ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

Tamanho: px
Começar a partir da página:

Download "ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica"

Transcrição

1 SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc ÂNI me o 6 de setembo de ução d o: mutos (ão é pemtdo uso de ccudos) ª Questão (, potos): b está sob ção do sstem de foçs (, ), (, ) e (, ). ede-se: ) esutte R e o mometo do sstem de foçs em eção o póo. b) esej-se estg todos os mometos d b cudo- em um úco poto. osdedo, p,, : b ) eteme o tpo de ícuo que dee se empegdo e justfque esco. b ) eteme posção qu o ícuo dee se coocdo b de modo mmz s eções cues que mtém b em equíbo estátco. b ) cue esss eções cues. ª Questão (, potos): N estutu mostd fgu, compost po bs btcuds de compmeto e mss despezíe, está pcd um cg em. Sbedo que o ícuo em é um tcução e em um poo smpes, detem: ) s eções extes. b) foç b, dcdo se de tção ou compessão. c) foç b, dcdo se de tção ou compessão. 4 x / / 4 O z g R R y 4 o ª Questão (, potos): pc omogêe tem um fuo etgu, cofome mostdo fgu, estdo tcud em e pod com tto b O em. Seu peso, cosdedo o fuo etgu, é. b omogêe O tem peso, e está tcud em O. No poto é fxdo um fo de, extesíe e sem mss, que coto um po de ceto, o R e peso. N out extemdde do fo é pcd um foç de tesdde. Não á escoegmeto ete o fo e po. Não á tto s tcuções em, O e. O coefcete de tto o poto de cotto é µ,. eteme: ) s foçs tutes po. b) dstâc do bceto d pc fud em eção o segmeto. c) foç om e foç de tto em. d) O máxmo t que o sstem d pemeç em equíbo.

2 SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc ecâc - RITO RO x / z y ª Questão (, potos): b, de mss despezíe, está sob ção do sstem de foçs (, ), (, ) e (, ). ede-se: ) esutte R e o mometo do sstem de foçs em eção o póo. (, potos) b) esej-se estg todos os mometos d b cudo- em um úco poto. osdedo, p,, : b ) eteme o tpo de ícuo que dee se empegdo e justfque esco. (, potos) b ) eteme posção qu o ícuo dee se coocdo b de modo mmz s eções cues que mtém b em equíbo estátco. ( poto) b ) cue esss eções cues. ( poto) SOLUÇÃO ) ácuo d esutte R e do mometo do sstem de foçs em eção o póo dmtdo-se que mss d b sej despezíe, tem-se: R j + k (, potos) (q.-) + + ( ) ( ) ( ) ou sej: j + ( + k ) + ( j + k ) ( k ) k + j (q. -) (, potos) b)cução d b em pes um poto b) etemção do tpo de ícuo se empegdo. omo todo sstem de foçs pode se eduzdo um sstem ms smpes costtuído po um esutte e um báo, bst, em pcípo, seeco um ícuo cpz de foece um eção que se cotpusesse ess esutte e esse báo, de modo mte b em equíbo. osdedo-se que egstmetos são ícuos que foecem foçs e mometos etos, mbos de deções btás, pode-se-, potto, emoe todos os gus de bedde d b egstdo- em qusque de seus potos. scoedo-se, po exempo, o poto, efc-se, de medto, que s eções foecds peo egstmeto ess posção sem dds po:

3 R SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc ( j + k ) ( k + j ) (q. -) (q. -4) o outo do, á que se efc se, ém do egstmeto, ão exste gum outo ícuo cpz de mte b em equíbo sob ção do sstem de foçs dds. T se o cso, se o efedo sstem de foçs fosse edutíe um úc esutte, com de ção cocdete com o exo cet, qudo, etão, bst utz um ícuo ms smpes que foecesse um úc foç et de deção btá que se cotpusesse à esutte R. efquemos se t pode ocoe, sdo, p tto, o te esc I do sstem: I R j + k k + j ( ) ( ) ( ) omo o eucdo do pobem pede p dmt que, p,,, cocu-se que: I (q. -) de ode se depeede que o sstem de foçs ddo ão é edutíe um úc foç. otto, úc cução po um úco poto cpz de mte em equíbo b em questão, sob efeto do cegmeto ddo, é costtuíd po um egstmeto, o qu pode se pcdo quque poto d b. (, potos) b) etemção d posção do ícuo que mmz s eções cues. Idemete, ess posção dee se stu tesecção (cso exst) ete b e o exo cet (ug geométco dos póos p os qus o mometo é mímo) do sstem de foçs. Tomdo-se como ogem do sstem de coodeds o póo e pcdo-se equção do exo cet o sstem de foçs ddo, ou sej, R ( ) + λr (, potos) (q. -6) R esut: ( ) + λ( + j k ) [ + k ] + λ( + j k ) + + j k de modo que: ( ) ( + k ) + λ( + j k ) (q. -7) sdo-se equção cm, costt-se que mesm coespode à equção de um et pe à de ção d esutte pssdo peo poto

4 SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc,, (, potos) o qu que petece à b. otto, p que s eções cues sejm mmzds, dee-se egst b o poto dcdo cm. b) ácuo ds eções cues. dmtdo-se que b estej egstd o poto,, petecete o exo cet do sstem de foçs ts, fee-se que este egstmeto deeá popoco: um foç et R que u esutte do sstem de foçs ts, ou sej, t que: R R j + k (, potos) (q. -) um mometo eto que u o mometo mímo do sstem de foçs, ou sej: R (q. -9) ode R R de modo que o mometo eto o egstmeto seá: ( + j k ) (q. -) (, potos) (q. -) ª Questão (, potos): N estutu mostd fgu, compost po bs b tcuds de compmeto e mss despezíe, está pcd um cg em. Sbedo que o ícuo em é um tcução e em um poo smpes, detem: ) s eções extes. b) foç b, dcdo se de tção ou compessão. c) foç b, dcdo se de tção ou compessão. SOLUÇÃO ) ácuo ds eções extes. ccu s eções extes, costó-se o dgm de copo e d teç e, em segud, pcm-se s equções de equíbo d státc.

5 SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc X g. -: gm de copo e d teç. (q. -) X (q. -) x y ( poto) + (q. -) b) ácuo d foç te b. ccu ess foç, s-se o equíbo do ó : 6 y x + (q. -4) (q. -) g. -: quíbo do ó. omo o s d foç pcd o ó pe b é posto, cocu-se que coeção gáfc dotd é cosstete ogo, b está sedo compmd (de gu -). o outo do, o s d foç pcd o ó pe b é egto, dcdo que o setdo e dess foç é oposto o que fo dotdo ou sej, b está sedo tcod (de gu -4). g. -: gm de copo e d b. g. -4: gm de copo e d b. ( poto)

6 SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc c) ácuo d foç b. pcdo-se o étodo ds Seções, detem-se o o dess foç, cofome ustdo gu - -b, que most o dgm de copo e d estutu esutte do seccometo d teç og segudo secção K-K (gu --) psste pes bs, e. K K () g. -: () Seccometo d teç og; (b) gm de copo e do copo. (b) pcdo-se equção de equíbo de mometos o copo, obtém-se: + + ocu-se, ssm, que b está sujet um foç de tção de tesdde dcdo o dgm de copo e d gu -6. (q. -6), cofome (, potos) g. -6: gm de copo e d b

7 SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc 4 / 4 O g R R 4 o ª Questão (, potos): pc omogêe tem um fuo etgu, cofome mostdo fgu, estdo tcud em e pod com tto b O em. Seu peso, cosdedo o fuo etgu, é. b omogêe O tem peso, e está tcud em O. No poto é fxdo um fo de, extesíe e sem mss, que coto um po de ceto, o R e peso. N out extemdde do fo é pcd um foç de tesdde. Não á escoegmeto ete o fo e po. Não á tto s tcuções em, O e. O coefcete de tto o poto de cotto é µ,. eteme: ) s foçs tutes po. b) dstâc do bceto d pc fud em eção o segmeto. c) foç om e foç de tto em. d) O máxmo t que o sstem d pemeç em equíbo. SOLUÇÃO ) ácuo ds foçs tutes po. tto, costó-se o dgm de copo e d po (de gu -), pcdo-se o mesmo s equções de equíbo d státc, ou sej: T R 4 o g. -: gm de copo e d po. R + T R T X + (q. -) (q. -) + + T (q- -) (, potos)

8 SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc 4 b) ácuo d posção do bceto d pc. Tomdo-se po efeêc o sstem de coodeds dcdo gu., tem-se: y / 4 x Retâguo de dos (; 4): o Áe: S o ceto: ( 4, ) Retâguo de dos (4; ): o Áe: o ceto: S +, g..: eomet d pc etgu ecotd. ceto d pc ecotd: X 7 4 x S + x S (q. -4) S + S (po smet) (q. -) otto, o bceto d pc se stu posção (, ) c) ácuo ds foçs om e de tto em.. ( poto) tto, s-se o equíbo d pc etgu e d b O, pcdo-se s equções d státc os sstems de foçs dcdos os espectos dgms de copo e ds gus. e.4. T 4 O O O g..: gm de copo e d pc. g..4: gm de copo e d b O.

9 SOL OLITÉNI UNIRSI SÃO ULO ed ofesso eo oes, º. -9, São uo, S. Teefoe: (xx) 9 7 x: (xx) 6 eptmeto de ge ecâc Utzdo-se, p pc, equção de equíbo de mometos em eção o póo, tem-se: + + T (q. -6) Utzdo-se, p b O, equção de equíbo de mometos em eção o póo O, tem-se: O + + (q. -7) ( poto) d) O máxmo o de p que o sstem pemeç em equíbo. Notdo-se que o ícuo em se dee o cotcto com tto ete pc e b O, e que o sstem bdo seu estdo de equíbo estátco cso oco deszmeto d b O sobe supefíce d pc cusdo pe supeção d foç de tto máxm o poto de cotcto, cocu-se que dee se sd stução em que µ (q. -) ou sej:, (q. -9) otto, o máxmo o de comptíe com o equíbo seá 6 (q. -) coespodete à stução em que ocoe supeção d foç de tto compd peo deszmeto d b O etmete à pc etgu. ( poto)

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SOL OLITÉNI UNIVSI SÃO ULO venid ofesso Mello Moes, nº 3 008-900, São ulo, S Telefone: (0xx) 309 337 x: (0xx) 383 886 eptmento de ngenhi Mecânic M 00 MÂNI de setembo de 009 QUSTÃO (3 pontos): figu most

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ME100 Mecânc o Substtut 06 de Dezembo de 005 Dução: 100 mnutos Impotnte: não é pemtdo o uso de clculdos 1 (0 pontos) pso é o efeencl fo e colun psmátc (plel o eo z) está f neste pso. cento do dsco tmbém

Leia mais

Ajuste de curvas por quadrados mínimos lineares

Ajuste de curvas por quadrados mínimos lineares juste de cuvs o quddos mímos lees Fele eodo de gu e Wdele Iocêco oe Júo Egeh de s o. Peíodo Pofesso: ode Josué Bezue Dscl: Geomet lítc e Álgeb e. Itodução Utlzmos este método qudo temos um dstbução de

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O

Leia mais

MATEMÁTICA - 17/12/2009

MATEMÁTICA - 17/12/2009 MATEMÁTICA - 7// GGE RESPONDE - VESTIBULAR ITA (MATEMÁTICA) Notções N = {...} C: cojuto dos úmeos R: cojuto dos úmeos es I: Udde mgá: = - [ b] = { R; b} : Módulo do úmeo C [ b[ = { R; b} : Cojugdo do úmeo

Leia mais

CURSO DE NIVELAMENTO PEQ/COPPE/UFRJ M.Sc EQUAÇÕES DIFERENCIAIS ORDINÁRIAS. Prof. Evaristo Chalbaud Biscaia Junior

CURSO DE NIVELAMENTO PEQ/COPPE/UFRJ M.Sc EQUAÇÕES DIFERENCIAIS ORDINÁRIAS. Prof. Evaristo Chalbaud Biscaia Junior CURSO DE NIVELMENTO PEQ/COPPE/UFRJ M.S. EQUÇÕES DIFERENCIIS ORDINÁRIS Pof. Esto Clbu Bs Juo Fe Wlelm Bessel Bo: Jul 8 Me Westl (ow Gem) De: M 8 Kögsbeg Puss (ow Klg Russ) ) -) Equções Dfees e Pme Oem Le

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica SOL OLITÉNI UNIVRSI SÃO ULO eptmento de ngenhi Mecânic M 100 MÂNI 1 30 de gosto de 011 ução d ov: 110 minutos (não é pemitido o uso de clculdos QUSTÃO 1 (3,0 pontos. O supote de peso despezível ilustdo

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SL LIÉNI UNISI SÃ UL venda ofesso eo oaes, nº 3. cep 558-9, São auo, S. eefone: (xx) 39 5337 ax: (xx) 383 886 epatamento de ngenhaa ecânca QUSÃ (3, pontos). paca não pana, de peso despezíve, é constuída

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica SO OITÉNI UNIVRSI SÃO UO venid ofesso Mello Moes, nº 1. cep 05508-900, São ulo, S. Telefone: (011) 091 57 : (011) 81 1886 eptmento de nenhi Mecânic M 100 MÂNI imei ov 1 de setembo de 005 ução d ov: 100

Leia mais

Primeira Prova de Mecânica A PME /08/2012

Primeira Prova de Mecânica A PME /08/2012 SL LITÉNI UNIVRSI SÃ UL eprtmento de ngenhr Mecânc rmer rov de Mecânc M 100 8/08/01 Tempo de prov: 110 mnutos (não é permtdo o uso de dspostvos eletrôncos) r r r r r r 1º Questão (3,0 pontos) onsdere o

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME 2200 MECÂNICA B 1ª

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME 2200 MECÂNICA B 1ª ESL PLTÉN D UNVESDDE DE SÃ PUL DEPTENT DE ENEN EÂN PE EÂN ª Pov 9/3/ Dução mnutos Não é pemtdo o uso de clculdos. b y ª Questão 3, pontos fu o ldo most um sstem mecânco. dsco, de mss, o e cento de mss,

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. PME 2100 Mecânica A Segunda Prova 23 de outubro de 2007

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. PME 2100 Mecânica A Segunda Prova 23 de outubro de 2007 ES PITÉNI D UNIVESIDDE DE SÃ PU Deptmento de Engenh Mecânc PME Mecânc Segund Po 3 de outuo de 7 ª Questão: (3,5 Ptos) com eto de otção constnte Ω Ω g no plno hoontl em tono de. nclnd pode desl em um lu

Leia mais

O ROTACIONAL E O TEOREMA DE STOKES

O ROTACIONAL E O TEOREMA DE STOKES 14 O ROTACONAL E O TEOREMA DE STOKES 14.1 - O ROTACONAL A equção:. dl ( A) (14.1) ecion integ de inh do veto intensidde de cmpo mgnético fechdo L com coente tot envovid po esse cminho. o ongo de um cminho

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4 UNIVERSIDDE FEDERL D PRÍB ENTRO DE IÊNIS EXTS E D NTUREZ DEPRTMENTO DE MTEMÁTI ÁLULO DIFERENIL E INTEGRLL II PLIÇÕES D INTEGRLL. oodends Poles O sstem de coodends que conhecemos p dentfc pontos noo plno

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

Os fundamentos da física Volume 2 1. Resumo do capítulo

Os fundamentos da física Volume 2 1. Resumo do capítulo Os fudametos da físca Volume 2 1 Capítulo 13 Refação lumosa A efação é o feômeo o qual a luz muda de meo de popagação, com mudaça em sua velocdade. ÍDICE DE REFRAÇÃO ABSOLUTO O ídce de efação absoluto

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

4/10/2015. Física Geral III

4/10/2015. Física Geral III Físca Geal III Aula Teóca 8 (Cap. 6 pate /3: Potecal cado po: Uma caga putome Gupo de cagas putomes 3 Dpolo elétco Dstbução cotíua de cagas Po. Maco. Loos mos ue uma caga putome gea um campo elétco dado

Leia mais

3 Teoria: O Modelo de Maxwell-Garnett

3 Teoria: O Modelo de Maxwell-Garnett Teo: O Modelo de Mxwell-Gett.1. sfe coduto peseç de u cpo elétco A Teo de Mxwell-Gett do eo efetvo 19,,5 é utlzd p desceve s popeddes óptcs de u tefce etl-delétco peseç de u cpo elétco e ote-se u expessão

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

1º Exame de Análise de Estruturas I Mestrado Integrado em Engenharia Civil Responsável: Prof. J.A. Teixeira de Freitas 5 de Junho de 2013

1º Exame de Análise de Estruturas I Mestrado Integrado em Engenharia Civil Responsável: Prof. J.A. Teixeira de Freitas 5 de Junho de 2013 Consult ens do fomuláo. Deslgue o telemóel. Dução: hos. º Eme de nálse de Estutus I estdo Integdo em Engenh Cl Resonsáel: of. J.. ee de Fets 5 de Junho de Identfque tods s folhs. Ince cd olem num no folh.

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

07/11/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

07/11/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado 7//6 UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Pof. lvo Miel Lim Mchdo jtmeto com Ijçõe Lih com zeo mtiz Só obevçõe Lih com zeo mtiz B Sem obevçõe Eqçõe de codição

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

Análise de Componentes Principais

Análise de Componentes Principais PÓS-GRADUAÇÃO EM AGRONOMIA CPGA-CS Aálse Multvd Alcd s Cêcs Agás Aálse de Comoetes Pcs Clos Albeto Alves Vell Seoédc - RJ //008 Coteúdo Itodução... Mt de ddos X... 4 Mt de covâc S... 4 Pdoção com méd eo

Leia mais

dv = πr 2 dx dv = π[f(x)] 2 dx b 8.2- Volume de Sólidos de Revolução

dv = πr 2 dx dv = π[f(x)] 2 dx b 8.2- Volume de Sólidos de Revolução 8.- Volume de Sóldos de Revolução Um egão tdmensonl (S) que possu s popeddes ) e ) segu é um sóldo: ) A fonte de S consste em um númeo fnto de supefíces lss que se nteceptm num númeo fnto de ests que po

Leia mais

(R B ) 0 =(R B ) 10 +(R B ) 20 +(R B ) 30 (R D ) 0 =(R D ) 30 +(R D ) 40. p (R D ) 30 (R B ) 30 E, I

(R B ) 0 =(R B ) 10 +(R B ) 20 +(R B ) 30 (R D ) 0 =(R D ) 30 +(R D ) 40. p (R D ) 30 (R B ) 30 E, I MÉTOO OSS Seja agora uma estrutura de ós fxos duas vezes hergeométrca,.e. tal que os ós ão sofrem qualquer deslocameto de traslação e cotem ós com cógtas de rotação.. cos. cos etermemos os esforços mometos

Leia mais

RESOLUÇÃO SIMULADO ITA FÍSICA E REDAÇÃO - CICLO 7 FÍSICA GM G M GM GM. T g

RESOLUÇÃO SIMULADO ITA FÍSICA E REDAÇÃO - CICLO 7 FÍSICA GM G M GM GM. T g RESOLUÇÃO SIMULADO ITA FÍSICA E REDAÇÃO - CICLO 7 FÍSICA Questão M a) A desdade é a azão ete a massa e o volume: d. V Se as desdades fossem guas: MP MT MT MT dp dt. V 4 4 P VT RT R T GM b) A gavdade a

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA cânc E ª o /5/5 Dução d o: nutos (Não é ptdo o uso d ccudos, cus, tbts /ou outos qupntos ss) QUESTÃO (,5 pontos). b hooên B, d copnto ss stá tcud. tndo d posção tc, co ocdd nu, s choc cont qun do du, confo

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de k amostras independentes (tratamentos) diferem entre si.

A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de k amostras independentes (tratamentos) diferem entre si. Prof. Lorí Va, Dr. http://www. ufrgs.br/~va/ va@mat.ufrgs.br aáse de varâca de uma cassfcação (Oe-Way NOV) verfca se as médas de amostras depedetes (tratametos) dferem etre s. Um segudo tpo de aáse de

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

MÉTODOS GRÁFICOS 1. INTRODUÇÃO:

MÉTODOS GRÁFICOS 1. INTRODUÇÃO: MÉTODO GRÁFICO. INTRODUÇÃO: Um gráfco é um mer coveete de se represetr um relção etre vlores epermets ou vlores teórcos) de dus ou ms grdezs, de form fcltr vsulzção, terpretção e obteção d fução mtemátc

Leia mais

GABARITO LISTA 2. A firma 2 resolve um problema semelhante e tem como CPO:

GABARITO LISTA 2. A firma 2 resolve um problema semelhante e tem como CPO: Fundção Getúlo Vgs FGV-RJ Gdução em dmnstção Mcoeconom II of: ulo omb Monto: Flvo Moes GBRITO LIST No duopólo de ounot, cd fm escolhe untdde ue mmz o seu luco dd untdde d out fm sendo ue escolh é smultâne

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica M MÂNI Substitutia de uho de 9 Duação da oa: minutos não é pemitido uso de cacuadoas QUSÃ, pontos. diagama abaio mosta um sistema em equiíbio. peso do boco K é e o peso da poia é /. Despee outos pesos.

Leia mais

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA Ecoometr ANÁLISE DE REGRESSÃO MÚLTIPLA Tópcos osderr otudde do Progrm Mstrdo pelo Prof Alceu Jom Modelo de Regressão Múltpl Aordgem Mtrcl ) Pressupostos; ) Iferêc versão Mtrcl; c) Iferêc o Método de rmmer;

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012 Po Substtut Mcâc B PME 3/7/ po po: utos (ão é pto o uso spostos ltôcos) º Qustão (3,5 potos) O sco o R, ss cto, g too hst O u s o o plo fgu o à ção o po o poto O. Et hst o cl O, st u ol tocol costt u otco

Leia mais

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = + Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto

Leia mais

ATIVIDADES PARA SALA PÁG. 75

ATIVIDADES PARA SALA PÁG. 75 esoluções 01 pítulo 4 studo de tângulos e polígonos TIVIS SL ÁG. 7 onsdendo s ets // s // //, tem-se os ângulos ltenos ntenos gus. 1 s III. eg de tês: Medd do co ompmento do (em gus) co (m) 360 40000 (qudo)

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

Capítulo 6 Corpo Rígido, Estática e Elasticidade

Capítulo 6 Corpo Rígido, Estática e Elasticidade Capítulo 6 Copo Rígdo, Estátca e Elastcdade 6. Noção de Copo Rígdo Estudamos já os movmetos de copos cujas dmesões eam despezáves face às meddas das suas tajectóas ou po coveêca e smplfcação, tomados como

Leia mais

4. lei de Gauss. lei de Gauss a ideia. r usar a sobreposição. muito importante!

4. lei de Gauss. lei de Gauss a ideia. r usar a sobreposição. muito importante! cmpo e potecil elécticos: cição cmpo e potecil elécticos: efeito se um ptícul cegd,, fo colocd um cmpo eléctico: F Um cg potul ci um cmpo e um potecil à su volt ˆ; ke k e us sobeposição estão elciodos:

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA 1 ESL PLITÉI D UIVESIDDE DE SÃ PUL LIST DE EXEÍIS - PME100 - MEÂI DIÂMI LIST DE EXEÍIS MPLEMETES LIV TEXT (FÇ, MTSUMU 1 Tês bs unifomes de mss m são soldds confome most fiu. Detemin os momentos e podutos

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas Sumáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Sstemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. -

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

Eletromagnetismo. 3 a lista de exercícios. Prof. Carlos Felipe. Campos magnéticos devido a correntes Dado: µ o =4π.10-7 Tm/A

Eletromagnetismo. 3 a lista de exercícios. Prof. Carlos Felipe. Campos magnéticos devido a correntes Dado: µ o =4π.10-7 Tm/A Eletomgnetsmo. 3 lst de execícos. of. Clos Felpe Cmpos mgnétcos dedo coentes Ddo: o =4π.10-7 Tm/A 1) Esce s equções de Mxwell do eletomgnetsmo e elcone equção que nclu ou é equlente : ) As lnhs de foç

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

REGIME TRANSIENTE. Métodos para Problemas de Valor Inicial. I. Métodos de Dois Níveis

REGIME TRANSIENTE. Métodos para Problemas de Valor Inicial. I. Métodos de Dois Níveis Agel Nieckele UC-Rio REGIME TRANIENTE Méodos p oblems de Vlo Iicil I. Méodos de Dois Níveis i. eplício ou Eule eplício ou Fowd Eule Eule p fee Tlo p fee: o f ; o f 3 3 4 4... 3 6 4 4! 0 po.. odem Agel

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1 esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo 6 Resultdos e Discussão I - Obtenção do K ti d luoescênci estcionái e esolvid no temo 6.1 Equilíbio de ionizção O H de um solução é um medid de su concentção de H, o qul ode se deinido como: 1 H log1 log1[

Leia mais

Lista de Exercícios - Geometria Métrica Espacial

Lista de Exercícios - Geometria Métrica Espacial UNEMAT Univesidde do Esdo de Mo Gosso Cmpus Univesiáio de inop Fcudde de Ciêncis Exs e Tecnoógics Cuso de Engenhi Civi Discipin: Fundmenos de Memáic Lis de Execícios - Geomei Méic Espci ) A es de um cuo

Leia mais

Soluções do Capítulo 9 (Volume 2)

Soluções do Capítulo 9 (Volume 2) Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Escol Secudái com º ciclo D. Diis º Ao de Mtemátic A Tem II Itodução o Cálculo Difeecil II Aul do plo de tblho º Resolve ctividde d pági 7, os eecícios ) e c), b) e c), 6 b) e c) d pági 8, ctividde d pági

Leia mais

Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO IV Potencial Elétrico 1

Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO IV Potencial Elétrico 1 letomgetsmo I of. D. Cláuo. to - CÍTUO I otecl létco O otecl létco: eg otecl upoh que esejmos esloc um cg elétc e um stâc em um cmpo elétco. foç em eo este cmpo elétco é: F oe o íce os lemb que foç é e

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fudametos da físa Udade E Capítulo efação lumosa esoluções dos eeíos popostos P.85 Como, temos: 8 0 0 8,5 P.86 De, em: 0 8,5 0 8 m/s P.87 elodade da luz a plaa de do oespode a 75% da elodade da luz

Leia mais

Física. Unidades fundamentais: -unidade de massa: Kg -unidade de comprimento: m -unidade de tempo: s

Física. Unidades fundamentais: -unidade de massa: Kg -unidade de comprimento: m -unidade de tempo: s ísc Unddes fundments: -undde de mss: Kg -undde de compmento: m -undde de tempo: s Unddes usus mecns e undde I equvlente Undde devd: - Undde de foç: N nlse Dmensonl: -mss: Kg------------M -compmento: m-----l

Leia mais

CAPITULO 4 MAGNETIZAÇÃO DOS CLUSTERS

CAPITULO 4 MAGNETIZAÇÃO DOS CLUSTERS CAPIULO 4 AGNEIZAÇÃO DO CLUER No cpítulo teo ttos ds pobblddes dos clustes go fleos ds eegs e seus utovloes e co esses esultdos podeeos clcul getzção p cd tpo de cluste. Coeçeos co os clustes de tpos sgle

Leia mais

NÚMEROS COMPLEXOS. z = a + bi a é a parte real e escreve-se a=re(z);

NÚMEROS COMPLEXOS. z = a + bi a é a parte real e escreve-se a=re(z); CMPLEXS º AN NÚMERS CMPLEXS Evolução do conceto de númeo: Ntus Inteos Rcons Icons gnáos Defn como undde mgná Númeo compleo é todo o númeo d fom + sendo e númeos es e undde mgná + é pte el e esceve-se ();

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

Introdução. Introdução. Introdução Objetivos. Introdução Corpo rígido. Introdução Notação

Introdução. Introdução. Introdução Objetivos. Introdução Corpo rígido. Introdução Notação Intodução Intodução à obótca Descção espacal e ansfomações (/2) of. Douglas G. Machaet douglas.machaet@dcc.ufmg.b Intodução à obótca - Descção espacal e ansfomações (/2) 2 Intodução osções e Oentações

Leia mais

Eletrônica II PSI3322

Eletrônica II PSI3322 Eletônca II PSI33 Pogamação paa a Tecea Poa 8 3/0 04/ O amplfcado dfeencal MOS com caga ata Eecíco 7. Seda, Cap. 7 p. 45 456 9 6/0 6/0 O amplfcado cascode MOS: análse de pequenos snas Seda, Cap. 6 p. 385

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Aula 11. Regressão Linear Múltipla.

Aula 11. Regressão Linear Múltipla. Aul. Regressão Ler Múltpl.. C.Doughert Itroducto to Ecoometrcs. Cpítulo 6. Buss&Morett Esttístc Básc 7ª Edção Regressão ler smples - Resumo Modelo N E[ ] E[ ] E[ N. Ser como oter fórmuls pr coefcetes de

Leia mais

Solução da segunda lista de exercícios

Solução da segunda lista de exercícios UESPI Cmpu Pof. Alende Alve de Olve Cuo: ch. em Cênc d Computção Dcpln: Fíc 9h Pof. Olímpo Sá loco: Aluno: Dt: 9// Solução d egund lt de eecíco Quetão : N fgu, um fo eto de compmento tnpot um coente. Obte:

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

Notas de Aula: Mecânica dos Sólidos I Prof. Willyan Machado Giufrida. Características geométrica das superfícies planas

Notas de Aula: Mecânica dos Sólidos I Prof. Willyan Machado Giufrida. Características geométrica das superfícies planas Nots de ul: Mecânc dos Sóldos I Prof Wllyn Mchdo Gufrd Crcterístcs geométrc ds superfíces plns Nots de ul: Mecânc dos Sóldos I Prof Wllyn Mchdo Gufrd Momento estátco Centro de Grvdde (CG) Momento estátco

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

RELACIONAMENTO ENTRE REFERENCIAIS LOCAIS E REFERENCIAIS GLOBAIS: PROBLEMA PROCRUSTES SIMPLES

RELACIONAMENTO ENTRE REFERENCIAIS LOCAIS E REFERENCIAIS GLOBAIS: PROBLEMA PROCRUSTES SIMPLES ELACIONAMENTO ENTE EEENCIAIS LOCAIS E EEENCIAIS GLOBAIS: POBLEMA POCUSTES SIMPLES Maa Apaecda ehpfeg aett Sílvo ogéo Coea de etas Luís Augusto Koeg Vega 3 Uvesdade edeal do Paaá UP - Cuso de Pós Gaduação

Leia mais

Matemática. Resoluções. Aula 22. Extensivo Terceirão Matemática 8A a. Portanto:

Matemática. Resoluções. Aula 22. Extensivo Terceirão Matemática 8A a. Portanto: Aul Resoluções Mtemátc A.. + + + ( + ) ( + ) ( ) + + + ou Potto, o mo vlo ossível é... d + + + ( + ) ( + ) ( ) + + + ou (,, ) 9,, Potto, o mo vlo ossível um dos temos é... c ou Potto, o módulo do temo

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

Curso: Engenharia Industrial Elétrica

Curso: Engenharia Industrial Elétrica urso: Egehr Idustrl Elétr Aálse de vráves omlexs MAT 6 Turm: Semestre:. Professor: Edmry S. B. Arújo Teor de Itegrção omlex Teor de Itegrção Resodeu Jesus: Em verdde, em verdde te dgo: quem ão ser d águ

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo? erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista AJUST D CURVAS Até or o polômo de promção o dedo de tl mer cocdr com o vlor d ução dd em potos dedos terpolção m certos tpos de prolems sto pode ão ser desejável em prtculr se os vlores orm otdos epermetlmete

Leia mais

t AB s = s 0 (1) / 2 / 2 y y v t gt Cinemática de uma Partícula Cap. 12 v oya v oa v oya v oa

t AB s = s 0 (1) / 2 / 2 y y v t gt Cinemática de uma Partícula Cap. 12 v oya v oa v oya v oa Poblem 1.88 MECÂNIC - DINÂMIC O sowmobile deix o oto m elocidde de 10m/s. Detemie o temo de ôo de té e o lcçe d tjetói. Ciemátic de m Ptícl C. 1 Pof D. Cládio Cotto dtdo o: Pof D. oldo Medeios-Jio TC07

Leia mais

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto.

As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto. Suáio Unidde I MECÂNIC 1- Mecânic d ptícul Moviento de copos sujeitos ligções. - Foçs plicds e foçs de ligção. - Moviento du siste de copos ligdos nu plno hoizontl, plno veticl e plno inclindo, despezndo

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Neste estudo, continuamos desenvolver métodos que aproximem a solução do P.V.I. da forma

Neste estudo, continuamos desenvolver métodos que aproximem a solução do P.V.I. da forma 7- Métodos de Ruge-Kutt Neste estudo cotiumos desevolve métodos que poimem solução do PVI d om ' 0 0 A idéi ásic destes métodos é poveit s quliddes dos métodos d séie de lo e o mesmo tempo elimi seu mio

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50).

O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50). Cpítuo : O dipoo infinitsim O dipoo infinitsim (tzino) é um mnto d cont d compimnto t qu

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais