Recorrências. Universidade Federal do Amazonas Departamento de Eletrônica e Computação

Tamanho: px
Começar a partir da página:

Download "Recorrências. Universidade Federal do Amazonas Departamento de Eletrônica e Computação"

Transcrição

1 Recorrêcias Uiversidade Federal do Amazoas Departameto de Eletrôica e Computação

2 Recorrêcias A expressão: c T ( ) 2T c 2 é uma recorrêcia. 1 > 1 Recorrêcia: uma equação que descreve uma fução em termos de seus valores para istâcias meores Com frequêcia omitimos pisos, tetos e codições limite

3 Exemplos de Recorrêcias > 1) ( ) ( s c s > 1) ( ) ( s s > ) ( c T c T > 1 1 ) ( c at c T

4 Solução de Recorrêcias Métodos Susitituição Iteração Mestre Aiquilador

5 Método da Sustituição

6 Coceitos ásicos Dois passos Pressupor a forma da solução Usar idução matemática para determiar se a solução se aplica Sustituição da resposta pressuposta para a fução quado a hipótese idutiva é aplicada Útil quado é fácil estimar a forma da solução Pode ser utilizado para estaelecer limites superiores ou iferiores das recorrêcias

7 Exemplo Sustituição (1) Resolver a recorrêcia (que é semelhate à recorrêcia da ordeação por itercalação) T ( ) 2T ( ) / 2 T() O( lg )?

8 Exemplo Sustituição (2) Determiar um limite superior para Se T() O( lg ) T ( ) 2T ( ) / 2 Provar que T() c lg para algum c>usado idução e para todo

9 Exemplo Sustituição (3) A idução exige que mostremos que a solução se matém válida para as codições limite Base da idução: mostrar que a iequação é válida para algum suficietemete pequeo Se 1 T(1) c * 1 * log 1!!! No etato, T() 2T( /2 ) T(1) 1 Mas 2 T(2) 2T(1) 2 4 e c lg c * 2 * lg 2 2c 3 T(3)2T(1) 3 5 e c lg c * 3 * lg 3

10 Exemplo Sustituição (4) Pode-se partir de T(2)4 ou T(3)5 usado qualquer c 2, pois T() c lg Válido de acordo com a otação assitótica: T() clg para Truque: esteder as codições de cotoro para fazer a hipótose idutiva valer para pequeos valores de

11 Exemplo Sustituição (5) Hipótese idutiva: Assumir a iequação para / 2 / 2 ) c / 2 lg( / 2 ) T (

12 Exemplo Sustituição (5) Idução : A iequação é válida para T ( ) 2T ( 2( c c c c c / lg( / 2) (lg lg 2) lg lg 2 lg / 2 c / ) 2 )) / 2 ) c / 2 lg / 2 ) T ( (é valida para c 1, aalisado o limite superior)

13 Sore Estimativas (1) Requer experiêcia e criatividade Pode-se utilizar árvores de recursão Se a recursão é similar a uma outra com a qual se está familiarizado, é razoável tetar uma solução similar T ( ) 2T ( / 2 17) T() O(lg ) Por quê? O termo adicioal (17) ão afetará sustacialmete a solução da recorrêcia para um grade

14 Sore Estimativas (2) As vezes a estimativa está correta mas as cotas ão fecham a hora da idução A hipótese idutiva ão é suficietemete forte para provar o limite!!! Revisar a estimativa sutraido um termo de meor ordem assitótica para que a matemática fucioe

15 Sore Estimativas (3) / 2 ) T ( / 2 ) 1 T ( ) T ( é O()??? MostrarqueT() c / 2 c / 2 1 c 1 T ( ) c ãoimplicat() c Nova tetativa T() c- T ( ) T ( ) ( c / 2 ) c / 2 c ( ) (paratodo 1) 1 c 2 1 A costate c deve ser escolhida com um valor grade o suficiete para tratar as codições limites

16 ) lg lg (lg ) lg ( ) ( ) (2 ) ( 2) / ( 2 ) ( semelhate a 2) / ( 2 ) ( ) (2 2 ) (2 lg ) ( 2 ) ( 2 O m m O m S T T T T m m S m S m T T T T m m m Troca de Variáveis m lg 2 m S(m)T(2 m ) S(m)O(m lg m) Note que log 2 m m e log 2 m/2 m/2

17 Exercício 1 Qual seria a estimativa para T()T(-1)1? Dica: mostre que a solução T()T(-1)1 é O() Caso ase: 1, T(1)T()11e cc*1(válido para c 1) Provar que T() c para algum c>usado idução e para todo T ( ) T ( ) T ( ) T c ( 1) ( 1) c 1 1 c c 1 c (é valido para c 1)

18 Exercício 2 Qual seria a estimativa para T()T( /2 )1? Mostre que a solução T()T( /2 )1 é O(lg ) Caso ase: 2, T(2)T(1)12e c*lgc*1; 4, T(3)T(2)13 e c*lgc*2(válido para c 2) Provar que T() c lg para algum c>usado idução e para todo T ( ) T ( ) T ( ) T ( ) T ( ) c lg / 2 1 c lg 1 c lg c lg c lg c 1 c lg (é valido para c 1)

19 Método da Iteração

20 Método da Iteração Cosiste em: Expadir a recorrêcia Usar proprieadades algéricas para ecotrar um somatório Resolver o somatório

21 Exemplo 1: Iteração (1) Resolver s( ) c s( 1) >

22 Exemplo 1: Iteração (2) s() c s(-1) c c s(-2) c c c s(-3) 3c s(-3) kc s(-k) ck s(-k) s() c s(-1) s(-1) c s(-2) s(-2) c s(-3) s( ) c s( 1) >

23 Exemplo 1: Iteração (3) Até agora para > ktemos s() ck s(-k) E se k? s() c s() c Portato S() c s( ) c s( 1) >

24 Exemplo 2: Iteração (1) Resolver s( ) s( 1) >

25 Exemplo 2: Iteração (2) k1 k2 k3 k4 s() s(-1) -1 s(-2) -1-2 s(-3) s(-4) s( ) s( 1) (k-1) s(-k) i i k 1 s( k) >

26 Até agora para > ktemos E se k? Portato: ) ( 1 k s i k i Exemplo 2: Iteração (3) 2 1 () 1 1 i s i i i 2 1 ) ( s

27 Exemplo 3: Iteração (1) Resolver T ( ) 2T c 2 c 1 > 1

28 Exemplo 3: Iteração (2) T() 2T(/2) c 2(2T(/2/2) c) c 2 2 T(/2 2 ) 2c c 2 2 (2T(/2 2 /2) c) 3c 2 3 T(/2 3 ) 4c 3c 2 3 T(/2 3 ) 7c 2 3 (2T(/2 3 /2) c) 7c 2 4 T(/2 4 ) 15c 2 k T(/2 k ) (2 k -1)c T ( ) 2T c 2 c 1 > 1

29 Exemplo 3: Iteração (3) Até agora para > 2 k temos T() 2 k T(/2 k ) (2 k -1)c E se klg? T() 2 lg T(/2 lg ) (2 lg -1)c a lg c c lg a T(/) ( -1)c T(1) (-1)c c (-1)c (2-1)c T ( ) c 2T c 2 1 > 1

30 Exemplo 4: Iteração (1) Resolver T( ) at c c 1 > 1

31 Exemplo 4: Iteração (2) T() at(/) c a(at(//) c/) c a 2 T(/ 2 ) ca/ c a 2 T(/ 2 ) c(a/ 1) T ( ) at a 2 (at(/ 2 /) c/ 2 ) c(a/ 1) a 3 T(/ 3 ) c(a 2 / 2 ) c(a/ 1) a 3 T(/ 3 ) c(a 2 / 2 a/ 1) a k T(/ k ) c(a k-1 / k-1 a k-2 / k-2 a 2 / 2 a/ 1) c c 1 > 1

32 Exemplo 4: Iteração (3) Assim, temos T() a k T(/ k ) c(a k-1 / k-1... a 2 / 2 a/ 1) Para k log k lg a lg lg c c a T() a k T(1) c(a k-1 / k-1... a 2 / 2 a/ 1) a k c c(a k-1 / k-1... a 2 / 2 a/ 1) ca k c(a k-1 / k-1... a 2 / 2 a/ 1) c(a k / a k-1 / k-1... a 2 / 2 a/ 1) c(a k / k a k-1 / k-1... a 2 / 2 a/ 1)

33 Exemplo 4: Iteração (4) Etão, para k log T() c(a k / k... a 2 / 2 a/ 1) E se a? T() c(k 1) c(log 1) Θ( log ) k

34 E se a <? Lemre que: Temos: Etão: Exemplo 4: Iteração (5) ( ) ( ) ( ) ( ) a a a a a a a a k k k k k k < L T() c Θ(1) Θ() T() c(a k / k... a 2 / 2 a/ 1) ( ) x x x x x x x k k k k K

35 Exemplo 4: Iteração (6) E se a >? T() c(a k / k... a 2 / 2 a/ 1) a k k a k 1 k 1 L a 1 T() c Θ(a k / k ) k ( a ) ( a ) Θ ( ) ) k a c Θ(a log / log ) c Θ(a log / ) como, a log log a c Θ( log a / ) Θ(c log a / ) Θ( log a )

36 Exemplo 4: Iteração (7) Portato, fialmete T ( ) Θ ( ) ( log ) Θ Θ ( ) log a a a a < >

37 Exercício 1: Iteração (1) Cosidere um sistema discreto modelado pela seguite eq. de difereça ode <a<1: ( ) ay( 1) x( ) y x( ) 1,, Pode ser represetado pela seguite recursão:, s( ) 1, as ( 1) c, < > Qual seria o tempo de execução deste sistema?

38 Exercício 1: Iteração (2) s() -as(-1) c -a(-as(-2)c)c a 2 s(-2)-acc a 2 (-as(-3)c)-acc -a 3 s(-3)a 2 c-acc -a 3 (-as(-4)c)a 2 c-acc a 4 s(-4)-a 3 ca 2 c-acc a k s(-k)-a k-1 ca k-2 c- -acc a k s(-k)c(-a k-1 a k-2 - -a1) s() -as(-1) c s(-1) -as(-2)c s(-2) -as(-3)c s(-3) -as(-4)c, s( ) 1, - as ( -1) c, < >

39 Exercício 1: Iteração (3) Até agora para > ktemos a k s(-k)c(-a k-1 a k-2 - -a1) E se k? s() a c(-a -1 a a1) E se k >? s() c(-a -1 a a1) s( ), 1, as ( 1) c, < >

40 Exercício 2: Iteração Agora cosidere um sistema discreto modelado pela seguite eq. de difereça de seguda ordem: ( ) ay( 1) y( 2) x( ) y x( ) 1,, Qual seria o tempo de execução deste sistema?

41 Teorema Mestre

42 Teorema Mestre Cosidere um algoritmo que use divisão e coquista Divide um prolema de tamaho em asuprolemas, cada um de tamaho / (iterpretamos /como / ou /, pois /deve ser um iteiro) Seja f()d()c()custo de cada estágio, ou seja, o custo de dividir (D) os prolemas e comiar (C) as soluções O método mestre cosiste em uma receita de olo para ecotrar a fução de complexidade

43 Teorema Mestre Usado para a solução de recorrêcias da forma T ( ) at ( / ) f ( ) a 1, >1, e f assitóticamete positiva; Sedo T() o tempo de execução do algoritmo, podemos dizer que Su-prolemas de tamaho/são resolvidos recursivamete cada um em tempo T (/) f () é o custo de dividir o prolema e comiar seus resultados. No MergeSor temos: T ( ) 2 T ( / 2) ( ) Θ a 2, 2, f ( ) Θ( )

44 Teorema Mestre (2) Os su prolemassãodivididosemapartes. Existirãolog íveis Ocorrerão a log log a folhas

45 This image caot curretly e displayed. Teorema Mestre (3) Três casos comus: Tempo de execução é domiado pelo custo as folhas Tempo de execução é uiformemete distriuído pela árvore Tempo de execução é domiado pelo custo a raiz Assim, para resolver a recorrêcia, teremos de caracterizar o termo domiate Para cada caso comparar f ( ) O log ( a )

46 Resumo do Teorema Mestre Seja uma recorrêcia da forma T( ) at( / ) f ( ) 1. f ( ) O( log a ε ), ε > T ( ) Θ( log a ) 2. f ( ) Θ( log a ) T ( ) Θ( log a lg ) 3. f ( ) Ω( log a ε ), ε > T ( ) Θ( f ( )) sedo a. f ( / ) c. f ( ), c < 1 Para cada caso comparar f()com O( lg a )

47 Estratégia Passo 1:Idetificar a, e f () Passo 2:Determiar log a Passo 3:Comparar f () e assitóticamete log a Passo 4:De acordo com o caso, aplicar a regra correspodete

48 Exemplo 1 T() 9T(/3) Passo1:a9, 3, f() Passo2: log a log Passo3:f() O( log ε ), O()ode ε1 Passo4: o caso1 se aplica: T ( ) Θ ( log a ) ( a ε ) log quado f ( ) O PortatoT() Θ( 2 )

49 Exemplo 2: Mergesort T ( ) 2 T ( / 2) Θ( ) a Θ log a log 2 2, 2; 2 ( ) Como f ( ) Θ( ) Temos o caso 2 : f ( ) Θ( log a ) T ( ) Θ( log a lg ) Aplicado os valores: ( log a ) ( ) T ( ) Θ lg Θ lg

50 Exemplo 3 Ecotre o tempo de execução para recorrêcia: Passo 1: a3, 4e f()lg Passo 2: log a log 4 3,793 Passo3: f() Ω( log 4 3 ε ), O()ode ε,2 Passo4: o caso3 se aplica, T 3 Portato, T() Θ(lg ) ( / 4) lg T ( ) 3T ( ( )) ( log ) a ε ( ) Θ f quado f ( ) O a.f ( / ) c. f ( ), c < 1para ( / 4) lg( / 4) clg 3/ 4 f ( ) para c 3/4 sedo suficietemete grade

51 Exercício Use o teorema mestre para forecer limites assiatóticos restritos para as recorrêcias a seguir ( ) ( ) ( ) ( ) ( ) / 4 2 / 4 2 / 4 ) ( T T T T T T

52 Método aiquilador Sugestão para estudo mais aprofudado

Projeto e Análise de Algoritmos Recorrências Teorema Mestre. Prof. Humberto Brandão

Projeto e Análise de Algoritmos Recorrências Teorema Mestre. Prof. Humberto Brandão Projeto e Aálise de Algoritmos Recorrêcias eorema Mestre Prof. Humerto Bradão humerto@dcc.ufmg.r Uiversidade Federal de Alfeas Laoratório de Pesquisa e Desevolvimeto LP&D Istituto de Ciêcias Exatas ICEx

Leia mais

Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores

Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores Uma recorrêcia é uma equação que descreve uma fução em termos do seu valor em etradas meores T( ) O( 1) T( 1) 1 se 1 se 1 Útil para aálise de complexidade de algoritmos recursivos ou do tipo dividir para

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A

Leia mais

Complexidade de Algoritmos Aula 5

Complexidade de Algoritmos Aula 5 Complexidade de Algoritmos Aula 5 Potecia (a: real, : iteiro: real; p: real; iicio 1. se = 0 etão retora ( 1 ; 2. se ( mod 2 = 1 etão 3. p Potecia( a, ( 1/2 ; 4. retora( a*p*p ; 5. seão p Potecia( a, /2

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uiversidade Federal de Alfeas Projeto e Aálise de Algoritmos Aula 07 Notações θ, Ω, ω, ο humberto@bcc.uifal-mg.edu.br Última aula Notação O Uma fução f domia assitoticamete outra fução g se existem duas

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2007.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2007. Ageda Aálise e Técicas de Algoritmos Motivação para aálise de de algoritmos Aálise assitótica Algus exemplos simples Jorge Figueiredo Aálise de de Algoritmos Dois aspectos importates: Um problema pode,

Leia mais

Análise de Equação de Recorrência

Análise de Equação de Recorrência Aálise de Equação de Recorrêcia Carlos Eduardo Ramisch - Cartão: 467 Soraya Sybele Hossai Cartão 497 INF0 - Complexidade de Algoritmos Prof.ª Luciaa Salete Buriol Porto Alegre, 0 de setembro de 006 Itrodução

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Aálise de Algoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT-234 5) Ordeação Resoluções simples, Lower boud, MergeSort, RadixSort Algus algoritmos de ordeação

Leia mais

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2 Istituto de Matemática - UFRJ Lista. Sejam (x ), (y ) sequêcias covergetes, com x y,. Mostre que se tem lim x lim y. Sabemos das aulas teóricas que se uma sequêcia z verifica z 0, etão lim z 0 (caso exista).

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 2- Resolução de Sistemas Não-lieares. 2.- Método de Newto. 2.2- Método da Iteração. 2.3- Método do Gradiete. 2- Sistemas Não Lieares de Equações Cosidere

Leia mais

Análise de algoritmos

Análise de algoritmos Análise de algoritmos Recorrências Conteúdo Introdução O método mestre Referências Introdução O tempo de execução de um algoritmo recursivo pode frequentemente ser descrito por uma equação de recorrência.

Leia mais

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS 1 FEUP/LEEC Algoritmos e Estruturas de Dados 2001/2002 ANÁLISE DE COMPLEXIDADE DE ALGORITMOS João Pascoal Faria http://www.fe.up.pt/~jpf 2 Itrodução Algoritmo: cojuto claramete especificado de istruções

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação Assuto: Propriedade dos Estimadores e Métodos de Estimação. ANPEC 08 - Questão 6 Por regulametação, a cocetração de um produto químico ão pode ultrapassar 0 ppm. Uma fábrica utiliza esse produto e sabe

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Aálise de Algoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT-234 4) Árvores balaceadas AVL, Rubro-Negras, B-Trees Operações em árvores biárias de busca Numa

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treiameto 5

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

Algoritmos e Estrutura de Dados. Aula 04 Recorrência Prof. Tiago A. E. Ferreira

Algoritmos e Estrutura de Dados. Aula 04 Recorrência Prof. Tiago A. E. Ferreira Algoritmos e Estrutura de Dados Aula 04 Recorrência Prof. Tiago A. E. Ferreira Esta Aula... Nesta aula veremos três métodos para resolver recorrência: Método da substituição É suposto um limite hipotético

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Distribuições Amostrais

Distribuições Amostrais 7/3/07 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/07/07 09:3 ESTATÍSTICA APLICADA I - Teoria

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

. Dessa forma, quanto menor o MSE, mais a imagem

. Dessa forma, quanto menor o MSE, mais a imagem Uiversidade Federal de Perambuco CI / CCEN - Área II 1 o Exercício de Cálculo Numérico ( 18 / 06 / 2014 ) Aluo(a) 1- Questão 1 (2,5 potos) Cosidere uma imagem digital como uma matriz bidimesioal de dimesões

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Introdução. Objetivo da Ciência da Computação. Regra Geral. Problema Algoritmo Implementação. Projeto e Análise de. Algoritmo 3

Introdução. Objetivo da Ciência da Computação. Regra Geral. Problema Algoritmo Implementação. Projeto e Análise de. Algoritmo 3 Itrodução Problema Algoritmo Implemetação Problema Uiversidade Federal de Ouro Preto Departameto de Computação Algoritmo 1 Algoritmo 2 Algoritmo 3 Projeto e Aálise de Algoritmos - I Implemetação C Implemetação

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

Considerações finais

Considerações finais Cosiderações fiais Bases Matemáticas Defiições prelimiares Defiição 1 Dizemos que y é uma cota superior para um cojuto X se, para todo x X é, verdade que y x. Exemplo 1 os úmeros 2, 3, π e quaisquer outros

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Introdução. Objetivo da Ciência da Computação. Regra Geral. Nenhuma implementação excelente salva um Algoritmo inadequado.

Introdução. Objetivo da Ciência da Computação. Regra Geral. Nenhuma implementação excelente salva um Algoritmo inadequado. Itrodução Problema Algoritmo Implemetação Problema Uiversidade Federal de Ouro Preto Departameto de Computação Algoritmo 1 Algoritmo Algoritmo Projeto e Aálise de Algoritmos - I Implemetação C Implemetação

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

Universidade do Estado do Amazonas

Universidade do Estado do Amazonas Uiversidade do Estado do Amazoas Professor Alessadro Moteiro 6 de Julho de 08 PROJETO DE EXTENSÃO Resoluções de Problemas de Aálise Real I 5º Ecotro/Parte I: Limites de Fuções 5. O Limite de uma Fução

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II Tema II Itrodução ao Cálculo Diferecial II TPC º 7 Etregar em 09 0 009. O João é coleccioador de cháveas de café. Recebeu como preda um cojuto de 0 cháveas, todas diferetes em que 4 são douradas e 6 prateadas.

Leia mais

Estruturas de Dados 2

Estruturas de Dados 2 Estruturas de Dados 2 Recorrências IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/31 Recorrências Análise da Eficiência de Algoritmos: Velocidade de Execução; Análise

Leia mais

Capítulo 39: Mais Ondas de Matéria

Capítulo 39: Mais Ondas de Matéria Capítulo 39: Mais Odas de Matéria Os elétros da superfície de uma lâmia de Cobre foram cofiados em um curral atômico - uma barreira de 7,3 âgstros de diâmetro, imposta por 48 átomos de Ferro. Os átomos

Leia mais

Interpolação. Interpolação Polinomial

Interpolação. Interpolação Polinomial Iterpolação Iterpolação Poliomial Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x)

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Aula 3 : Somatórios & PIF

Aula 3 : Somatórios & PIF Aula 3 : Somatórios & PIF Somatório: Somatório é um operador matemático que os permite represetar facilmete somas de um grade úmero de parcelas É represetado pela letra maiúscula do alfabeto grego sigma

Leia mais

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17)

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17) Capítulo 5- Itrodução à Iferêcia estatística. (Versão: para o maual a partir de 2016/17) 1.1) Itrodução.(222)(Vídeo 39) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 14: Recursão. Introdução. Introdução (cont.)

Fontes Bibliográficas. Estruturas de Dados Aula 14: Recursão. Introdução. Introdução (cont.) Fotes Bibliográficas Estruturas de Dados Aula 14: Recursão Livros: Projeto de Algoritmos (Nivio Ziviai): Capítulo 2; Estruturas de Dados e seus Algoritmos (Szwarefiter, et. al): Capítulo 1; Algorithms

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental.

Exercícios de DSP: 1) Determine se os sinais abaixo são periódicos ou não e para cada sinal periódico, determine o período fundamental. Exercícios de DSP: 1) Determie se os siais abaixo são periódicos ou ão e para cada sial periódico, determie o período fudametal a x[ ] = cos( 0,15 π ) 1 18 b x [ ] = Re{ e } Im{ } jπ + e jπ c x[ ] = se(

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Marcelo Cezar Pito Apresetação Plao de Esio Trabalho Extra-classe Pré-requisitos: Somatório Combiatória Probabilidade Logaritmo Itrodução Algoritmos -> cere da computação Programa

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017 Lista de Exercícios de Cálculo 2 Módulo - Primeira Lista - 0/207. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 000 2 } { 4

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Somatórios e Recorrências

Somatórios e Recorrências Somtórios e Recorrêcis Uiversidde Federl do Amzos Deprtmeto de Eletrôic e Computção Exemplo: MxMi () Problem: Ddo um vetor de iteiros A, ecotrr o mior e o meor elemetos de A O úmero de comprções etre elemetos

Leia mais

Introdução à Computação

Introdução à Computação Itrodução à Computação Recursividade Aula de hoje Recursividade Fução orial Voto de cofiaça recursivo Fução de Fiboacci Desvatages Professor: Adré de Carvalho Recursão Muitas estratégias de programação

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

Aula 5 Teorema central do limite & Aplicações

Aula 5 Teorema central do limite & Aplicações Diâmica Estocástica Aula 5 Teorema cetral do limite & Aplicações Teorema cetral do limite Se x é tal que: x 0 e ( xv é fiita,,..., x x, x,...,, 3 x variáveis aleatórias idepedetes com a mesma distribuição

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

Lista de Exercícios Método de Newton

Lista de Exercícios Método de Newton UNEMAT Uiversidade do Estado de Mato Grosso Campus Uiversitário de Siop Faculdade de Ciêcias Eatas e Tecológicas Curso de Egeharia Civil Disciplia: Cálculo Diferecial e Itegral I Lista de Eercícios Método

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Egeharia e Iformática Pedro Alberto Barbetta / Marcelo Meezes Reis / Atoio Cezar Boria São Paulo: Atlas, 004 Cap. 7 - DistribuiçõesAmostrais e Estimaçãode deparâmetros APOIO:

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departameto de Matemática Probabilidades e Estatística Primeiro exame/segudo teste 2 o semestre 29/21 Duração: 18/9 miutos Grupo I Justifique coveietemete todas as respostas. 17/6/21 9: horas 1. Com base

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT34 Estruturas de Dados, Aálise de Aoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT34 6) Ordeação HeapSort, QuicSort, Rede Bitôica A estrutura heap Heap é uma árvore biária com duas propriedades:

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência

Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência Busca Binária Aula 05 Equações com Recorrência Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Idéia: Divisão e Conquista Busca_Binária(A[l...r],k) 1:if r < lthen 2: index = 1

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

O Princípio da Substituição e o Teorema Central do Limite

O Princípio da Substituição e o Teorema Central do Limite O Pricípio da Substituição e o Teorema Cetral do Limite Roberto Imbuzeiro M. F. de Oliveira 6 de Maio de 009 Resumo 1 Prelimiares são variáveis aleatórias idepedetes sat- No que segue {X i } {Y i} isfazedo

Leia mais

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. Objetivo Estimar a média de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: : peso médio de homes a faixa etária de 20 a 30 aos,

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018 Lista de Exercícios de Cálculo Módulo - Primeira Lista - 0/08. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 6 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 6 000 } { 4

Leia mais

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x

Leia mais

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA Capítulo 5. CASO 5: EQUAÇÃO DE POISSON No presete capítulo, é abordado um problema difusivo uidimesioal com absorção de calor (Icropera e DeWitt, 199, o que resulta uma equação de Poisso, que é uma equação

Leia mais

B Este apêndice apresenta tópicos de matemática que podem ser necessários para completo entendimento do texto principal.

B Este apêndice apresenta tópicos de matemática que podem ser necessários para completo entendimento do texto principal. Apêdice B Elemetos de Matemática Este apêdice apreseta tópicos de matemática que podem ser ecessários para completo etedimeto do texto pricipal B Somatórios B Um somatório, represetado pela letra grega

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matemática A Etesivo V. 6 Eercícios 0) B Reescrevedo a equação: 88 00 8 0 8 8 0 6 0 0 A raiz do umerador é e do deomiador é zero. Fazedo um quadro de siais: + + + Q + + O que os dá como solução R 0

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

CARACTERIZAÇÃO DO CONJUNTO EQUILIBRADOR PARA GRAFOS COM GAP NULO

CARACTERIZAÇÃO DO CONJUNTO EQUILIBRADOR PARA GRAFOS COM GAP NULO CARACTERIZAÇÃO DO CONJUNTO EQUILIBRADOR PARA GRAFOS COM GAP NULO Maximiliao Pito Damas Programa de Egeharia de Produção Uiversidade Federal do Rio de Jaeiro e-mail: maxdamas@hotmailcom Lilia Markezo Núcleo

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais