Problemas de Valor de Contorno para Equações Diferenciais Ordinárias

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Problemas de Valor de Contorno para Equações Diferenciais Ordinárias"

Transcrição

1 EQE-358 MÉTODOS NUMÉICOS EM ENGENHI QUÍMIC OFS. EVISTO E GIMIO Caítlo 9 oblema de Valo de Cotoo aa Eqaçõe Dfeea Odáa Codee o eemlo ltatvo da dfão-eação em ma atíla atalíta eféa e ooa: Balaço de maa: etado etaoáo otémo Codçõe de otoo: d dc D < < d d dc d meta e C C o oetação fa a efíe ode D é a dfvdade odeada otate e =.fc ode é a otate da eação. d dc D f C d d ode-e ada def m fato de efetvdade da atíla foma teal:

2 9. OBLEMS DE VLO DE COONO EQUÇÕES DIFEENCIIS ODINÁIS C dv V f C d taa de eação méda a atíla Co dv V f C o d taa da eação máma baeada a efíe Ito é C a taa méda de eação o volme da atíla. o Defdo também o admeoal: D oedo omo módlo de Tele eação dfão aa ma eação de mea odem o f Co aa ma eação de qalqe odem. DC Ota defção aa o Módlo de Tele é a a veão eealzada: ˆ Co L Módlo de Tele Geealzado Co D C dc ode L é o ommeto aateíto da atíla defdo omo o volme da atíla dvddo ela a efíe etea qe aa o ao da efea L = /3. Com eta defção tem-e 3ˆ aa ma eação de mea odem a efea. ode-e etão eeeve a eqação dfeeal a foma: dc f Cd Dd d e bttí-la a eeão do fato de efetvdade eltado em: dc D d d 3 3 f C o d 3 dc Co d dc D d D dc f C 3 3 o f Co d 3 d d dc d d d o?? foma dfeeal C ode e. O ea aa alla o fato de efetvdade da atíla tato a Co foma teal qato a foma dfeeal é eeáo oee o efl de oetação o teo da atíla qe é obtdo atavé da olção do oblema de valo de otoo: d d < < d d d d e oblema de valo de otoo

3 9. MÉTODOS ITETIVOS 3 ode f Co. f C o aa o ao de ma eação de mea odem: = o oblema ama tem omo olção aalíta a eqação de Beel modfada: e 3 e t Nota: é fto e e lm e 3 : e : < evdea o efeto da tafeêa de maa. aa eação de odem o : = deve-e ba a olção méa do oblema de valo de otoo. l método méo oíve ão: - dfeeça fta - volme fto - elemeto fto - oot - aomação olomal Como o tê meo método eão abodado o ómo aítlo vamo tata aq do método de oot e da aomação olomal. 9. Método teatvo déa dete método é tafoma o oblema de valo de otoo em m oblema de valo al VI; atb m valo al aa a vaáve om valo al deoedo; eolve o VI; e vefa e a odçõe fa foam atfeta; eão atb-e m ovo valo aa a odçõe a deoeda e ea-e o oedmeto teatvo até eta odçõe eem atfeta. aa o eemlo da atíla atalíta defem-e a ova vaáve: d v e = d Geado o ete tema de eqaçõe dfeea odáa de mea odem: d v d dv v d v

4 4 9. OBLEMS DE VLO DE COONO EQUÇÕES DIFEENCIIS ODINÁIS O oedmeto teatvo deto ama é oedo omo método da tetatva-e-eo o método de oot. Uma vaate dete método é o múltlo oot ode o oblema é deomoto em btevalo. No ao atla de eqaçõe dfeea leae ode-e a o método de oot om o ío da eoção de olçõe obtedo-e a olção aalíta: Eemlo: f a b a ; b L [ ] f oeado lea L[ ] L[ ] L[ ] L [ ] L [ ] a oot: a e a a a eoção: = + L[] = = L [ ] L [ ] = = + ; a = α = a + a b = β = b + b b b b b L [ ] L [ ] b oot: a e a a a γ e γ ta qe b b. eoção: L[] = = L[ ] L[ ] a = α = a + a b = β = b + b + = b b

5 9. MÉTODOS ITETIVOS 5 b b b b b b ; b b b b aa eqaçõe dfeea ão-leae: d d F d d a ; b a alação do método de oot ea m oedmeto teatvo abtado-e m valo al aa a odção deoeda o oblema ama: a ado o oblema de valo al = : F a a Ca olção o fal do tevalo ão deve atfaze a odção de otoo b =. β α β β β a b Etão e ode a m oblema aa o állo da az da eqação: fγ = b;γ β = o eemlo ado o método de Newto-eate: b b b =...

6 6 9. OBLEMS DE VLO DE COONO EQUÇÕES DIFEENCIIS ODINÁIS 9. Método da aomação olomal Codeado m oblema eéo de valo de otoo om eqaçõe dfeea odáa de eda odem: d d f d d d d d d E alado a aomação olomal: o ode = < < <... < < + = tem-e o eído da aomação a eqação dfeeal: ; f ; f o ode d e d d d No oto oda temo: B ode d e d B d d Defdo o olômo odal: a a + Cea-e em:

7 9. MÉTODO D OXIMÇÃO OLINOMIL 7... B 3... B otato dado o oto oda... ode-e obte e aa o állo de e B. Nota-e qe ão é eeáo obte a + o teme eme a azão de olômo. Uma foma efete de obte ete olômo é atavé de a fómla de eão: 3... om om q om q q q om ode ; q ; ; eta eole a foma de obteção de =... e o állo do oefete da aomação olomal. Método do eído odeado: = 3... ; d H w ode H ão a odeaçõe do eído e w é a fção eo aoada a eqação dfeeal. Método da oloação: H = δ = ; = om abtáo Fazedo qe aa =... to é eído lo o oto teo tem-e: ;

8 8 9. OBLEMS DE VLO DE COONO EQUÇÕES DIFEENCIIS ODINÁIS... va.. B f eq eado m tema ão-lea de eqaçõe aléba aa e eolvdo. Método do mometo: H = Método do mímo qadado: ; H Método de Gale: ; H Método da oloação otooal: ão aíze de m olômo otooal e om elação a fção eo w: w d E.: w = β α olômo de Jaob Eemlo: Dfão-eação eação de odem m etaoáo. m d d d d : fato eométo eféa eometa lída eometa laa eometa CC: d d meta CC: = Fato de efetvdade da eação: m d d d Fazedo a mdaça de vaável: = tem-e:

9 9. MÉTODO D OXIMÇÃO OLINOMIL 9 d d d CC: fto d CC: / m ode / d d d d d d / m d m d d / fção eo aoada à eqação dfeeal é: w = omação olomal: Utlzado... omo oto de oloação e + = omo oto de teolação. 4 ela CC: deta foma ode-e eeeta d Método do mometo: Método de Gale: / d d / d d =... / Método da oloação otooal: d d Com o olômo otooa de Jaob: ode. Obeva-e qe método do mometo método de Gale O olômo de Jaob odem e eto a foma: ode γ = e =... O ela fómla eva:

10 9. OBLEMS DE VLO DE COONO EQUÇÕES DIFEENCIIS ODINÁIS =... om e ; ; 3 3 Qe a foma matal tem-e: M I ode M 3 3 e a aíze de ão o valoe aateíto de M : I M = =... Sbttdo a aomação olomal o oblema tem-e:... m B to é m tema de eqaçõe aléba leae m = e o ão-leae m e.

Ajuste de curvas por quadrados mínimos lineares

Ajuste de curvas por quadrados mínimos lineares juste de cuvs o quddos mímos lees Fele eodo de gu e Wdele Iocêco oe Júo Egeh de s o. Peíodo Pofesso: ode Josué Bezue Dscl: Geomet lítc e Álgeb e. Itodução Utlzmos este método qudo temos um dstbução de

Leia mais

Cinemática Direta. 4 o Engenharia de Controle e Automação FACIT / Prof. Maurílio J. Inácio

Cinemática Direta. 4 o Engenharia de Controle e Automação FACIT / Prof. Maurílio J. Inácio Cnemáta Deta 4 o Engenhaa de Contole e Automação FACI / 9 Pof. Mauílo J. Ináo Cnemáta Deta Cnemáta do manpulado Cnemáta é êna que tata o movmento em ondea a foça que o auam. Na nemáta ão etudado: poçõe,

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

ESCOAMENTOS EM REGIME PERMANENTE

ESCOAMENTOS EM REGIME PERMANENTE ESOAMENTOS EM EGIME EMANENTE eime emaete: são escoametos qe ão aesetam aiação com o temo t Escoametos i-dimesioais: só aesetam m comoete de elocidade qe só aia em ma dieção Escoametos simles hidodiamicamete

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

Aluno(a): Professor: Chiquinho

Aluno(a): Professor: Chiquinho Aluo(a): Pofesso: Chquho Estatístca Básca É a cêca que tem po objetvo oeta a coleta, o esumo, a apesetação, a aálse e a tepetação de dados. População e amosta - População é um cojuto de sees com uma dada

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Solução Algébrica vs. Geométrica Exemplos em Robôs Industriais Exercícios Recomendados Bibliografia Recomendada

Solução Algébrica vs. Geométrica Exemplos em Robôs Industriais Exercícios Recomendados Bibliografia Recomendada SEM7 - Aul Cemát Iver de Muldore Robóto Prof. Dr. Mrelo Beker EESC - USP Sumáro d Aul Defçõe Solução Algébr v. Geométr Eemlo em Robô Idutr Eerío Reomeddo Bblogrf Reomedd EESC-USP M. Beker 7 / Defçõe Cemát

Leia mais

Teoria das Comunicações

Teoria das Comunicações Teora das Comucações.6ª Revsão de robabldade rof. dré Noll arreto rcíos de Comucação robabldade Cocetos áscos Eermeto aleatóro com dversos resultados ossíves Eemlo: rolar um dado Evetos são cojutos de

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

MODELOS DE REGRESSÃO NÃO LINEARES

MODELOS DE REGRESSÃO NÃO LINEARES M. Mede de Olvera Excerto da ota peoa obre: MODELOS DE REGRESSÃO NÃO LINEARES Obervação No modelo de regreão dto leare, a varável depedete é exprea como fução lear do coefcete de regreão. É rrelevate,

Leia mais

Sobre a classe de diferenciabilidade de quocientes de polinômios homogêneos.

Sobre a classe de diferenciabilidade de quocientes de polinômios homogêneos. Uvesdade Regoal do Ca - URCA CADERNO DE CULTURA E CIÊNCIA VOLUME Nº - 008 IN 980-586 obe a classe de dfeecabldade de quocetes de polômos homogêeos About the Dffeetablty Class of the Quotet of Homogeeous

Leia mais

Programação Quadrática Aplicada à Teoria Moderna de Finanças

Programação Quadrática Aplicada à Teoria Moderna de Finanças Pogamação Quadátca Alcada à Teoa Modea de Faça Fabo Slva Da Oetado: Eeto Julá Goldbeg Bg Reumo Dede meado de 95, etudoo de faça e de otmzação têm dedcado ua equa a um amo muto teeate da ecooma, cohecdo

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

CAPÍTULO 5. Dedução Natural

CAPÍTULO 5. Dedução Natural CAPÍTULO 5. Dedução Natual Iniciamo ete caítulo com a eguinte egunta: O ue é a dedução natual? É o oceo aa etabelece de maneia igooa a validade do agumento, deivando a concluão do agumento a ati da emia

Leia mais

Análise de Dados e Probabilidade B Exame Final 2ª Época

Análise de Dados e Probabilidade B Exame Final 2ª Época Aálse de Dados e obabldade B Eame Fal ª Éoca Claa Cosa Duae Daa: / /7 Cáa Feades Duação: hm edo Chaves MORTATE: Esceva o ome e úmeo o cmo de cada folha Resoda a cada guo em folhas seaadas, caso ão esoda

Leia mais

Processamento de Imagens

Processamento de Imagens Poceamento de Imagen By Vania V. Etela UFF-TELECOM, Joaquim T. de AiIPRJ-UERJ Técnica de Modificação de Hitogama O hitogama de uma imagem, que é uma oiedade do conteúdo da infomação contida na mema, é

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. i ω

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. i ω Eletromagetimo II 1 o Semetre de 7 Noturo - Prof. Alvaro Vaui 8 a aula 3/mar/7 i ω Na última aula vimo: Oda laa: t ik (oeradore Da equaçõe de Maxwell, oiderado a amlitude do amo, úmero omlexo: i( K uˆ

Leia mais

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 }

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 } 5. Fções teste Até agora estvemos tratado tesvamete com a tegração. Uma cosa qe temos vsto é qe, cosderado espaços das, podemos pesar as fções como fcoas. Vamos rever brevemete esta déa. osdere a bola

Leia mais

Estatística 15 - Comparação entre Duas Populações

Estatística 15 - Comparação entre Duas Populações Etatítca 5 - Comaração etre Da Polaçõe 5- Comaração de Méda de Da Polaçõe µ Méda da olação µ Méda da olação Tete µ - µ µ - µ > µ - µ µ - µ < µ - µ µ - µ. Dado Emarelhado EemloVte cobaa bmetda drate ma

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fudametos da físa Udade E Capítulo efação lumosa esoluções dos eeíos popostos P.85 Como, temos: 8 0 0 8,5 P.86 De, em: 0 8,5 0 8 m/s P.87 elodade da luz a plaa de do oespode a 75% da elodade da luz

Leia mais

Lista de Exercícios 3 - Cinemática Inversa

Lista de Exercícios 3 - Cinemática Inversa PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA ENGENHAIA DE CONTOLE E AUTOMAÇÃO - SISTEMAS OBOTIZADOS Prof. Felie Kühne Lita e Exeríio - Cinemátia Invera. Determine o entro o

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 Aálise em espaço de estados Sistemas e Siais 009/010 Repesetação de Sistemas Sistemas descitos po equações difeeciais Sistemas descitos po sistemas de equações difeeciais Repesetação em espaço de estados

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avalação de Empresas MODELO DE DIVIDENDOS Dvdedos em um estáo DDM Dscouted Dvded Model Muto utlzados a precfcação de uma ação em que o poto de vsta do vestdor é extero à empresa e eralmete esse vestdor

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

5 Aplicação do GFMM no BEM

5 Aplicação do GFMM no BEM 38 5 Apação do GFMM o BEM esse apítuo os desevovmetos apresetados o apítuo 4 são apados ao BEM pea expasão das souções fudametas utzadas as tegrações sobre os segmetos do otoro. É apresetada a formuação

Leia mais

'!"( )*+%, ( -. ) #) 01)0) 2! ' 3.!1(,,, ".6 )) -2 7! 6)) " ) 6 #$ ))!" 6) 8 "9 :# $ ( -;!: (2. ) # )

'!( )*+%, ( -. ) #) 01)0) 2! ' 3.!1(,,, .6 )) -2 7! 6))  ) 6 #$ ))! 6) 8 9 :# $ ( -;!: (2. ) # ) !" #$%&& #% 1 !"# $%& '!"( )*+%, ( -. ) #) /)01 01)0) 2! ' 3.!1(,,, " 44425"2.6 )) -2 7! 6)) " ) 6 #$ ))!" 6) 4442$ ))2 8 "9 :# $ ( -;!: (2. ) # ) 44425"2 ))!)) 2() )! ()?"?@! A ))B " > - > )A! 2CDE)

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

CONSTRUÇÕES FUNDAMENTAIS

CONSTRUÇÕES FUNDAMENTAIS COLÉGIO EDRO II Camp RELENGO II Diciplina: DESENHO ª Séie (EM) of. Sonia Sá CONSTRUÇÕES FUNDMENTIS São contçõe báica feita com axílio do intmento de Deenho. Taçado de RLELS e ERENDICULRES com pa de ESQUDROS

Leia mais

Unidade XI Análise de correlação e regressão

Unidade XI Análise de correlação e regressão Uvedade Fedeal do Ro Gade Iuo de Maemáca, Eaíca e Fíca Dcpla Pobabldade e Eaíca Aplcada à Egehaa CÓDIGO: Iodução Poceo de quema de maa ceâmca de pavmeo Udade XI Aále de coelação e egeão Vvae Lee Da de

Leia mais

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO 13 CAPÍTULO 2 DINÂMICA DA PATÍCULA: OÇA E ACELEAÇÃO Nese capíulo seá aalsada a le de Newo a sua foma dfeecal, aplcada ao movmeo de paículas. Nesa foma a foça esulae das foças aplcadas uma paícula esá elacoada

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O

Leia mais

Estudo de um modelo do núcleo do deuterão

Estudo de um modelo do núcleo do deuterão Estudo de um modelo do úcleo do deuteão Goçalo Oliveia º 5789 Pedo Ricate º 578 Física Quâtica da Matéia Istituto Sueio Técico Maio, 8 Resumo Cosidea-se um modelo simles aa o úcleo do deuteão, ode a iteacção

Leia mais

t AB s = s 0 (1) / 2 / 2 y y v t gt Cinemática de uma Partícula Cap. 12 v oya v oa v oya v oa

t AB s = s 0 (1) / 2 / 2 y y v t gt Cinemática de uma Partícula Cap. 12 v oya v oa v oya v oa Poblem 1.88 MECÂNIC - DINÂMIC O sowmobile deix o oto m elocidde de 10m/s. Detemie o temo de ôo de té e o lcçe d tjetói. Ciemátic de m Ptícl C. 1 Pof D. Cládio Cotto dtdo o: Pof D. oldo Medeios-Jio TC07

Leia mais

1 - CORRELAÇÃO LINEAR SIMPLES rxy

1 - CORRELAÇÃO LINEAR SIMPLES rxy 1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações

Leia mais

Organização de dados -Dados não agrupados n. Mediana:

Organização de dados -Dados não agrupados n. Mediana: Orgazação de dado -Dado ão agruado Medaa: Poto de ocoameto: Méda: Moda: valor que ocorre com maor freqüêca Méda de Itervalo: + m max + Quartl: (ara j, ou 3) j( +) Poto de ocoameto: 4 Méda da Juta: Q +

Leia mais

6. ANÁLISE MODAL DE SISTEMAS COM N GL

6. ANÁLISE MODAL DE SISTEMAS COM N GL VIBRAÇÕES EÂNIAS - APÍULO 6 - ANÁLISE ODAL N GL 78 6. ANÁLISE ODAL DE SISEAS O N GL Neste aítulo seão aalsadas as aateístas odas, feüêas atuas e odos de vba de ssteas ão aotedos o gaus de lbedade. Seão

Leia mais

Notas de Aula - Prof. Dr. Marco Antonio Pereira

Notas de Aula - Prof. Dr. Marco Antonio Pereira Ecol de Engenhi de Loen - UP - inétic Químic pítulo 7 Intodução etoe Químico 1 - Intodução cinétic químic e o pojeto de etoe etão no coção de que todo o poduto químico indutii. É, pinciplmente, o conhecimento

Leia mais

Matemática. 8 o ano. Caderno 1

Matemática. 8 o ano. Caderno 1 Matemática 8 o ano adeno 1 Módulo 1 1 Em elação ao infogáfico apeentado a egui, eponda ao que e pede. Fonte: Folha de S.Paulo, 6, 9 ma. 2014. a) Qual é a fonte da pequia? b) Qual é o aunto cental dee infogáfico?

Leia mais

DINÂMICA DOS SISTEMAS DE PARTÍCULAS E DOS CORPOS RÍGIDOS

DINÂMICA DOS SISTEMAS DE PARTÍCULAS E DOS CORPOS RÍGIDOS DNÂCA DS SSTEAS DE ARTÍCUAS E DS CRS RÍDS. Cabta Neves Setembo de 005 Ídce ometo lea de um sstema de atículas... 3 Teoema do movmeto do ceto de massa... 3 3 cío da Cosevação do ometo ea... 6 4 cío do Tabalho-Eega

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

Monitor: Tiago Souza. Lista 7

Monitor: Tiago Souza. Lista 7 Professor: Rodrigo Moura Moitor: Tiago Souza Ecoometria MFEE Lista 7 1. Tome ode Cov( 2, u 1 0. Seja z 2 tal que: 1 = β 0 + β 1 2 + β 2 z 1 + u 1 2 = π 0 + π 1 z 1 + π 2 z 2 + v 2 ode E(v 2 ; Cov(z 1,

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

Curso de Análise Matricial de Estruturas 1 II.6 FORMULAÇÃO DAS MATRIZES DE FLEXIBILIDADE E RIGIDEZ EM TERMOS DE ENERGIA

Curso de Análise Matricial de Estruturas 1 II.6 FORMULAÇÃO DAS MATRIZES DE FLEXIBILIDADE E RIGIDEZ EM TERMOS DE ENERGIA Cso de nálse Matcal de sttas II. FOMÇÃO DS MTIZS D FXIBIIDD IGIDZ M TMOS D NGI II.. Tabalho, nega de Defomação e nega Complementa de Defomação Defnções: dτ d tabalho o enega de defomação; dτ d tabalho

Leia mais

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos PPNL Min (Max) f(x). a. g i (x) (,, =) b i, i =,,m onde x = (x,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.

Leia mais

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME Dinâmica de um Sistema de atículas Da. Diana Andade, Da. Angela Kabbe, D. Caius Lucius & D. Ségio illing 4 MOVIMENTO CIRCULAR UNIFORME Se um onto se moe numa cicunfeência, seu moimento é cicula, odendo

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 5. Campo Gavítico ómalo elação ete o potecial gavítico e o potecial omal é dada po: W ( x, y, z = U( x, y,z + ( x, y,z O campo gavítico aómalo ou petubado é etão defiido pela difeeça do campo gavítico

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

v a p r a f e i r a (. c o m ) u m p r o j e t o d e i n c e n t i v o a o u s o d o e s p a ç o p ú b l i c o

v a p r a f e i r a (. c o m ) u m p r o j e t o d e i n c e n t i v o a o u s o d o e s p a ç o p ú b l i c o v a p r a f e i r a (. c o m ) u m p r o j e t o d e i n c e n t i v o a o u s o d o e s p a ç o p ú b l i c o vaprafeira.com M a r i n a B r i z a M o re l l i O r i e nta d o ra : I s a b e l A b a

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

MICROECONOMIA II. 1) Equilíbrio Geral e Bem-Estar. A Caixa de Edgeworth. David Henriques. 1.1) Economia de troca pura; equilíbrio Walrasiano.

MICROECONOMIA II. 1) Equilíbrio Geral e Bem-Estar. A Caixa de Edgeworth. David Henriques. 1.1) Economia de troca pura; equilíbrio Walrasiano. Davd Henqe EN Eqlío Geal e e-eta MIOEONOMI II Eonoa de toa a; eqlío Walaano Eqlío Geal: anala-e oo a ondçõe de oa e oeta nteage e dveo eado aa detena o eço de dveo en aa de Edgeoth - aa de Edgeoth ode

Leia mais

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas.

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas. Etabilidade Uma araterítia importte para o itema de ontrole é qe ele eja etável. Sem ela qalqer otra araterítia, omo a de m bom deempenho, não faz entido. Para itema lineare, a araterítia de etabilidade

Leia mais

FIGURA 1. Diagrama fasorial de um dielétrico submetido a uma tensão CA.

FIGURA 1. Diagrama fasorial de um dielétrico submetido a uma tensão CA. i.ee DETEMINAÇÃO DO FATO DE DISSIPAÇÃO PEDAS DIELÉTIAS Eng. Joé Aino Teieia J. ondutividade eidual. Peda o olaização 3. Peda o decaga aciai Gae : O gae gealmente tem eda etemamente baia. O mecanimo de

Leia mais

Análise de Componentes Principais

Análise de Componentes Principais PÓS-GRADUAÇÃO EM AGRONOMIA CPGA-CS Aálse Multvd Alcd s Cêcs Agás Aálse de Comoetes Pcs Clos Albeto Alves Vell Seoédc - RJ //008 Coteúdo Itodução... Mt de ddos X... 4 Mt de covâc S... 4 Pdoção com méd eo

Leia mais

EQUAÇÕES DIFERENCIAIS DE 2ª ORDEM:

EQUAÇÕES DIFERENCIAIS DE 2ª ORDEM: EQUÇÕES DIFERENCIIS DE ª ORDEM: Cofom dfção v m EDO d odm é m qção d fom F E fom é mo gl o o m ávl D modo q o gmo EDO om d odm f Com ê obd EDO d odm odmo q d odm m bm m dfí d olv Eo m d bl d EDO om d odm

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Maio/ 9 Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

Equilíbrio Químico Constante de Equilíbrio Princípio de Le Chatelier

Equilíbrio Químico Constante de Equilíbrio Princípio de Le Chatelier Química Geral e Iorgâica QGI0001 Eg a. de Produção e Sistemas Prof a. Dr a. Carla Dalmoli Equilíbrio Químico Costate de Equilíbrio Pricíio de Le Chatelier Eergia Livre de Gibbs Existem três codições imortates:

Leia mais

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla REGRESSÃO LINEAR MÚLTIPLA Coelação múltipla Coeficiente de coelação múltipla: indicado de quanto da vaiação total da vaiável dependente é explicado pelo conjunto das vaiáveis independentes (explicativas)

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

07/11/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

07/11/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado 7//6 UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Pof. lvo Miel Lim Mchdo jtmeto com Ijçõe Lih com zeo mtiz Só obevçõe Lih com zeo mtiz B Sem obevçõe Eqçõe de codição

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMAS ESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudo Depatamento de Físca Cento de Cêncas Eatas Unvesdade Fedeal do Espíto Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Últma atualzação: 3/8/5

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

GLOSSÁRIO PREV PEPSICO

GLOSSÁRIO PREV PEPSICO GLOSSÁRIO PREV PEPSICO A T A A ABRAPP Aã Aã I Aí I R ANAPAR A A M A A A Lí Aá S C é ç í ê çõ 13ª í ã. Açã B E F Pê P. Cí ê, ã ê. V Cê Aã P ( á). N í, - I R P Fí (IRPF), S R F, à í á, ( 11.053 2004), çã.

Leia mais

Capítulo 7 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS

Capítulo 7 ESCOAMENTO PERMANENTE DE FLUIDO INCOMPRESSÍVEL EM CONDUTOS FORÇADOS Caítulo 7 ESCOMEO PERMEE E FUIO ICOMPRESSÍVE EM COUOS FORÇOS o Caítulo areentou-e a equação a energia co ea iótee, reultano: : M, Ea equação erite eterinar ao longo o ecoaento algua a ariáei que conté,

Leia mais

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2 r od la ort no C UNESDADE DE MOG DAS CUZES - ENGENHAA EÉCA Prof. Joé oberto Marque CUSO DE ENGENHAA EÉCA EEÔNCA DE POÊNCA Ex. ONE CHAEADA PWM ABAXADOA BUCK Objetivo: O objetivo deta exeriência é demontrar

Leia mais

! $&% '% "' ' '# ' %, #! - ' # ' ' * '. % % ' , '%'# /%, 0! .!1! 2 / " ') # ' + 7*' # +!!! ''+,!'#.8.!&&%, 1 92 '. # ' '!4'',!

! $&% '% ' ' '# ' %, #! - ' # ' ' * '. % % ' , '%'# /%, 0! .!1! 2 /  ') # ' + 7*' # +!!! ''+,!'#.8.!&&%, 1 92 '. # ' '!4'',! "#$%% $&% '% "' ' '# '"''%(&%') '*'+&%'# ),'#+# ' %, # - ' # ' "%'''' ' * '. % % ', '%'# ''''') /%, 0.1 2 / " ') 33*&,% *"'",% '4'5&%64'' # ' + 7*' # + "*''''' 12''&% '''&")#'35 ''+,'#.8.&&%, 1 92 '. #

Leia mais

Solução da segunda lista de exercícios

Solução da segunda lista de exercícios UESPI Cmpu Pof. Alende Alve de Olve Cuo: ch. em Cênc d Computção Dcpln: Fíc 9h Pof. Olímpo Sá loco: Aluno: Dt: 9// Solução d egund lt de eecíco Quetão : N fgu, um fo eto de compmento tnpot um coente. Obte:

Leia mais

Electrónica /2007

Electrónica /2007 6/7 FEUP/DEEC 4º/MIEEC Vítor Grade Tavare Aula 4: Filtro umário: Função de Aroimação: Butterorth. Chebyhev. Beel. Filtro Elítico. Caracterítica marcante do dierente iltro. Tranormação de requência. O Problema

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

Seu pé direito nas melhores faculdades. a) Indicando os montantes finais possuídos por Carlos, Luís e Sílvio por C, L e S, respectivamente, temos:

Seu pé direito nas melhores faculdades. a) Indicando os montantes finais possuídos por Carlos, Luís e Sílvio por C, L e S, respectivamente, temos: Seu pé dieio na melhoe faculdade. FUVEST/00 a Fae TEÁTI 0. alo, Luí e Sílvio inham, juno, 00 mil eai paa invei po um ano. alo ecolheu uma aplicação que endia ao ano. Luí, uma que endia 0% ao ano. Sílvio

Leia mais

ISSN Pubblicato dal 23/11/2012

ISSN Pubblicato dal 23/11/2012 ISSN 1127-8579 Pubblicato dal 23/11/2012 All'indirizzo http://xn--leggedistabilit2013-kub.diritto.it/docs/34317-tr-fico-de-drogas-esubstitui-o-de-pena-privativa-de-liberdade-por-pena-restritivas-de-direitos-uma-an-liseevolutiva-do-tratamento-da-mat-ria-no-ordenamento-jur-dico-brasileiro

Leia mais

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

CIRCUITOS ELÉTRICOS CONCEITOS BÁSICOS

CIRCUITOS ELÉTRICOS CONCEITOS BÁSICOS CCUTOS ELÉTCOS CONCETOS BÁSCOS Prof. Marcos Fergütz jul/07 - Carga Elétrca (Q, q) [ Udade: Coulomb C ] e - Quado se forece ou retra eerga do elétro (e - ), pode-se movmetá-lo por etre as camadas (K, L,

Leia mais

Máquina de Corrente Contínua

Máquina de Corrente Contínua Máqna de Coente Contína Objectvos: - estdo do pncípo de nconamento da máq. CC; - Modelo dnâmco. Máqna CC exct. ndependente e sée; - nconamento em egme estaconáo: moto e geado: caacteístcas electomecâncas;

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes ENG 8 Fenômeno de Tranorte I A Profª Fátima Loe Etática do fluido Definição: Um fluido é coniderado etático e todo o elemento do fluido etão arado ou e movem com uma velocidade contante, relativamente

Leia mais

CAPITULO 4 SISTEMAS DE EQUAÇÕES NÃO LINEARES

CAPITULO 4 SISTEMAS DE EQUAÇÕES NÃO LINEARES 88 4.. INTRODUÇÃO CAPITULO 4 SISTEMAS DE EQUAÇÕES NÃO LINEARES O capítlo ateio se iicio com ma discssão sobe a modelaem matemática de sistemas físicos qe pemitisse sa aálise, cocepção e até mesmo poeto.

Leia mais

Algoritmia e Programação APROG. Modularidade. Algoritmia e Java. Nelson Freire (ISEP DEI-APROG 2012/13) 1/29

Algoritmia e Programação APROG. Modularidade. Algoritmia e Java. Nelson Freire (ISEP DEI-APROG 2012/13) 1/29 APROG Algotma e Pogamação Moduladade Algotma e Java Nelo Fee (ISEP DEI-APROG 01/1) 1/9 Moduladade Sumáo Itodução Noção de Moduladade Eecução de Pogama Modula Motvaçõe paa Ua Foma de Comucação ete Módulo

Leia mais

#+ *=8 www.scienceofgettingrich.net

#+ *=8 www.scienceofgettingrich.net !"#$!%!&!' ()#($***&*'!((+,(-($&(-(% &!' ".&("/***&* 012&("&&***(3& 4/((5(3&6&#"& &($."&(7'8"9***&*:3 (*#&(3&( ;?@@!)(A( ;

Leia mais

Prática VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESFERAS

Prática VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESFERAS Pátca VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESERAS OBJETIVO: Vefca expeetalete a cosevação a quatae e oveto lea e u sstea solao. INTRODUÇÃO TEÓRICA A segua le e Newto às vezes

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar:

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar: F6D - CONTROLE E SERVOMECAMISMOS II Prof. Crlo Rimdo Erig Lim SOLUÇÃO DAS EQUAÇÕES DE ESTADO. - Solção d eqção elr e d eqção mriil A eqção de edo A B ode er ed olção d eqção elr: Por Lle: A B X AX BU A

Leia mais

SIMULAÇÃO NUMÉRICA DA DISTRIBUIÇÃO DE TEMPERATURAS EM

SIMULAÇÃO NUMÉRICA DA DISTRIBUIÇÃO DE TEMPERATURAS EM SIMUAÇÃO NUMÉRICA DA DISRIBUIÇÃO DE EMPERAURAS EM UMA BARRA UNIFORME DE AÇO-CARBONO COM O MÉODO DE CRANK-NICOSON J. C. ARAÚJO R. G. MÁRQUEZ Resumo Nesse abalho é desevolvda uma solução uméca po dfeeças

Leia mais

1.1 Tipos de Posicionamento: Absoluto e Relativo.

1.1 Tipos de Posicionamento: Absoluto e Relativo. Posconamento. efnção: detemnação da osção de um qualque onto num qualque sstema de efeênca, onde as esectvas coodenadas são obtdas o um dado método (matemátco) que ecoe a uma detemnada técnca (nstumental).

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

INTERPOLAÇÃO. Introdução

INTERPOLAÇÃO. Introdução INTERPOLAÇÃO Itrodução A terolção cosste em determr rtr de um cojuto de ddos dscretos um ução ou um cojuto de uções lítcs que ossm servr r determção de qulquer vlor o domío de deção. Pode-se ver terolção

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

2. Revisões e definições de matrizes

2. Revisões e definições de matrizes Apotametos de Processameto Adaptativo de Siais 2. Revisões e defiições de matrizes Breve revisão de propriedades de matrizes 1. Valores próprios e vectores próprios A cada matriz quadrada A, de dimesões

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de

Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de Tecnologia da Informação!" !" $%& '( ) %) * +, - +./0/1/+10,++$.(2

Leia mais