Fundamentos de Computação Gráfica Prova Aluna: Patrícia Cordeiro Pereira Pampanelli

Tamanho: px
Começar a partir da página:

Download "Fundamentos de Computação Gráfica Prova Aluna: Patrícia Cordeiro Pereira Pampanelli"

Transcrição

1 Fundamenos de Compuação Gráfica Prova -6- Aluna: Parícia Cordeiro Pereira Pampanelli

2 Observação: Os códigos uilizados para o desenvolvimeno da prova enconram-se em anexo. Quesão : A Transformada Discrea do Cosseno (DCT Discree Cosine Transformaion) é uilizada pelo padrão JPEG para compressão de imagens. Esa ransformada explora a redundância presene no sinal. Para um dado sinal p com n elemenos, em-se que a ransformada discrea G dese sinal é dada por: onde { A ransformada inversa dese sinal é dada por: onde { Para o desenvolvimeno desa quesão, foi escrio um código em C++ para o cálculo da ransformada discrea do cosseno. O gráfico a seguir apresena o sinal original fornecido na quesão: Sinal Original,,,,4,5,6,7,8

3 Para o cálculo da ransformada discrea do cosseno a parir do sinal fornecido na quesão, foi obido o seguine resulado: Transformada Discrea do Cosseno Sinal Original Sinal Transformado,9 5-4, ,78 9 -,877 -,777 9, , , O sinal ransformado é apresenado no gráfico a seguir: Sinal ransformado No gráfico acima se observa que o sinal ransformado apresena claramene uma caracerísica imporane da ransformada discrea do cosseno, onde a maior pare da informação do sinal é ransferida para as primeiras posições do veor. Ese resulado da DCT permie oimizar o armazenameno dos dados e facilia a quanização do sinal. Uilizando oio ermos para a reconsrução do sinal, foi obido o seguine resulado: Transformada Inversa Discrea do Cosseno oio ermos Sinal Transformado Sinal Reconsruído,9, -4, , -4,78 8, -,877 9, -,777,, , -,66854,, , O resulado da reconsrução do sinal original a parir dos oio ermos armazenados demonsra que não houve perda de informação no processo da ransformação do sinal. Nese caso, foi feia uma compressão sem perdas dos dados.

4 No segundo resulado pedido na quesão, são uilizados somene rês ermos da DCT para a reconsrução do sinal, ou seja, assume-se que os dados relevanes esão concenrados nos primeiros ermos do veor. Os ermos uilizados na reconsrução são mosrados na abela abaixo: Sinal armazenado T[] =.9 T[] = T[] = A operação de desconsiderar os ermos menos significaivos do sinal ransformado, ou seja, armazenar somene as posições iniciais do veor consise em uma das écnicas de compressão de dados uilizadas para a ransformada discrea do cosseno. Os resulados obidos com esa compressão são mosrados na abela abaixo: Transformada Inversa Discrea do Cosseno rês ermos Sinal Original Sinal Reconsruído, , , ,55,47 9 9,895 9,95 8 8,7967 Observa-se que, nese caso, ocorreu a perda de dados, ou seja, com somene rês ermos não foi possível reconsruir o sinal original. O gráfico a seguir apresena uma comparação enre o sinal original e o sinal reconsruído: Sinal Original Sinal Reconsruído com ermos,,4,6,8

5 Adicionalmene, é possível observar que a uilização de mais ermos diminui a axa de erro na reconsrução o sinal. Ese resulado é mosrado no gráfico a seguir: ermos 5 ermos 7 ermos Sinal Original,,,,4,5,6,7,8

6 Quesão : Iem A: Os riângulos uilizados para modelagem de um dado objeo esão definidos aravés de coordenadas locais. Esas coordenadas são dadas em relação ao cenro de massa do objeo. No empo =, o cenro de massa do objeo esá posicionado em C = (5,, ), em coordenadas do mundo, e roacionado de 6 o em orno do eixo (,, ). No insane =, o cenro de massa esá na posição C = (, 5, ) e roacionado de -9 o em orno do eixo (,, ). Deve-se ober a mariz de insanciação do objeo, ou seja, a mariz que ransforma as coordenadas locais do objeo em coordenadas de mundo. Para ober as ransformações de roação é uilizado o conceio de quaérnios. Os quaernios podem ser represenados por uma mariz ou por uma 4-upla da forma: onde s represena a pare real e x, y, z a pare imaginária do quaérnio. Pode-se provar que, roacionar um veor p com um quaérnio q, é equivalene à aplicar a seguine mariz de roação: Para ober as marizes de insanciação é uilizado um programa em C++ no qual são definidas as operações de: Muliplicação de um veor por um escalar: SCALARECTOR; SCALEECTOR(des, v, facor) { des[] = facor*v[]; des[] = facor*v[]; des[] = facor*v[]; } Transforma um veor para um quaérnio: AXISTOQUATERNION; AXISTOQUATERNION(q, phi, a) { floa facor = sin((phi) *.5); SCALEECTOR(q, a, facor); q[] = cos((phi) *.5); } Obém a mariz de roação à parir de um quaernio: QUATERNIONTOMATRIX4. QUATERNIONTOMATRIX4(m, q) { floa xx = (q)[] * (q)[], yy = (q)[] * (q)[], zz = (q)[] * (q)[]; floa xy = (q)[] * (q)[], xz = (q)[] * (q)[], yz = (q)[] * (q)[]; floa xw = (q)[] * (q)[], yw = (q)[] * (q)[], zw = (q)[] * (q)[]; m[] = (. -. * ( yy + zz)); m[] = (. * (xy - zw)); m[] = (. * (xz + yw));

7 } m[] =.; m[4] = (. * (xy + zw)); m[5] = (. -. * (zz + xx)); m[6] = (. * (yz - xw)); m[7] =.; m[8] = (. * (xz - yw)); m[9] = (. * (yz + xw)); m[] = (. -. * (yy + xx)); m[] = m[] = m[] = m[4] =.; m[5] =.; Para = : Desa forma, as marizes obidas para a insanciação do objeo foram: onde o veor = (5,, ) represena a ranslação referene ao cenro de massa do objeo no insane =. Para = : onde o veor = (, 5, ) represena a ranslação referene ao cenro de massa do objeo no insane =. Iem B: A equação para uma curva de Bézier cúbica é dada pela equação: onde Pi são os ponos de conrole e Bi(u) são polinômios de Bernsein da forma:

8 O primeiro e quaro ponos são respecivamene a posição do cenro de massa em = e =, respecivamene. O segundo e erceiro vérices da Bezier podem ser calculados com auxílio das derivadas paraméricas (velocidades) aravés de: ) ( P d d () P d d ) ( P d d () P d d Uma vez deerminados eses ponos podemos uilizar a expressão: ) ( ) ( ) ( ) ( P, para = ). ( 4 9..) ( 5.) ( ) ( P Os ponos de conrole e o escalar u, que represena um insane de empo associado à cada ponos da curva, são subsiuídos na equação da curva. Obém-se enão que o ponos da curva no insane de empo, é: Iem C: Nese iem, pede-se a inerpolação esférica linear (Slerp Spherical Linear Inerpolaion) enre os ponos inicial e final P e P, respecivamene. A inerpolação linear simples (Lerp Linear Inerpolaion) causa um aumeno na velocidade angular, como mosrado na figura a seguir.

9 A inerpolação linear esférica maném a velocidade angular ao longo da rajeória do objeo, como mosrado na figura abaixo. por: A equação para a inerpolação enre dois quaérnios q e q uniários é dada ( ) onde é um escalar al que u = [,] e ω represena o ângulo enre os veores inicial e final. Anes de inerpolar q e q obidos no iem A desa quesão, é necessário garanir que eses quaérnios esão normalizados. Os quaérnios q e q normalizados são:

10 Desa forma, a inerpolação linear esférica é aplicada a parir dos quaérnios normalizados e do ângulo enre os veores inicial e final, que represenam o pono de parida e de chegada do objeo. O resulado desa inerpolação é dado pelo quaérnio: O ângulo de roação é 5,7 o e o eixo de roação é (-,5 ;,84 ;,).

11 Quesão : Na bola imersiva, a imagem é projeada sobre uma esfera, ao invés de ser projeada sobre o ronco de pirâmide, conhecido como frusrum. As imagens abaixo ilusram ese mapeameno. Observações: Campo de visão (fovy) = 9 o Roação em orno dos eixos x e y. Não gira em orno do eixo z Sisema de coordenadas da esfera: xs, ys, zs Iem A: a) Depois de localizado o sisema da câmera (eye) no iem b, o procedimeno segue o mosrado em aula com os seguines parâmeros: Como o cenro de projeção fica na origem do sisema (xs, ys, zs) o veor eye é dado por: eye

12 A resposa do iem (b) calcula as coordenadas do sisema do olho: x e cos sin y e sin sin cos cos cos z e cos sin sin cos cos A parir do enunciado, os parâmeros da câmera são: fovy = 9 o w=9 h=8 aspec = 9/8=6/9 near = hn Iem B: A mariz que ransforma a cena do espaço da esfera para o espaço do olho deve ser capaz de ransformar o frusrum represenado pela seção da esfera. Os ângulos mosrados na Figura (c) indicam que o sisema do olho sofre uma roação de em relação ao eixo x seguida de oura roação de em relação ao eixo y.

13 Noe que a ordem desas ransformações é imporane e que se fossem rocadas não resularia em ser o ângulo enre o eixo z s e a projeção de n no plano y s e ser o ângulo enre n e a sua projeção. Ou seja:

14 Referências: Noas de aula A Fas Ray-Tracing using Bounding Spheres and Frusum Rays for Dynamic Scene Rendering. In IEICE Transacions on Informaion and Sysems, ol. E9-D, No. 4, pp. 89-9, Alan H. Wa d Compuer Graphics wih Cdrom (rd ed.). Addison-Wesley Longman Publishing Co., Inc., Boson, MA, USA. Ken-ichi Suzuki, Yoshiyuki Kaeriyama, Kazuhiko Komasu, Ryusuke Egawa, Nobuaki Ohba, and Hiroaki Kobayashi. Ken Shoemake Animaing roaion wih quaernion curves. SIGGRAPH Compu. Graph. 9, (July 985), OpenGL(R) Programming Guide : The Official Guide o Learning OpenGL(R), (7h Ediion) Thin-Walled Srucures, ol. 47, No (Augus 9), pp allance, S.L. & Calder, P.R.,. Inward Looking Projecions. Proceedings of he s inernaional conference on Compuer graphics and ineracive echniques in Ausralasia and Souh Eas Asia, 9- hp://funnoes.ne/raytracingrepor.php hp://mahworld.wolfram.com/sphericalsegmen.hml hp:// /node.hml

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

APÊNDICE A. Rotação de um MDT

APÊNDICE A. Rotação de um MDT APÊNDICES 7 APÊNDICE A Roação de um MDT 8 Os passos seguidos para a realização da roação do MDT foram os seguines: - Deerminar as coordenadas do cenro geomérico da região, ou pono em orno do qual a roação

Leia mais

PROVA DE ENGENHARIA GRUPO II

PROVA DE ENGENHARIA GRUPO II Quesão 34 PROVA DE ENGENHARIA GRPO II Resposa esperada a) (Alernaiva 1) Ober inicialmene o equivalene elérico do corpo umano e depois monar o circuio elérico equivalene do sisema. Assim, pela Figura, noa-se

Leia mais

Curvas e Superfícies Paramétricas

Curvas e Superfícies Paramétricas Curvas e Superfícies araméricas Eemplo de superfícies NURBS Curvas e Superfícies ara aplicações de CG normalmene é mais conveniene adoar a forma paramérica Independene do sisema de coordenadas Represenação

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática.

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática. CONCURSO PÚBLICO EDITAL Nº 6/ Professor do Magisério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA Maemáica Caderno de Provas Quesões Objeivas INSTRUÇÕES: - Aguarde auorização para abrir o

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

3 Estudo da Barra de Geração [1]

3 Estudo da Barra de Geração [1] 3 Esudo da Barra de eração [1] 31 Inrodução No apíulo 2, raou-se do máximo fluxo de poência aiva e reaiva que pode chear à barra de cara, limiando a máxima cara que pode ser alimenada, e do possível efeio

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

LISTA 1 FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III

LISTA 1 FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III LISTA FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III. Faça a represenação gráfica dos campos veoriais gerados por: a) V [, y] x b) V y i x j c) V [ x, y ]. Deermine o lugar no espaço onde os veores, do

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

3 Modelos de Markov Ocultos

3 Modelos de Markov Ocultos 23 3 Modelos de Markov Oculos 3.. Processos Esocásicos Um processo esocásico é definido como uma família de variáveis aleaórias X(), sendo geralmene a variável empo. X() represena uma caracerísica mensurável

Leia mais

Respondidos (parte 13)

Respondidos (parte 13) U Coneúdo UNoas de aulas de Transpores Exercícios Respondidos (pare 3) Hélio Marcos Fernandes Viana da pare 3 Exemplo numérico de aplicação do méodo udo-ou-nada, exemplo de cálculo do empo de viagem equações

Leia mais

4 Filtro de Kalman. 4.1 Introdução

4 Filtro de Kalman. 4.1 Introdução 4 Filro de Kalman Ese capíulo raa da apresenação resumida do filro de Kalman. O filro de Kalman em sua origem na década de sessena, denro da área da engenharia elérica relacionado à eoria do conrole de

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Aula 6 Geração de Grades

Aula 6 Geração de Grades Universidade Federal do ABC Aula 6 Geração de Grades EN34 Dinâmica de Fluidos Compuacional TRANSFORMAÇÕES DE COORDENADAS Grade de ponos discreos A abordagem de diferenças finias apresenada aé agora, que

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

O cliente é a razão do nosso trabalho, a fim de inseri-lo em um novo contexto social de competitividade e empregabilidade.

O cliente é a razão do nosso trabalho, a fim de inseri-lo em um novo contexto social de competitividade e empregabilidade. Sumário nrodução 5 O circuio série em correne alernada 6 A correne em circuios série 6 Gráficos senoidais do circuio série 7 Gráficos fasoriais do circuio série 10 mpedância do circuio série 1 A correne

Leia mais

Capitulo IV : Interpolação Polinômios de Bernstein,

Capitulo IV : Interpolação Polinômios de Bernstein, TC 708 Análise Numérica Capiulo IV : Inerpolação Polinômios de Bernsein, b d a c Lucas Máximo M Alves Prof. Anonio Marques Carrer Universidade Federal do Paraná UFPR 1 Coneúdo 1. Inrodução 2. Problemas

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Log Soluções Reforço escolar M ae máica Dinâmica 4 2ª Série 1º Bimesre DISCIPLINA SÉRIE CAMPO CONCEITO Maemáica 2ª do Ensino Médio Algébrico simbólico Função Logarímica Primeira Eapa Comparilhar Ideias

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda)

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda) Lisa de Função Eponencial e Logarímica Pré-vesibular Nourno Professor: Leandro (Pinda) 1. (Ueg 018) O gráfico a seguir é a represenação da 1 função f() log a b 3. (Epcar (Afa) 017) A função real f definida

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

4 CER Compensador Estático de Potência Reativa

4 CER Compensador Estático de Potência Reativa 68 4 ompensador Esáico de Poência Reaiva 4.1 Inrodução ompensadores esáicos de poência reaiva (s ou Saic var ompensaors (Ss são equipamenos de conrole de ensão cuja freqüência de uso em aumenado no sisema

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Capítulo 11. Corrente alternada

Capítulo 11. Corrente alternada Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

5 Método dos Mínimos Quadrados de Monte Carlo (LSM)

5 Método dos Mínimos Quadrados de Monte Carlo (LSM) Méodo dos Mínimos Quadrados de Mone Carlo (LSM) 57 5 Méodo dos Mínimos Quadrados de Mone Carlo (LSM) O méodo LSM revela-se uma alernaiva promissora frene às radicionais écnicas de diferenças finias e árvores

Leia mais

Tabela: Variáveis reais e nominais

Tabela: Variáveis reais e nominais Capíulo 1 Soluções: Inrodução à Macroeconomia Exercício 12 (Variáveis reais e nominais) Na abela seguine enconram se os dados iniciais do exercício (colunas 1, 2, 3) bem como as soluções relaivas a odas

Leia mais

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica Problema de conrole óimo com equações de esado P-fuzzy: Programação dinâmica Michael Macedo Diniz, Rodney Carlos Bassanezi, Depo de Maemáica Aplicada, IMECC, UNICAMP, 1383-859, Campinas, SP diniz@ime.unicamp.br,

Leia mais

Transformada dos Z e Sistemas de Tempo Discreto

Transformada dos Z e Sistemas de Tempo Discreto MEEC Mesrado em Engenharia Elecroécnica e de Compuadores MCSDI Guião do rabalho laboraorial nº 4 Transformada dos Z e Sisemas de Tempo Discreo Transformada dos Z e Sisemas de Tempo Discreo Sumário: Preende-se

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Exercício Exemplo de Análise Matricial de Estruturas

Exercício Exemplo de Análise Matricial de Estruturas Exercício Exempo de Anáise Maricia de Esruura Exercício Exempo de Anáise Maricia de Esruuras Dada a esruura abaixo, deermine os desocamenos no nó e as reações de apoio uiizando a anáise maricia de esruuras.

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t 5 Esudo de Casos Para a avaliação dos algorimos online/bach evolucionários proposos nese rabalho, foram desenvolvidas aplicações em problemas de filragem dos esados de um sisema não-linear unidimensional,

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre Cinemáica em uma dimensão o Posição, deslocameno velocidade, aceleração. o Movimeno com aceleração consane, o Queda livre Mecânica( Dinâmica! é! o! esudo! do! movimeno! de! um! corpo! e! da! relação!dese!movimeno!com!conceios!lsicos!como!força!

Leia mais

3 Formulação do Problema da Dinâmica de Risers Empregando-se o Método dos Elementos Finitos 3.1. Fenomenologia do Comportamento Estrutural de Risers

3 Formulação do Problema da Dinâmica de Risers Empregando-se o Método dos Elementos Finitos 3.1. Fenomenologia do Comportamento Estrutural de Risers 43 3 Formulação do Problema da Dinâmica de Risers Empregando-se o Méodo dos Elemenos Finios 3.1. Fenomenologia do Comporameno Esruural de Risers O comporameno não linear de esruuras pode ser de origem

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

3 O Modelo SAGA de Gestão de Estoques

3 O Modelo SAGA de Gestão de Estoques 3 O Modelo SG de Gesão de Esoques O Sisema SG, Sisema uomaizado de Gerência e poio, consise de um sofware conendo um modelo maemáico que permie fazer a previsão de iens no fuuro com base nos consumos regisrados

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Alexandrino Diógenes

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Alexandrino Diógenes Professor: Alexandrino Diógenes EXERCÍCIOS DE SALA 4 5 6 7 8 9 0 E C D D A D E D A D 4 5 6 7 8 9 0 C E D B A B D C B A QUESTÃO Seja a função N : R R, definida por N(n) = an + b, em que N(n) é o número

Leia mais

Análise e Processamento de BioSinais

Análise e Processamento de BioSinais Análise e Processameno de BioSinais Mesrado Inegrado em Engenaria Biomédica Faculdade de Ciências e Tecnologia Slide Análise e Processameno de BioSinais MIEB Adapado dos slides S&S de Jorge Dias Tópicos:

Leia mais

2.ª AULA Representação gráfica de sinais Rampa unitária, Impulso unitário e Escalão unitário

2.ª AULA Representação gráfica de sinais Rampa unitária, Impulso unitário e Escalão unitário Insiuo Poliécnico de Seúbal Engenharia Elecroécnica Conrolo.ª AULA Represenação gráfica de sinais Rampa uniária, Impulso uniário e Escalão uniário Docene Prof.ª Sónia Marques Insiuo Poliécnico de Seúbal

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 21/1/217 Aenção: Leia as recomendações anes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do carão de resposas. 2- Leia os enunciados com aenção. 3- Analise sua resposa.

Leia mais

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo.

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo. Inrodução ao Conrole Óimo: Oimização de funções e funcionais. Oimização paramérica. Problema de conrole óimo com empo final fio. Oimização Deerminação de uma ação que proporciona um máimo de benefício,

Leia mais

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G.

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G. 7 CÍTULO 8 DINÂMIC DO MOVIMENTO LNO DE COROS RÍIDOS IMULSO E QUNTIDDE DE MOVIMENTO Nese capíulo será analisada a lei de Newon apresenada nua ra fora inegral. Nesa fora inegra-se a lei de Newon dada por

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

PRÁTICAS DE CARTOGRAFIA

PRÁTICAS DE CARTOGRAFIA PRÁTICAS DE DEGGE LICECIATURA EM EGEHARIA GEOESPACIAL /7 ALGUS COCEITOS SISTEMAS DE REFERÊCIA ADOTADOS EM PORTUGAL Direção-Geral do Terriório (DGT) hp://www.dgerriorio.p/carografia_e_geodesia/geodesia/sisemas_de_referencia/

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

3 Metodologia 3.1. O modelo

3 Metodologia 3.1. O modelo 3 Meodologia 3.1. O modelo Um esudo de eveno em como obeivo avaliar quais os impacos de deerminados aconecimenos sobre aivos ou iniciaivas. Para isso são analisadas as diversas variáveis impacadas pelo

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

IMAGENS MÉDICAS. Repare-se que a função h(t,t ) não é mais do que a resposta do sistema a um impulso (delta de dirac).

IMAGENS MÉDICAS. Repare-se que a função h(t,t ) não é mais do que a resposta do sistema a um impulso (delta de dirac). IMAGEN MÉDIA FORMAÇÃO DE IMAGEN Resposa de um isema Linear eja um sinal de enrada e uma unção peso à saída de um deerminado sisema linear emos uma resposa que cumpre: d Repare-se que a unção não é mais

Leia mais

2 Formulação do Problema

2 Formulação do Problema 30 Formulação do roblema.1. Dedução da Equação de Movimeno de uma iga sobre Fundação Elásica. Seja a porção de viga infinia de seção ransversal consane mosrada na Figura.1 apoiada sobre uma base elásica

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016 Lisa de Exercícios de Cálculo 3 Módulo 2 - Quara Lisa - 02/2016 Pare A 1. Deermine as derivadas das funções abaixo com relação as suas respecivas variáveis. (a) f(x, y) = 3x 3 2x 2 y + xy (b) g(x, y) =

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL Ano lectivo 2015/16-1ª Época (V1) 18 de Janeiro de 2016

EXAME DE ESTATÍSTICA AMBIENTAL Ano lectivo 2015/16-1ª Época (V1) 18 de Janeiro de 2016 Nome: Aluno nº: Duração: h:30 m MESTRADO INTEGRADO EM ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL Ano lecivo 05/6 - ª Época (V) 8 de Janeiro de 06 I (7 valores) No quadro de dados seguine (Tabela

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Sinais e Sistemas Exame Data: 19/1/2017. Duração: 3 horas

Sinais e Sistemas Exame Data: 19/1/2017. Duração: 3 horas Sinais e Sisemas Exame Daa: 9//07. Duração: 3 horas Número: Nome: Idenique ese enunciado e a folha de resposas com o seu número e os seus primeiro e úlimo nomes. Para as quesões a, indique as suas resposas,

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

(I)

(I) Duas parículas esão em movimeno uniforme descrevendo circunferências concênricas de raio diferenes e períodos de 80 s e 0 s. No insane inicial as parículas esão alinhadas com o cenro das circunferências.

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

Proporcional, Integral e Derivativo

Proporcional, Integral e Derivativo Implemenação de um conrolador do ipo Proporcional, Inegral e Derivaivo num auómao programável e(k) PID u(k) U s min U s max u s ( pv( Moor ario velocidade Auomao programável Processo Aluno: José Lucas

Leia mais

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara Insiuo de Física USP Física Moderna Aula 3 Professora: Mazé Bechara Aula 3 Bases da Mecânica quânica e equações de Schroedinger: para odos os esados e para esados esacionários. Aplicação e inerpreações.

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

INF2608 Fundamentos da Computação Gráfica Prova Final de

INF2608 Fundamentos da Computação Gráfica Prova Final de INF268 Fundamentos da Computação Gráfica Prova Final de 2. Aluno(a):_ Eduardo Ribeiro matrícula: Questão Pts. a ) 3. 2 a ) 3. 3 a ) 4. Nota Para fazer a prova, favor observar o seguinte:. A prova é individual.

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

Figura 6. Deslocamento da haste do pistão, abertura da válvula e o erro de acompanhamento. 6. CONCLUSÕES

Figura 6. Deslocamento da haste do pistão, abertura da válvula e o erro de acompanhamento. 6. CONCLUSÕES Deslocameno da hase em [m]..8.4. -.4 -.8 -. yr ya 3 4 5 6 7 8 9 Aberura da válvula em [m].e-4.3e-4 6.7E-5.E+ -6.7E-5 -.3E-4 -.E-4 3 4 5 6 7 8 9 Erro (yr-ya) em [m ].5..5. -.5 -. -.5 3 4 5 6 7 8 9 Figura

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( )

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( ) Avaliação 1 8/0/010 1) A Primeira Lei do Movimeno de Newon e a Teoria da elaividade esria de Einsein diferem quano ao comporameno de uma parícula quando sua velocidade se aproxima da velocidade da luz

Leia mais

4 O Fenômeno da Estabilidade de Tensão [6]

4 O Fenômeno da Estabilidade de Tensão [6] 4 O Fenômeno da Esabilidade de Tensão [6] 4.1. Inrodução Esabilidade de ensão é a capacidade de um sisema elérico em maner ensões aceiáveis em odas as barras da rede sob condições normais e após ser submeido

Leia mais

Fundamentos de Telecomunicações 2002/03

Fundamentos de Telecomunicações 2002/03 INSTITUTO SUPERIOR TÉCNICO Número: Fundamenos de Telecomunicações 22/3 EXAME Janeiro 25, 23 Duração: 2 minuos Nome: Preende conabilizar as noas dos eses? sim não Assinaura A resolução do exame é feia no

Leia mais

di L Ri v V dt + + = (1) dv dt

di L Ri v V dt + + = (1) dv dt Experiência Circuio RLC érie Regime DC Aluno: Daa: / /. Objeivos de Aprendizagem dese Experimeno A experiência raa de circuios ransiórios de segunda ordem. O objeivo dese experimeno é: Analisar as diferenes

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1)

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (V) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

APLICAÇÃO DA ANÁLISE DE COMPONENTES PRINCIPAIS NO CONTROLE DA POLUIÇÃO PROVOCADA PELO TRÁFEGO DE VEÍCULOS MOTORIZADOS

APLICAÇÃO DA ANÁLISE DE COMPONENTES PRINCIPAIS NO CONTROLE DA POLUIÇÃO PROVOCADA PELO TRÁFEGO DE VEÍCULOS MOTORIZADOS ! "#$ " %'&)(*&)+,- /2*&4365879&4/:+58;2*=?5@A2*3B;- C)D 5,5FE)5G+ &4- (IHJ&?,+ /?=)5KA:+5MLN&OHJ5F&4E)2*EOHJ&)(IHJ/)G- D - ;/);& Foz do Iguaçu, PR, Brasil, 9 a de ouubro de 27 APLICAÇÃO DA ANÁLISE

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

REDUÇÃO DE DIMENSIONALIDADE

REDUÇÃO DE DIMENSIONALIDADE Análise de componenes e discriminanes REDUÇÃO DE DIMENSIONALIDADE Uma esraégia para abordar o problema da praga da dimensionalidade é realizar uma redução da dimensionalidade por meio de uma ransformação

Leia mais

3 Metodologia do Estudo 3.1. Tipo de Pesquisa

3 Metodologia do Estudo 3.1. Tipo de Pesquisa 42 3 Meodologia do Esudo 3.1. Tipo de Pesquisa A pesquisa nese rabalho pode ser classificada de acordo com 3 visões diferenes. Sob o pono de visa de seus objeivos, sob o pono de visa de abordagem do problema

Leia mais