÔMETRO DE FABRY-PEROT Univrsidad d São Paulo Insiuo d Física d São Carlos Laboraório Avançado d Física INTRFRÔMTRO D FABRY-PROT O inrfrômro d Fabry-Pro é um dos inrfrômros mais comumn usado m difrns aplicaçõs d ala rsolução.

Leia mais

Tratamento da Imagem Transformações

Tratamento da Imagem Transformações Univrsidad Fdral do Rio d Janiro - IM/DCC & NCE Tratamnto da Imagm Transormaçõs Antonio G. Thomé thom@nc.urj.br Sala AEP/33 Tratamnto d Imagns - Sumário Dtalhado Objtivos Alguns Concitos Básicos Transormaçõs

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Minisério da Eduação Univrsidad Tnológia Fdral do Paraná Campus Curiiba Grênia d Ensino Psquisa Dparamno Aadêmio d Mamáia EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Prof. a Paula Franis Bnvids Equaçõs Difrnias

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

Curso de Eletrônica Parte Analógica. Ademarlaudo Barbosa

Curso de Eletrônica Parte Analógica. Ademarlaudo Barbosa urs d Elrônica Par Analógica Admarlaud Barbsa II ircuis Elmnars. Divisr d Tnsã Na Fig. 08 ilusrams um circui nvlvnd dis rsisrs. É cnvnin sudá-l nã só para nndr suas prpridads cm ambém para sablcr s méds

Leia mais

PARTE 6 DERIVADAS PARCIAIS

PARTE 6 DERIVADAS PARCIAIS PARTE 6 DERIVADAS PARCIAIS 6.1 Introdução Vamos falar agora das drivadas parciais d uma função ral d várias variávis rais, f : Dom(f) R n R. Para simplificar, vamos comçar com uma função m R, para só dpois

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

ZEROS DE SISTEMAS MIMO

ZEROS DE SISTEMAS MIMO Edardo Lobo Loa abral ZEROS DE SISTEMAS MIMO. Zro d ranmião O cálclo do ro d m ima SISO é rmamn impl d r fado, poi ão a raí do polinômio do nmrador d a fnção d ranfrência. Por mplo, conidr o ima dinâmico

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Capítulo 4 Modulação CW Linear

Capítulo 4 Modulação CW Linear Caíulo 4 Modulação CW Linar Modulação: alração sismáia d uma orma d onda a oradora ou arrir d aordo om as ararísias d oura orma d onda sinal modulador, d modulação ou mnsagm Tios d modulação: Modulação

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

CAPÍTULO 4 - TEORIA DOS SISTEMAS DE REFERÊNC IA

CAPÍTULO 4 - TEORIA DOS SISTEMAS DE REFERÊNC IA CAPÍULO 4 - EORIA DOS SISEMAS DE REERÊNC IA 4. INRODUÇÃO A quação d tnsão, potência torqu as quais dscrvm o comportamnto da máquina oram stablcidas no parágrao (C.5). Mostramos qu as indutâncias mútuas

Leia mais

Polarização de Ondas, Polarizadores e Aplicações

Polarização de Ondas, Polarizadores e Aplicações UNIVRSIDAD STADUAL PAULISTA JÚLIO D MSQUITA FILHO FACULDAD D NGNHARIA D ILHA SOLTIRA Polariação d Ondas, Polariadors Aplicaçõs 1- Ondas Planas Uniforms m Mios Isorópi Ilimiados Prof. Cláudio Kiano Ilha

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO Departamento de Economia Rua Marquês de São Vicente, Rio de Janeiro Brasil

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO Departamento de Economia Rua Marquês de São Vicente, Rio de Janeiro Brasil PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO Dparamno d Economia Rua Marquês d São Vicn, 225 22453-900 - Rio d Janiro rasil TEORIA MACROECONÔMICA II Gabario da P3 Profssors: Dionísio Dias Carniro

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

TEORIA DAS FILAS COMO FERRAMENTA PARA ANÁLISE DE DESEMPENHO DE SISTEMAS DE ATENDIMENTO: ESTUDO DO CASO DE UM SERVIDOR DA UECE

TEORIA DAS FILAS COMO FERRAMENTA PARA ANÁLISE DE DESEMPENHO DE SISTEMAS DE ATENDIMENTO: ESTUDO DO CASO DE UM SERVIDOR DA UECE Univrsidad Esadual do Cará (UECE) Cnro d Ciências Tcnologia (CCT) Cnro Fdral d Educação Tcnológica do Cará (CEFET-CE) Diroria d Psquisa Pós-Graduação DIPPG MESTRADO INTEGRADO PROFISSIONALIZANTE EM COMPUTAÇÃO

Leia mais

Capítulo 2: Proposta de um Novo Retificador Trifásico

Capítulo 2: Proposta de um Novo Retificador Trifásico 30 Capíulo 2: Proposa de um Novo Reificador Trifásico O mecanismo do descobrimeno não é lógico e inelecual. É uma iluminação suberrânea, quase um êxase. Em seguida, é cero, a ineligência analisa e a experiência

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Em termos temporais há duas formas possíveis de operação dos sistemas: estacionária e dinâmica.

Em termos temporais há duas formas possíveis de operação dos sistemas: estacionária e dinâmica. INTRODUÇÃO N curo ão arnada uada frramna ncária ara a análi do comoramno dinâmico d ima (roco oraçõ uniária) da ngnharia química. Numa abordagm baan imlia, m rmo do númro d alavra uilizada, orm abrangn

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

Circuitos Série de Corrente Alternada 1 Simplício do Carmo

Circuitos Série de Corrente Alternada 1 Simplício do Carmo ircuios éri d orrn lrnada 1 implício do armo ircuios éri d orrn lrnada implício do armo ircuios éri d orrn lrnada 3 implício do armo ircuios éri d orrn lrnada 4 implício do armo ircuios éri d orrn lrnada

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Permeabilidade e Fluxo Unidimensional em solos

Permeabilidade e Fluxo Unidimensional em solos Prmabilidad Fluxo Unidimnsional m solos GEOTECNIA II AULA 0 Prof. MSc. Douglas M. A. Bittncourt prof.douglas.pucgo@gmail.com Prmabilidad Propridad do solo qu indica a facilidad com qu um fluido podrá passar

Leia mais

Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Química Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EQ3M Smstr: 1 sm/2017 Data: 27/04/2017 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais