Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2007.

Tamanho: px
Começar a partir da página:

Download "Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2007."

Transcrição

1 Ageda Aálise e Técicas de Algoritmos Motivação para aálise de de algoritmos Aálise assitótica Algus exemplos simples Jorge Figueiredo Aálise de de Algoritmos Dois aspectos importates: Um problema pode, geralmete, ser resolvido por diferetes algoritmos. A existêcia de de um algoritmo ão implica, ecessariamete, que este problema possa ser resolvido a a prática. A aálise de de algoritmos pode ser defiida como o estudo da da estimativa de de tempo de de execução de de algoritmos. O tempo de de execução é determiado pelos seguites aspectos: Tempo para executar uma istrução ou ou passo. A atureza do do algoritmo. O tamaho do do cojuto de de dados que costitui o problema. É ecessário ter ter uma forma de de criar medidas de de comparação etre algoritmos que resolvem um mesmo problema. Desta forma, é possível determiar: A viabilidade de de um algoritmo. Qual é o melhor algoritmo para a solução de de um problema. O iteressate é ter ter uma comparação relativa etre algoritmos. Assumir que a execução de de qualquer passo de de um algoritmo leva uma um tempo fixo e igual. O tempo de de execução de de um computador particular ão é iteressate. Qual a quatidade de de recursos utilizados para resolver um problema? Tempo Espaço Expressar como uma fução do do tamaho do do problema. Como os osrequisitos crescem com o aumeto do do problema? Tamaho do do problema: Número de de elemetos a ser tratado Tamaho dos elemetos Eficiêcia de Algoritmo Cosiderar eficiêcia de de tempo: Número de de operações expresso em termos do do tamaho da da etrada. Se dobramos o tamaho da daetrada, qual o tempo de de resposta? Por que eficiêcia é importate? Velocidade de de computação aumetou (hardware) Crescimeto de de aplicações com o aumeto do do poder computacioal Maior demada por aumeto a avelocidade de de computação.

2 Eficiêcia de Algoritmo Eficiêcia de Algoritmo Quado a velocidade de de computação aumeta, podemos tratar mais dados? Supoha que: Um algoritmo toma 2 comparações para ordear úmeros. Necessitamos de de segudo para ordear 5 úmeros (25 comparações) Velocidade de de computação aumeta de de um fator de de 00 Usado segudo, podemos executar 00x25 comparações, i.e., ordear 50 50úmeros N T() = µs 0.0 µs 0.02 µs 0.05 µs 0. µs T() = lg 0.0 µs 0.03 µs 0.09 µs 0.28 µs 0.66 µs T() = µs 0. µs 0.4 µs 2.5 µs 0 µs T() = µs µs 8 µs 25 µs ms T = µs µs ms 3 dias 4 x 0 3 aos Com 00 vezes de de gaho em velocidade, ordeamos apeas 0 0 vezes mais úmeros! Como Medir Eficiêcia de Algoritmo? Medido eficiêcia: Estudo experimetal e/ou Bechmarkig. Aálise assitótica. Abordagem Experimetal Abordagem experimetal: Escrever um programa que implemeta o algoritmo Executar o programa com diferetes ceários Usar um método como System.curretTimeMillis() para obter medidas acuradas do do tempo de de execução real. t (ms) Abordagem Experimetal Limitações dos estudos experimetais: Necessidade de de se se implemetar e testar o algoritmo. Experimetos podem ser feitos apeas em um úmero limitado de de ceários. Pode, portato, ão idicar tempo de de execução em ceários que ão foram cosiderados o o experimeto. Para comparar dois algoritmos: garatir os osmesmos hardware e ambiete de de software. Aálise Assitótica Metodologia para aalisar tempo de execução de algoritmos. Ao cotrário da abordagem experimetal: Usa uma descrição de de alto ível dos algoritmos em vez de de testar uma de de suas implemetações. Leva em cosideração todas as as possíveis etradas. Permite a avaliação de de eficiêcia de de algoritmos de de uma forma que é idepedete do do hardware e ambiete de de software utilizado. 2

3 Notação Assitótica Objetivo: simplificar a aálise descartado iformações desecessárias: arredodameto,000,00,000,000 Dizer que Big-Oh Sejam duas fuções f() e g(). f() é O(g()) se se existem costates positivas c e 00 tais que f() cg() para 00 Exemplo: é O() c c (c 2) 2) 0 0 0/(c 2) 2) Escolher c = 3 e 00 = 0 0 Big-Oh Big-Oh Exemplo: 2 2 ão ãoé O() O() 2 2 c c c A desigualdade ão ãopode ser ser satisfeita pois poisc deve ser ser uma uma costate ^ Big-Omega Sejam duas fuções f() e g(). f() é Ω(g()) se se g() é O(f()) Existe uma costate real c >0 >0e 0 tal talque f() c g() para 0 Big-Theta Sejam duas fuções f() e g() f() é Θ(g()) se f() é O(g()) e f() é Ω(g()) existem costates reais a>0 e b>0, e uma costate iteira 0 tal que a g() f() b g() para 0 3

4 Taxas de Crescimeto Mais Comum Aálise Assitótica log k... 2 costate logarítmica poliomial expoecial 2 2 log c A aálise assitótica é baseada essas defiições e estabelece uma ordem relativa etre fuções. A otação Big-Oh é usada para expressar o úmero de de operações primitivas executadas como fução do do tamaho da da etrada. um um algoritmo que queexecuta em emtempo O() O() é melhor do do que queum um que que executa em emtempo O( O( 2 2 )) de de forma semelhate, O(log ) ) é melhor do do que queo() Cuidado! Preste ateção a costates muito altas. Um algoritmo que executa em tempo,000,000. é O(), mas meos eficiete do do que um que executa em tempo 2 2 2,, que é O( 2 ). ). Complexidade de Tempo Para determiar o tempo de de execução de de um determiado algoritmo descobrir a forma geral da da curva que caracteriza seu tempo de de execução em fução do do tamaho do do problema. Para simplificarmos a aálise de de complexidade de de tempo: adotamos a ão existêcia de de uidades de de tempo particulares. ão cosideramos também os os termos de de ordem iferior, isto é, é, usamos Big-Oh. A complexidade de de tempo para diferetes algoritmos pode idicar diferetes classes de de complexidade. Cada classe é caracterizada por uma família diferete de de curva. Complexidade de Tempo Iformalmete, para se se determiar a ordem de de complexidade de de uma determiada fução f():.. Separar f() em duas partes: termo domiate e termos de de ordem iferior igorar os os termos de de ordem iferior igorar as as costates de de proporcioalidade. Aálise de Algoritmos Simples Aálise de Algoritmos Simples Em osso modelo de de aálise, cosideramos que as as istruções são executadas sequecialmete e que o cojuto de de istruções simples (adição, comparação, atribuição, etc) tomam exatamete uma uidade de de tempo para serem executadas. Tipos de de aálise: Pior caso: idica o maior tempo obtido, levado em cosideração todas as as etradas possíveis. Melhor caso: idica o meor tempo obtido, levado em cosideração todas as as etradas possíveis. Média: idica o tempo médio obtido, cosiderado todas as as etradas possíveis. Como o objetivo é determiar a forma da da curva que que caracteriza o algoritmo, vamos defiir algumas regras que que podem ser ser utilizadas: Laços: O tempo de de execução de de um um laço laço é o o máximo o tempo de de execução das das istruções detro do do laço laço (icluido os os testes) vezes o úmero de de iterações. Aihameto de de Laços: Aalisar os os mais iteros. O tempo total total de de execução de de uma uma istrução detro de de um um grupo de de laços aihados é o tempo de de execução da da istrução multiplicado pelo pelo produto dos dos tamahos de de todos os os laços. Istruções Cosecutivas: Apeas efetuar a soma. If/Else: o tempo de de execução de de uma uma istrução if/else uca é maior do do que que o tempo de de execução do do teste mais o maior dos dos tempos de de execução de de S S e S2. S2. S S e S2 S2 represetam as as istruções do do the thee else, respectivamete. 4

5 Aálise de Algoritmos Simples Chamada de de Fuções: A aálise é feita como o o caso de de laços aihados. Para calcular a complexidade de de um programa com várias fuções, determia-se primeiro a complexidade de de cada uma das fuções. Desta forma, a a aálise, cada uma das fuções é vista como uma istrução com a complexidade que foi foi calculada. Recursão: É a parte mais difícil da da aálise de de complexidade. Em muitos casos, pode-se fazer a liearização através da da substituição da da chamada recursiva por algus laços aihados, por exemplo. Etretato, existem algoritmos que ão possibilitam a liearização. Nestes caso, é ecessário usar uma relação de de recorrêcia que tem que ser resolvida. Algumas Dicas Idetificar a operação fudametal usada o o algoritmo. A aálise dessa operação fudametal idetifica o tempo de de execução. Isso Isso pode evitar a aálise liha-por-liha do do algoritmo. Quado um um algoritmo, em em uma uma passada de de uma uma iteração, divide o cojuto de de dados de de etrada em em uma uma ou ou mais partes, tomado cada uma uma dessas partes e processado separada e recursivamete, e depois jutado os os resultados, este este algoritmo é possivelmete O(.log ) ) Um Um algoritmo é O(log ) ) se se ele ele leva leva tempo costate para reduzir o tamaho do do problema, geralmete pela pela metade. Por Por exemplo, a pesquisa biária. Se Se o algoritmo leva leva tempo costate para para reduzir o tamaho do do problema em em um um tamaho costate, ele ele será seráo(). Algoritmos combiatoriais são são expoeciais. Por Por exemplo, o problema do do caixeiro viajate. Exercício Qual a complexidade do do algoritmo abaixo? Aálise e Técicas de Algoritmos Potecia(x, ) p i 0 while i < do p p.x i i + retur p Jorge Figueiredo Aálise de de Algoritmos Recursivos Ageda Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos A aálise de de um algoritmo recursivo requer a resolução de de uma recorrêcia. Uma recorrêcia é um algoritmo recursivo que calcula o valor de de uma fução em um poto dado. Uma recorrêcia defie T() em termos de de T(-), T(-2), etc. Exemplo: T() = T() = T( ) ) ,, para 2 5

6 Exemplo 2: 2: Quatos pedaços com cortes? Exemplo 2: 2: Quatos pedaços com cortes? Cortes: Pedaços: 2 Cortes: Pedaços: 2 Cortes: 2 Pedaços: 4 Exemplo 2: 2: Quatos pedaços com cortes? É possível observar que o -ésimo corte cria ovos pedaços. Logo, o úmero total de de pedaços obtido com cortes, deotado por P(), é dado pela seguite relação de de recorrêcia: P() = 2 P() = P( ) ) +,, para 2 Cortes: Pedaços: 2 Cortes: 2 Pedaços: 4 Cortes: 3 Pedaços: 7 Cortes: 4 Pedaços: Derivado Relações de Recorrêcias Como proceder para derivar uma relação de de recorrêcia para a aálise do do tempo de de execução de de um algoritmo: Determiar qual o tamaho do do problema. Verificar que valor de de é usado como base da da recursão. Em geral é um valor úico (=, por exemplo), mas pode ser valores múltiplos. Vamos cosiderar esse valor como 0.. Determiar T( 0 ). ). Pode-se usar uma costate c, c, mas, em muitos, casos um úmero específico é ecessário. Derivado Relações de Recorrêcias T() é defiido como uma soma de de várias ocorrêcias de de T(m) (chamadas recursivas), mais a soma de de outras istruções efetuadas. Em geral, as as chamadas recursivas estão relacioadas com a subproblemas do do mesmo tamaho f(), defiido um termo a.t(f()) a a relação de de recorrêcia. A relação de de recorrêcia é defiida por: T() = c, c, se se = 0 T() = a.t(f()) + g(), caso cotrário 6

7 Derivado Relações de Recorrêcias Derivado Relações de Recorrêcias Exemplo: Torre de de Haoi Objetivo: trasferir os os discos de de A para C Regras: Mover um disco por vez. Nuca colocar um disco maior em cima de de um meor. Solução Recursiva: Trasferir - discos de de A para B Mover o maior disco de de A para C Trasferir - discos de de B para C Haoi(A, C, B, ) if > Haoi(A, B, C, -) Move(A, C) if > Haoi(B, C, A, -) Relação de Recorrêcia T() = T() = 2.T(-) + Derivado Relações de Recorrêcias Resolvedo Relações de Recorrêcia MergeSort(A, ) if retur A retur merge(mergesort(a, /2), MergeSort(A2, /2)) Relação de Recorrêcia T() = c T() = 2.T(/2) + d. Resolver uma relação de de recorrêcia em sempre é fácil. Resolvedo uma relação de de recorrêcia, determia-se o tempo de de execução do do algoritmo recursivo correspodete. Relação de de recorrêcia: T() = T( )) + T( 2 )) T( a )) + f() É mais fácil quado temos a subproblemas de de mesmo tamaho que é uma fração de de (por exemplo, /b): T() = a.t(/b) + f() Como resolver: Método do do chute Método da da árvore de de recursão Método do do desdobrameto Método master Método do Chute e Prova por Idução Método do Chute e Prova por Idução Seja a seguite relação de de recorrêcia: T() T() = T() T() = T( T( ) ) ,, para 2 2 A relação de de recorrêcia é resolvida em em duas partes:.. Chute: T() T() = /2 /2 + 7/2 7/ Prova:.. Caso base é para para = = H.I.: H.I.: assumir que que é válido para para Provar T() T() Se Se a prova for for cofirmada, T() T() é O( O( 2 2 )) Seja a seguite relação de de recorrêcia: T() T() = T() T() = 2.T(/2) +,, para para 2 2 A relação de de recorrêcia é resolvida em em duas partes:.. Chute: T() T() = +.log Prova:.. Caso base: +.log = H.I.: H.I.: assumir que que é válido para para valores até até Provar T(): =2.(/2 + /2.log /2) /2) + = = +.(log -) -) + = = +.log Logo, T() T() é O(.log) 7

8 Talvez o método mais ituitivo. Cosiste em desehar uma árvore cujos ós represetam os os tamahos dos correspodetes problemas. Cada ível iicotém todos os os subproblemas de de profudidade i. i. Dois aspectos importates: A altura da da árvore. O úmero de de passos executados de de cada ível. A solução da da recorrêcia (tempo de de execução do do algoritmo) é a soma de de todos os os passos de de todos os os íveis. Resolver T() = 2.T(/2) + T() T(/2) T(/2) /2 /2 T(/4) T(/4) T(/4) T(/4) /2 /2 /2 /2 /4 /4 /4 /4 h = log /4 /4 /4 /4 T() 8

9 /2 /2 /2 /2 2./2= h = log /4 /4 /4 /4 h = log /4 /4 /4 /4 /2 /2 2./2= /2 /2 2./2= h = log /4 /4 /4 /4 4./4= h = log /4 /4 /4 /4 4./4= folhas.= Método do Desdobrameto h = log /2 /2 /4 /4 /4 /4 folhas 2./2= 4./4=.= Esse método é o da da árvore de de recursão, represetado de de forma algébrica. Cosiste em: Usar (algumas poucas) substituições repetidamete até ecotrar um padrão. Escrever uma fórmula em termos de de e o úmero de de substituições i. i. Escolher iide de tal tal forma que todas as as referêcias a T() sejam referêcias ao ao caso base. Resolver a fórmula. (log ). 9

10 Método do Desdobrameto Exemplo Método do Desdobrameto Exemplo 2 Solução para o problema da da pizza: T() T() = 2 T() T() = T( T( ) ) +,, para para 2 2 Desdobrado a relação de de recorrêcia: T() T() = T(-) + T() T() = T(-2) + (-) + T() T() = T(-3) + (-2) + (-) T() T() = T(-i) + (-i+) (-) + Caso base alcaçado quado i=- T() T() = ( ( ) ) + T() T() = +.(-)/2 Logo, T() T() = O( O( 2 2 )) Solução para o problema da da Torre de de Haoi: T() T() = T() T() = 2.T( ) ) +,, para 2 2 Desdobrado a relação de de recorrêcia: T() T() = 2.T( ) ) + T() T() = 2.(2.T(-2) + ) ) + = 4.T(-2) T() T() = 4.(2.T(-3) + ) ) = 8.T(-3) T() T() = 2 i.t(-i) i + 2 i- i- + 2 i-2 i Caso base alcaçado quado i=- T() T() = Isso Isso é uma uma soma geométrica Logo, T() T() = 2 = O(2 O(2 )) Método Master Teorema que resolve quase todas as as recorrêcias. T() da da forma a.t(/b) + f(), a,b > Casos:.. Se f() O( loga loga b- b- ε ε ), ), para algum ε > 0, 0, temos que: T() Θ( loga loga b ). ) Se f() Θ( loga loga b ), ), temos que: T() Θ( loga loga b.log ). ) Se f() Ω( loga loga b+ b+ ε ε ), ), para algum ε > 0 e se se a.f(/b) c.f() para algum c > 0 e suficietemete grade, temos que: T() Θ(f()). Método Master Exemplo MergeSort: T() = 2.T(/2) + a = b = 2 f() = log a b =.. Cai o o caso Logo, T() = Θ(.log ) ) Método Master Exemplo 2 T() = 9.T(/3) + a = 9, 9, b = 3 f() = log a b = Se ε =,, Cai o o caso.. Logo, T() = Θ( 2 )) 0

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A

Leia mais

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS 1 FEUP/LEEC Algoritmos e Estruturas de Dados 2001/2002 ANÁLISE DE COMPLEXIDADE DE ALGORITMOS João Pascoal Faria http://www.fe.up.pt/~jpf 2 Itrodução Algoritmo: cojuto claramete especificado de istruções

Leia mais

Introdução. Objetivo da Ciência da Computação. Regra Geral. Nenhuma implementação excelente salva um Algoritmo inadequado.

Introdução. Objetivo da Ciência da Computação. Regra Geral. Nenhuma implementação excelente salva um Algoritmo inadequado. Itrodução Problema Algoritmo Implemetação Problema Uiversidade Federal de Ouro Preto Departameto de Computação Algoritmo 1 Algoritmo Algoritmo Projeto e Aálise de Algoritmos - I Implemetação C Implemetação

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Introdução. Objetivo da Ciência da Computação. Regra Geral. Problema Algoritmo Implementação. Projeto e Análise de. Algoritmo 3

Introdução. Objetivo da Ciência da Computação. Regra Geral. Problema Algoritmo Implementação. Projeto e Análise de. Algoritmo 3 Itrodução Problema Algoritmo Implemetação Problema Uiversidade Federal de Ouro Preto Departameto de Computação Algoritmo 1 Algoritmo 2 Algoritmo 3 Projeto e Aálise de Algoritmos - I Implemetação C Implemetação

Leia mais

Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores

Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores Uma recorrêcia é uma equação que descreve uma fução em termos do seu valor em etradas meores T( ) O( 1) T( 1) 1 se 1 se 1 Útil para aálise de complexidade de algoritmos recursivos ou do tipo dividir para

Leia mais

Análise e Síntese de Algoritmos. Revisão CLRS, Cap. 1-3

Análise e Síntese de Algoritmos. Revisão CLRS, Cap. 1-3 Aálise e Sítese de Algoritmos Revisão CLRS, Cap. 1-3 Resumo Algoritmos Aálise de algoritmos Sítese de algoritmos Notação assimptótica Outra otação utilizada Somatórios 2007/2008 Aálise e Sítese de Algoritmos

Leia mais

Introdução a Complexidade de Algoritmos

Introdução a Complexidade de Algoritmos Itrodução a Complexidade de Algoritmos Estruturas de Dados Prof. Vilso Heck Juior Apresetação Revisão - O Algoritmo; A Complexidade; Exercício. Complexidade de Algoritmos REVISÃO - O ALGORITMO O Algoritmo

Leia mais

Recorrências. Universidade Federal do Amazonas Departamento de Eletrônica e Computação

Recorrências. Universidade Federal do Amazonas Departamento de Eletrônica e Computação Recorrêcias Uiversidade Federal do Amazoas Departameto de Eletrôica e Computação Recorrêcias A expressão: c T ( ) 2T c 2 é uma recorrêcia. 1 > 1 Recorrêcia: uma equação que descreve uma fução em termos

Leia mais

Introdução à Computação

Introdução à Computação Itrodução à Computação Recursividade Aula de hoje Recursividade Fução orial Voto de cofiaça recursivo Fução de Fiboacci Desvatages Professor: Adré de Carvalho Recursão Muitas estratégias de programação

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Aálise de Algoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT-234 5) Ordeação Resoluções simples, Lower boud, MergeSort, RadixSort Algus algoritmos de ordeação

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uiversidade Federal de Alfeas Projeto e Aálise de Algoritmos Aula 07 Notações θ, Ω, ω, ο humberto@bcc.uifal-mg.edu.br Última aula Notação O Uma fução f domia assitoticamete outra fução g se existem duas

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Análise de Algoritmos

Análise de Algoritmos Aálise de Algoritmos Após estudar este capítulo, você deverá ser capaz de: hh Defiir e usar os seguites coceitos: Aálise de algoritmo Complexidade Custo temporal Custo espacial Pior caso Melhor caso Caso

Leia mais

Complexidade de Algoritmos Aula 5

Complexidade de Algoritmos Aula 5 Complexidade de Algoritmos Aula 5 Potecia (a: real, : iteiro: real; p: real; iicio 1. se = 0 etão retora ( 1 ; 2. se ( mod 2 = 1 etão 3. p Potecia( a, ( 1/2 ; 4. retora( a*p*p ; 5. seão p Potecia( a, /2

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 14: Recursão. Introdução. Introdução (cont.)

Fontes Bibliográficas. Estruturas de Dados Aula 14: Recursão. Introdução. Introdução (cont.) Fotes Bibliográficas Estruturas de Dados Aula 14: Recursão Livros: Projeto de Algoritmos (Nivio Ziviai): Capítulo 2; Estruturas de Dados e seus Algoritmos (Szwarefiter, et. al): Capítulo 1; Algorithms

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Marcelo Cezar Pito Apresetação Plao de Esio Trabalho Extra-classe Pré-requisitos: Somatório Combiatória Probabilidade Logaritmo Itrodução Algoritmos -> cere da computação Programa

Leia mais

B Este apêndice apresenta tópicos de matemática que podem ser necessários para completo entendimento do texto principal.

B Este apêndice apresenta tópicos de matemática que podem ser necessários para completo entendimento do texto principal. Apêdice B Elemetos de Matemática Este apêdice apreseta tópicos de matemática que podem ser ecessários para completo etedimeto do texto pricipal B Somatórios B Um somatório, represetado pela letra grega

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

B Este apêndice apresenta tópicos de matemática que podem ser necessários para completo entendimento do texto principal.

B Este apêndice apresenta tópicos de matemática que podem ser necessários para completo entendimento do texto principal. Apêdice B Elemetos de Matemática Este apêdice apreseta tópicos de matemática que podem ser ecessários para completo etedimeto do texto pricipal. B. Somatórios B. Um somatório, represetado pela letra grega

Leia mais

Como se decidir entre modelos

Como se decidir entre modelos Como se decidir etre modelos Juliaa M. Berbert Quado uma curva é lei de potecia? O procedimeto amplamete usado para testar movimetação biológica a fim de ecotrar padrões de busca como Voos de Levy tem

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Aálise de Algoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT-234 3) Estruturas de dados elemetares Filas, pilhas e árvores Alocação estática versus diâmica

Leia mais

Representação de Números em Ponto Flutuante

Representação de Números em Ponto Flutuante Represetação de Números em Poto Flutuate OBS: Esta aula é uma reprodução, sob a forma de slides, da aula em vídeo dispoibilizada pelo prof. Rex Medeiros, da UFRN/ECT, em https://youtu.be/ovuymcpkoc Notação

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Análise de Equação de Recorrência

Análise de Equação de Recorrência Aálise de Equação de Recorrêcia Carlos Eduardo Ramisch - Cartão: 467 Soraya Sybele Hossai Cartão 497 INF0 - Complexidade de Algoritmos Prof.ª Luciaa Salete Buriol Porto Alegre, 0 de setembro de 006 Itrodução

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON 1 PUCPR- Potifícia Uiversidade Católica Do Paraá PPGIA- Programa de Pós-Graduação Em Iformática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR MATRIZ DE CO-OCORRÊNCIA Resumo: O método da matriz de co-ocorrêcia,

Leia mais

ORDENAÇÃO 1. ORDENAÇÃO POR TROCA

ORDENAÇÃO 1. ORDENAÇÃO POR TROCA ORDENAÇÃO Ordear é o processo de orgaizar uma lista de iformações similares em ordem crescete ou decrescete. Especificamete, dada uma lista de ites r[0], r[], r[],..., r[-], cada item a lista é chamado

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO. Dr. Sivaldo Leite Correia

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO. Dr. Sivaldo Leite Correia PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO Dr. Sivaldo Leite Correia CONCEITOS, LIMITAÇÕES E APLICAÇÕES Nos tópicos ateriores vimos as estratégias geeralizadas para

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Ordenação por Troca. Bubblesort Quicksort

Ordenação por Troca. Bubblesort Quicksort Ordeação por roca Bubblesort Quicksort ORDENAÇÃO Ordear é o processo de orgaizar uma lista de iformações similares em ordem crescete ou decrescete. Especificamete, dada uma lista de ites r[0], r[], r[2],...,

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT34 Estruturas de Dados, Aálise de Aoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT34 6) Ordeação HeapSort, QuicSort, Rede Bitôica A estrutura heap Heap é uma árvore biária com duas propriedades:

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Numeração de funções computáveis. Nota

Numeração de funções computáveis. Nota Numeração de fuções computáveis 4.1 Nota Os presetes acetatos foram baseados quase a sua totalidade os acetatos realizados pela Professora Teresa Galvão da Uiversidade de Porto para a cadeira Teoria da

Leia mais

Linguagem Computacional. Estruturas de Controle: Estruturas de Decisão ou de Seleção. Prof. Dr. Adriano Cansian Prof. Dr. Leandro Alves Neves

Linguagem Computacional. Estruturas de Controle: Estruturas de Decisão ou de Seleção. Prof. Dr. Adriano Cansian Prof. Dr. Leandro Alves Neves 1 Algoritmos e Programação Liguagem Computacioal Estruturas de Cotrole: Estruturas de Decisão ou de Seleção Prof. Dr. Adriao Casia Prof. Dr. Leadro Alves Neves O que veremos: Estruturas de Cotrole de Fluxo

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20 Ídice Sucessão de úmeros reais. Represetação gráfica. Sucessões defiidas por recorrêcia Itrodução 8 Teoria. Itrodução ao estudo das sucessões 0 Teoria. Defiição de sucessão de úmeros reais Teoria 3. Defiição

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Aálise de Algoritmos e Complexidade Estrutural Carlos Alberto Aloso Saches CT-234 4) Árvores balaceadas AVL, Rubro-Negras, B-Trees Operações em árvores biárias de busca Numa

Leia mais

Distribuições Amostrais

Distribuições Amostrais 7/3/07 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/07/07 09:3 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Algoritmos de Iluminação Global

Algoritmos de Iluminação Global Sistemas Gráficos/ Computação Gráfica e Iterfaces Objectivo: calcular a cor de cada poto a partir da ilumiação directa de uma fote de luz, mais a soma de todas as reflexões das superfícies próximas. Nos

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

Sumário. 2 Índice Remissivo 17

Sumário. 2 Índice Remissivo 17 i Sumário 1 Itrodução à Iferêcia Estatística 1 1.1 Defiições Básicas................................... 1 1.2 Amostragem....................................... 2 1.2.1 Tipos de Amostragem.............................

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Aula 3 : Somatórios & PIF

Aula 3 : Somatórios & PIF Aula 3 : Somatórios & PIF Somatório: Somatório é um operador matemático que os permite represetar facilmete somas de um grade úmero de parcelas É represetado pela letra maiúscula do alfabeto grego sigma

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Bombas industriais. 1 Torr = 1 mmhg. Bombas industriais

Bombas industriais. 1 Torr = 1 mmhg. Bombas industriais Codições (especificações) de carga: Para água ao ível do mar 1 Torr = 1 mmhg Codições (especificações) de carga: Carga de Pressão (h p ) A carga de pressão é cosiderada quado um sistema de bombeameto começa,

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

Interpolação. Interpolação Polinomial

Interpolação. Interpolação Polinomial Iterpolação Iterpolação Poliomial Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x)

Leia mais

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO MATERIAL DIDÁTICO IMPRESSO CURSO: Física DISCIPLINA: Iformática para o Esio de Física CONTEUDISTA: Carlos Eduardo Aguiar AULA

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

FILAS PARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING PROBABILÍSTICO

FILAS PARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING PROBABILÍSTICO CAÍTULO FILAS ARALELAS COM SERVIDORES HETEROGÊNEOS E JOCKEYING ROBABILÍSTICO Nesse capítulo mostraremos a ovidade desse trabalho que é a obteção das equações de balaço de um sistema de filas paralelas

Leia mais

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação Assuto: Propriedade dos Estimadores e Métodos de Estimação. ANPEC 08 - Questão 6 Por regulametação, a cocetração de um produto químico ão pode ultrapassar 0 ppm. Uma fábrica utiliza esse produto e sabe

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CESPE/UB FUB/0 fa 5 4 CONHECIMENTOS ESPECÍFICOS 60 As distribuições B e C possuem os mesmos valores para os quartis Q e Q, e o quartil superior em B correspode ao quartil cetral (Q ) da distribuição A.

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser

É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado 1 Fazendo estimativas e simplificações... O número

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental Aula #4

Métodos Quantitativos para Ciência da Computação Experimental Aula #4 Métodos Quatitativos para Ciêcia da Computação Experimetal Aula #4 Jussara Almeida DCC-UFMG 2017 Measuremets are ot to provide umbers, but isights Metodologia de Comparação de Sistemas Experimetais Comparado

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Comparação entre duas populações

Comparação entre duas populações Comparação etre duas populações AMOSTRAS INDEPENDENTES Comparação etre duas médias 3 Itrodução Em aplicações práticas é comum que o iteresse seja comparar as médias de duas diferetes populações (ambas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

Quicksort. Algoritmos e Estruturas de Dados II

Quicksort. Algoritmos e Estruturas de Dados II Quicksort Algoritmos e Estruturas de Dados II História Proposto por Hoare em 960 e publicado em 962 É o algoritmo de ordeação itera mais rápido que se cohece para uma ampla variedade de situações Provavelmete

Leia mais

Ordenação e Busca em Arquivos

Ordenação e Busca em Arquivos Ordeação e Busca em Arquivos Cristia D. A. Ciferri Thiago A. S. Pardo Leadro C. Citra M.C.F. de Oliveira Moacir Poti Jr. Ordeação Facilita a busca Pode ajudar a dimiuir o úmero de acessos a disco Busca

Leia mais

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2 Istituto de Matemática - UFRJ Lista. Sejam (x ), (y ) sequêcias covergetes, com x y,. Mostre que se tem lim x lim y. Sabemos das aulas teóricas que se uma sequêcia z verifica z 0, etão lim z 0 (caso exista).

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter

Leia mais

5. O algoritmo dos mínimos quadrados

5. O algoritmo dos mínimos quadrados Apotametos de Processameto Adaptativo de Siais 5. O algoritmo dos míimos quadrados Método dos míimos quadrados Os algoritmos de míimos quadrados são uma alterativa aos algoritmos de gradiete. Estrutura

Leia mais