Introdução ao Método dos Elementos Finitos. Introdução ao Método dos Elementos Finitos

Tamanho: px
Começar a partir da página:

Download "Introdução ao Método dos Elementos Finitos. Introdução ao Método dos Elementos Finitos"

Transcrição

1 Introdção ao Método do Eleento Fnto Introdção ao Método do Eleento Fnto

2 Prncípo do rabalo rta para a Elatcdade rdenonal Dene-e o trabalo rtal do eorço nterno a tenõe zz z e z para o capo da deoraçõe rta por: zz zz z z { } d O trabalo rtal do eorço eterno é dado por: onde: { } Introdção ao Método do Eleento Fnto e z w z d d z z z w z z z d

3 O Prncípo do rabalo rta para a elatcdade trdenonal pode er ecrto coo: d d d Motra-e qe: Dado e e e ão condçõe eqalente para o capo de tenõe {} atazer o Prncípo do rabalo rta para qalqer delocaento rtal e atazer eqlíbro.e. Introdção ao Método do Eleento Fnto

4 Prncípo do rabalo rta d d d para todo e z z z z z z z zz Eqlíbro z para todo e para todo e Introdção ao Método do Eleento Fnto

5 Introdção ao Método do Eleento Fnto O problea da elatcdade lnear pode er orlado ando o prncípo do trabalo rta. Deternar e tal qe d d d para todo e Eqlíbro a w z z z z z zz Copatbldade b C Eqação Conttta c

6 bttndo a eqaçõe de copatbldade e conttta b e c na epreão do prncípo do trabalo rta a obté-e a orlação oente e tero do delocaento Deternar tal qe C d d d endo-e obté-e e e C Introdção ao Método do Eleento Fnto

7 Prncípo do rabalo rta para a Elatcdade no Plano Etado Plano de enõe Partclarzando-e a epreão da elatcdade trdenonal para a condçõe de etado plano de tenão: e L { } { } / / { } d / / / d d zz d dzd dzdl d / L dzd dl Introdção ao Método do Eleento Fnto

8 Introdção ao Método do Eleento Fnto ando a notação: e denndo-e relta: dl d d L } { } { } { } { } { } {

9 Etado Plano de Deoraçõe coponente de deoração ão derente de zero e a coponente de tenão zz ão não nla então analogaente ao cao de etado plano de tenõe te-e: { } { } d { } { } d L { } { } dl Introdção ao Método do Eleento Fnto

10 Eqlíbro: Introdção ao Método do Eleento Fnto Conderando o Problea Plano d d dl onde L Copatbldade: Eqação conttta: C Introdção ao Método do Eleento Fnto

11 Introdção ao Método do Eleento Fnto Denndo-e eqação de copatbldade pode er reecrta coo: bttndo-e e na eqação de eqlíbro relta: dl d d C L

12 Forlação do Problea da Elatcdade Plana e ero de Delocaento Deternar o capo de delocaento {} {} = { } tal qe: C d d dl L para qalqer {} { } = { } tal qe {} = {} e L ao procrar a olção para a eqação aca conderando a deternada ora nconal para o delocaento. Introdção ao Método do Eleento Fnto

13 Para e denr ea ora condere: Y X ponto noda Y X Introdção ao Método do Eleento Fnto

14 ponto noda Y X Y X Introdção ao Método do Eleento Fnto

15 Condere eleento genérco k p l q g b/ b/ a/ a/ e a neração local dene-e Introdção ao Método do Eleento Fnto

16 Introdção ao Método do Eleento Fnto Então b a b a b a b a 3

17 Introdção ao Método do Eleento Fnto Dene-e o capo de delocaento no nteror do eleento por Nota-e qe analogaente Coo qando e qando

18 Introdção ao Método do Eleento Fnto Denndo-e onde: Pode-e ecreer H ˆ 3 3 H 3 3 ˆ

19 Condere: n onde =... n repreenta todo o delocaento noda do odelo. Pode-e ecreer: onde e para o eleento abao H k p l q g b/ b/ a/ a/ Introdção ao Método do Eleento Fnto

20 te-e H K q p g Conderando a relaçõe delocaento-deoraçõe onde e ando a eqação conttta H C endo qe C C para ateral oogêneo. Introdção ao Método do Eleento Fnto

21 Introdção ao Método do Eleento Fnto Lebrando o enncado do Prncípo do rabalo rta pode-e ecreê-lo conderando-e a nterpolação de eleento nto E conderando anda qe o delocaento rta ão nterpolado da ea ora qe o delocaento dl d d L H H

22 Introdção ao Método do Eleento Fnto então relta onde L L... L lado do eleento qe pertence a rontera do doíno L. e q e e n L L n n dl H d H d C...

23 Introdção ao Método do Eleento Fnto Denndo-e d C K e n K K d H R... L L dl H R q e n R R e n R R R R R Pode-e ecreer R K Coo o delocaento rta ão arbtráro {} pode er toado arbtraraente leando a: R K

24 Montage da Matrz de Rgdez Y k l p q g b/ b/ X K n e K K C d a/ a/... K oente e o gra de lberdade e pertencere ao eleento Introdção ao Método do Eleento Fnto

25 k Montage da Matrz de Rgdez p l q g b/ b/ a/ a/ Recorda-e nalogaente H N H 8 ˆ N 8 3 N 38 ˆ N 8 3 Introdção ao Método do Eleento Fnto

26 Introdção ao Método do Eleento Fnto Denndo 3 3 O tero de [K ] qe não ão encontrado e [k] ão nlo d C k k K ˆ 3 3

27 k Montage da Matrz de Rgdez l a/ a/ p q g b/ b/ Dene-e Introdção ao Método do Eleento Fnto LM q p l k g contrbçõe da atrz de rgdez do eleento para a atrz [K] pode er obtda oando-e k na poção qq de [K] k na poção qp de [K] 3 k 8 na poção qg de [K] k na poção pp de [K] k 8 na poção pg de [K] 3

28 Força Noda k p l q g b/ b/ a/ a/ F k F F K NN 6 N N F l 3 k ˆ F p F g F q 8 F 5 F 7 Introdção ao Método do Eleento Fnto

2 Dimensionamento Estrutural pelo Método dos Elementos Finitos Através da Utilização de Elementos de Placa

2 Dimensionamento Estrutural pelo Método dos Elementos Finitos Através da Utilização de Elementos de Placa 2 Densonaento Estrtral pelo Método dos Eleentos Fntos Atraés da Utlação de Eleentos de Placa A Mecânca dos Meos Contínos, e as especfcaente a eora da Elastcdade, te coo objeto forlar e estabelecer as eqações

Leia mais

Verifique que a equação característica e os polos do sistema obtidos através da FT são os mesmos encontrados através da matriz A de estados.

Verifique que a equação característica e os polos do sistema obtidos através da FT são os mesmos encontrados através da matriz A de estados. Homework (Eqaçõe de etado) Felippe de Soza ) Conidere o itema decrito pela a eqação diferencial ordinária abaio. Ache a F (Fnção de ranferência). Ecreva na forma de Eqaçõe de Etado & A B, C D. Verifiqe

Leia mais

3 SOLUÇÕES FUNDAMENTAIS NÃO-SINGULARES

3 SOLUÇÕES FUNDAMENTAIS NÃO-SINGULARES SOUÇÕES FUNDAMENTAIS NÃO-SINGUARES Ete Capítlo apreenta a olçõe fndaentai não-inglare, tabé conhecida coo fnçõe T copleta qe nada ai ão do qe olçõe hoogênea reglare da eqação diferencial do problea, aplicada

Leia mais

Elasticidade aplicada à Infraestrutura de Transportes

Elasticidade aplicada à Infraestrutura de Transportes SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pó-gradação em Engenhara de Tranporte Eatcdade apcada à Infraetrtra de Tranporte CAP MONIZ DE ARAGÃO DEFORMAÇÕES: Campo de deocamento; Componente

Leia mais

18 a 21 de novembro de 2014, Caldas Novas - Goiás

18 a 21 de novembro de 2014, Caldas Novas - Goiás 8 a de novebro de 4, Caldas Novas - Goás SIMULAÇÃO NUMÉRICO-COMPUTACIONAL DE PLACAS FINAS EM GRANDES DESLOCAMENTOS Andressa Fernanda Rosa de La, andressaernanda@hotal.co.br Antôno Marcos Gonçalves de La,

Leia mais

3 Metodologia de análise

3 Metodologia de análise 3 Metodologa de análse O étodo de eleentos fntos é utlzado coo a base para as análses realzadas neste trabalho. As equações que resulta da aplcação deste étodo na conservação de oentu deve levar e conta

Leia mais

6 Modelagem do manipulador

6 Modelagem do manipulador Modelage do anpulador Nete apítulo, preraente a neáta do anpulador é etudada. neáta dreta do anpulador é apreentada e, e eguda, a neáta nvera é alulada. pó onlur o etudo neáto do anpulador, é apreentada

Leia mais

3 IMPLEMENTAÇÃO DO MÉTODO DE ELEMENTOS FINITOS

3 IMPLEMENTAÇÃO DO MÉTODO DE ELEMENTOS FINITOS 3 IMPLEMENAÇÃO DO MÉODO DE ELEMENOS FINIOS 3 Formlação araconal e Prncípo dos rabalhos rtas Desde o adento de sa tlzação em escala prodta, o Método de Elementos Fntos MEF tem se mostrado de grande mportânca

Leia mais

Método dos Elementos Finitos Aplicado a Peças Esbeltas Sujeitas à Carregamento Axial

Método dos Elementos Finitos Aplicado a Peças Esbeltas Sujeitas à Carregamento Axial Método dos Elementos Fntos Aplcado a Peças Esbeltas Suetas à Carregamento Aal Profa Mldred Balln Hecke, D.Sc UFPR - CESEC 1 Programa da aula: l TREIÇAS: Revsão de concetos da Resstênca dos Materas, com

Leia mais

PARTE II EQUILÍBRIO DA PARTÍCULA E DO CORPO RÍGIDO

PARTE II EQUILÍBRIO DA PARTÍCULA E DO CORPO RÍGIDO 1 PARTE II EQUILÍBRIO DA PARTÍULA E DO ORPO RÍGIDO Neste capítulo ncalente trataos do equlíbro de partículas. E seguda são apresentadas as defnções dos centros de gravdade, centros de assa e centródes

Leia mais

3 Análise Envoltória de Dados

3 Análise Envoltória de Dados 3 Anále Envoltóra de Dado 3.. Introdção A prodção de qalqer be o ervço é realzada edante a tecnologa qe tranfora connto de no (npt) e connto de prodto (otpt). A dvera anera de efetar eta tranforação fora

Leia mais

ESPECTROSCOPIA ROTACIONAL

ESPECTROSCOPIA ROTACIONAL 05/03/08 ESPECTOSCOPIA OTACIONAL Prof. Harley P. Martns Flho O odelo do rotor rígdo Partícula de assa grando no espaço a ua dstânca constante de u ponto fxo no espaço: Moento angular da partícula: = rp

Leia mais

IV Seminário da Pós-Graduação em Engenharia Mecânica Unesp - Bauru

IV Seminário da Pós-Graduação em Engenharia Mecânica Unesp - Bauru ALGOITMO PAA COSTUÇÃO DE SUPEFÍCIES DE FALHA EM SÓLIDOS TIDIMESIOAIS PELO MÉTODO DE ELEMETOS FIITOS Gláca Kell Slvestre Claro Alna do Prograa de Pós-Gradação e Engenhara Mecânca Unesp Bar Prof. Dr. Osvaldo

Leia mais

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos

Leia mais

Instituto Tecnológico de Aeronáutica VIBRAÇÕES MECÂNICAS MPD-42

Instituto Tecnológico de Aeronáutica VIBRAÇÕES MECÂNICAS MPD-42 Inso ecnológco de Aeronáca VIBRAÇÕES MECÂNICAS MPD-4 Inso ecnológco de Aeronáca SISEMAS DISCREOS MPD-4 Inso ecnológco de Aeronáca SISEMAS COM n GRAUS DE LIBERDADE DESACOPLAMENO DAS EQUAÇÕES DO MOVIMENO

Leia mais

4.5 Métodos de defuzificação. Métodos de defuzificação. Métodos. Centro de área (centro de gravidade, centróide)

4.5 Métodos de defuzificação. Métodos de defuzificação. Métodos. Centro de área (centro de gravidade, centróide) 4.5 Métodos de defuzfcação A nterpretação e utlzação dos conjuntos fuzz resultantes dos processos de nferênca pode ser fetas de fora dstntas, dependendo do tpo de sstea e da aplcação: Traduzr para u valor

Leia mais

Inicia-se este capítulo com algumas definições e propriedades para uma seqüência de funções tal como

Inicia-se este capítulo com algumas definições e propriedades para uma seqüência de funções tal como . Métodos de Resídos Ponderados. Defnções áscas Inca-se este capítlo com algmas defnções e propredades para ma seqüênca de fnções tal como x ( x ( x ( x ( (. ( 3 4 n x Tas fnções são assmdas satsfazerem

Leia mais

Tecnologia de Grupo. 1. Justificativa e Importância da Tecnologia de Grupo. 2. Algoritmo de Ordenação Binária. = 1 se a máquina i

Tecnologia de Grupo. 1. Justificativa e Importância da Tecnologia de Grupo. 2. Algoritmo de Ordenação Binária. = 1 se a máquina i Tecnologa de Grpo 1. Jstfcatva e Iportânca da Tecnologa de Grpo Tecnologa de grpos é conceto portante aplcado na foração de céllas de anfatra. A organzação do sstea de prodção e céllas de anfatra poss

Leia mais

comprimento do fio: L; carga do fio: Q.

comprimento do fio: L; carga do fio: Q. www.fisicaexe.co.br Ua carga Q está distribuída uniforeente ao longo de u fio reto de copriento. Deterinar o vetor capo elétrico nos pontos situados sobre a reta perpendicular ao fio e que passa pelo eio

Leia mais

(1) no domínio : 0 x < 1 Sujeita às condições de contorno: (2-a) CC1: (2-b) CC2: x dx

(1) no domínio : 0 x < 1 Sujeita às condições de contorno: (2-a) CC1: (2-b) CC2: x dx EXEMPLO MOTIVADOR I Método da Aproxmação Polomal Aplcado a Problema Udrecoa com Smetra. Eqaçõe Dfereca Ordára Problema de Valor o Cotoro Etrtra Geral do Problema: d dy( x) x f x, yx x dx dx o domío : x

Leia mais

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P)

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P) PROGRAMA DE MESTRADO PROGRAMAÇÃO LIEAR PROFESSOR BALEEIRO Método Splex Dual no Tableau Garfnkel-ehauser E-al: abaleero@gal.co Ste: www.eeec.ufg.br/~baleero Sea o problea pral o qual será soluconado utlzando

Leia mais

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear Físca Módulo 1 Ssteas de Partículas e Centro de Massa Quantdade de ovento (oento) Conservação do oento lnear Partículas e ssteas de Partículas Átoos, Bolnhas de gude, Carros e até Planetas... Até agora,

Leia mais

FOTOGRAMETRIA II. TEORIA DAS ORIENTAÇÕES (ANALÍTICA/DIGITAL) Orientação Exterior

FOTOGRAMETRIA II. TEORIA DAS ORIENTAÇÕES (ANALÍTICA/DIGITAL) Orientação Exterior Caps de Presdente Prdente FOTOGRAMETRIA II notas de alas TEORIA DAS ORIENTAÇÕES ANALÍTICA/DIGITAL Orentação Eteror Júlo Kosh Hasegaa Presdente Prdente 04 Resttção Fotograétra Analíta: Fotograetra - II

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS UNIVERSIDADE DE SÃO PAUO ESCOA DE ENGENHARIA DE SÃO CAROS DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS DETERMINAÇÃO DOS FATORES DE INTENSIDADE DE TENSÃO ESTÁTICOS E DINÂMICOS VIA MEC COM INTEGRAÇÃO ANAÍTICA

Leia mais

7. DECOMPOSIÇÃO EM VALORES SINGULARES (SVD)

7. DECOMPOSIÇÃO EM VALORES SINGULARES (SVD) 7. DECOMPOSIÇÃO EM VALORES SINGULARES (SVD) A decoposição e alores singlares é étodo ito útil para a análise de sisteas ltiariáeis. E teros da operação de processo o étodo SVD facilita a sa aaliação e

Leia mais

3 MÉTODO HÍBRIDO DOS ELEMENTOS DE CONTORNO

3 MÉTODO HÍBRIDO DOS ELEMENTOS DE CONTORNO 41 3 MÉODO HÍBRIDO DOS ELEMENOS DE CONORNO Desenvolve-se neste caítlo m resmo da formlação do Método Híbrdo dos Elementos de Contorno (MHEC) alcado a roblemas da elastostátca, além de serem abordados os

Leia mais

A Figura 1 ilustra as zonas de entrada de decantadores retangulares e circulares.

A Figura 1 ilustra as zonas de entrada de decantadores retangulares e circulares. IPH 0058: Trataento de Água e Egoto, Capítulo 6 6. DECANTAÇÃO EM ETA No projeto de decantadore deve er denonada a ua zona de entrada e aída. A zona de entrada engloba o canal de aceo ao decantadore, ua

Leia mais

8.5 Centro de massa ... = N (idem para y e z) X... Posição do centro de massa de um sistema de N partículas:

8.5 Centro de massa ... = N (idem para y e z) X... Posição do centro de massa de um sistema de N partículas: 8.5 Centro de assa Posção do centro de assa de sstea de partíclas: Méda, ponderada pelas assas, das posções das partíclas c r r r r R...... 0 r E coponentes: c x x x x X...... (de para y e z) Kts LDIF

Leia mais

t r Análise Matricial de Estruturas Análise Linear Elástica E Módulo de Elasticidade A Área da Seção Transversal L Tamanho do Elemento

t r Análise Matricial de Estruturas Análise Linear Elástica E Módulo de Elasticidade A Área da Seção Transversal L Tamanho do Elemento Análse Matrcal de Estruturas Análse near Elástca Objetvo: - Apresentar a estrutura matemátca de um programa de elementos fntos. - Dscutr alguns aspectos geras na programação do método dos elementos fntos

Leia mais

Termodinâmica Exercícios resolvidos Quasar. Termodinâmica. Exercícios resolvidos

Termodinâmica Exercícios resolvidos Quasar. Termodinâmica. Exercícios resolvidos erodnâca Exercícos resolvdos Quasar erodnâca Exercícos resolvdos. Gases peretos Cp e Cv a) Mostre que a relação entre o calor especíco olar a pressão constante Cp e a volue constante Cv é dada por Cp Cv

Leia mais

Figura 7.1: O problema do ajuste de funções a um conjunto de dados

Figura 7.1: O problema do ajuste de funções a um conjunto de dados Fgura 7: O problea do ajuste de funções a u conjunto de dados Capítulo 7 Aproxação de Funções por Mínos Quadrados 7 Introdução Dado u conjunto de observações (dados), frequenteente deseja-se condensar

Leia mais

MATEMÁTICA 10º A T 2

MATEMÁTICA 10º A T 2 Escola Secndária lfredo Reis Silveira no lectivo 008/009 MTEMÁTIC 0º T Ficha de Trabalho Eqação Vectorial e redzida de ma recta Eqação Vectorial da Recta Dado m ponto e m vector não nlo, podemos definir

Leia mais

Métodos Numéricos no Traçado de Campos

Métodos Numéricos no Traçado de Campos Métodos Nuércos no Traçado de Capos ELECTROTECNIA TEÓRICA LEEC Aníbal Castlho Cobra de Matos Mara Inês Barbosa de Carvalho Dezebro de 5 Nota ntrodutóra Estes apontaentos destna-se apoar as aulas da dscplna

Leia mais

Energia Cinética Média

Energia Cinética Média TRBLÊNCIA Ala 3 Energa Cnétca Méda A energa cnétca méda do fldo (por ndade de massa) é defnda por: ) ( 1 W V K A eqação de transporte para K pode ser então obtda mltplcando-se a eqação RANS por : P t 1

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

A 3,0. Em conclusão uma solução cinematicamente admissível é:

A 3,0. Em conclusão uma solução cinematicamente admissível é: Considere a laje (de espessura,, E= 1 MPa e ν=,) siplesente apoiada ao longo de todo o seu contorno representada na Figura, subetida a ua carga uniforeente distribuída de 1 kpa..1 Deterine ua solução cineaticaente

Leia mais

( ) (8.1) ( ) v = 2v sen ω t ( ) ( ) = ω (8.4) v 3v cos t ( ) = ω (8.5) v 3v sen t

( ) (8.1) ( ) v = 2v sen ω t ( ) ( ) = ω (8.4) v 3v cos t ( ) = ω (8.5) v 3v sen t CAPÍTUO 8 ETUDO ANAÍTICO DE AGUN TANITÓIO EÉTICO DO MOTO DE INDUÇÃO 8. TANITÓIO EÉTICO DE PATIDA Vaos consderar o caso de u otor de ndução co constante de tepo ecânca uto aor que as constantes de tepo

Leia mais

Redes Neurais. Modelos de neurônios artificiais Fundamentos da lógica de limiar. Computação por portas lógicas binárias. Prof. Paulo Martins Engel

Redes Neurais. Modelos de neurônios artificiais Fundamentos da lógica de limiar. Computação por portas lógicas binárias. Prof. Paulo Martins Engel Redes Nerais Modelos de nerônios artificiais Fndaentos da lógica de liiar Coptação por portas lógicas binárias coptação digital te sido realizada fndaentalente co base e portas lógicas ipleentadas e diersas

Leia mais

Cálculo Numérico BCC760 Interpolação Polinomial

Cálculo Numérico BCC760 Interpolação Polinomial Cálculo Numérco BCC76 Interpolação Polnomal Departamento de Computação Págna da dscplna http://www.decom.ufop.br/bcc76/ 1 Interpolação Polnomal Conteúdo 1. Introdução 2. Objetvo 3. Estênca e uncdade 4.

Leia mais

CELSO BERNARDO NÓBREGA FREITAS. Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico

CELSO BERNARDO NÓBREGA FREITAS. Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico CELSO BERNARDO NÓBREGA FREITAS Integração nuérca de ssteas não lneares se-plíctos va teora de controle geoétrco Defnção do Problea (, x t = f x t u t y ( t = h( x( t = 0 DAE (Equações Dferencas Algébrcas

Leia mais

5 Otimização de Dimensões

5 Otimização de Dimensões 5 Otmzação de Dmensões 5.1 Consderações Geras O desejo de se obter o projeto deal, consderando aspectos relaconados com o consmo, desempeno o efcênca, tas como qantdades mínmas de peso, volme, massa, sempre

Leia mais

3 Análise de pórticos planos de concreto armado

3 Análise de pórticos planos de concreto armado 3 Análie de pórtio plano de onreto armado 3.. Introdção A itemátia onenional de projeto baeia-e em proeo de análie eia, enolendo m grande número de ariáei e m grande número de erifiaçõe. Com bae no reltado

Leia mais

5.1 Método de Ponderação da Linha de Rotação

5.1 Método de Ponderação da Linha de Rotação 5 etodologa O copressor é o coponente de aor nfluênca no desepenho da turbna a gás ass a precsão de sua odelage te pacto sgnfcatvo na efcáca do odelo nuérco coputaconal desta ara a odelage do copressor

Leia mais

OYARZÚN HIGUERA, PABLO ENRIQUE Um esquema explícito baseado em funções de Green para propagação de ondas acústicas no domínio do tempo [Rio de

OYARZÚN HIGUERA, PABLO ENRIQUE Um esquema explícito baseado em funções de Green para propagação de ondas acústicas no domínio do tempo [Rio de OYARZÚN HGUERA, PABLO ENRQUE U esquea explícto baseado e funções de Green para propagação de ondas acústcas no doíno do tepo [Ro de Janero] 8 XV, 8 p. 9,7 c (COPPE/URJ, M.Sc., Engenhara Cvl, 8) Dssertação

Leia mais

Deformações na Notação Indicial

Deformações na Notação Indicial SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pós-gradação em Engenhara de Transportes Deformações na Notação Indcal MAJ MONIZ DE ARAGÃO Campo de deslocamentos; Componentes de deformação;

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

AULA Exercícios. ORTOGONALIDADE EM R N. , o vector u tem norma. O produto interno entre os vector u e v, é

AULA Exercícios. ORTOGONALIDADE EM R N. , o vector u tem norma. O produto interno entre os vector u e v, é Note bem: a letra destes apontamentos não dspensa de modo algm a letra atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo alno resolvendo os problemas

Leia mais

Homework 06 (Equações de estado) Felippe de Souza &&& Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) = e) = Y(s) 2. u 1. 1 u 3.

Homework 06 (Equações de estado) Felippe de Souza &&& Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) Y(s) U(s) = e) = Y(s) 2. u 1. 1 u 3. Homework 6 ) Considere o sistema descrito pela sa eqação diferencial ordinária abaio. Ache a F (Fnção de ransferência). Escreva na forma de Eqações de Estado & A B, C D. Verifiqe qe a eqação característica

Leia mais

Aula 6-2 Campo Magnético Física Geral e Experimental III Prof. Cláudio Graça

Aula 6-2 Campo Magnético Física Geral e Experimental III Prof. Cláudio Graça Aula 6- Capo Magnético Física Geral e xperiental III Prof. Cláudio Graça Capítulo 6 Força deida ao Capo Magnético F q Coo esta fórula é o produto etorial dos dois etores, e : ) Se a partícula não se oe

Leia mais

4 Dinâmica de corpos articulados

4 Dinâmica de corpos articulados 4 Dnâca de corpos artculados Contnuaos a descrção ncada no capítulo anteror dos corpos artculados co as les que rege seus oventos. 4.1 Equações de Newton-Euler se restrções Asulaçãodosoventosdecorposrígdosébaseadanosssteasde

Leia mais

Exercícios de cisalhamento puro e flexão simples - prof. Valério SA Universidade de São Paulo - USP

Exercícios de cisalhamento puro e flexão simples - prof. Valério SA Universidade de São Paulo - USP Exercíco de calhamento puro e flexão mple - prof. Valéro S Unverdade de São Paulo - USP São Paulo, dezembro de 05.. etrutura de contenção eta ubmetda a uma ação de empuxo do olo, onde a dtrbução é lnear

Leia mais

Capítulo 6 INTRODUÇÃO À CONVECÇÃO

Capítulo 6 INTRODUÇÃO À CONVECÇÃO Caítlo 6 INRODÇÃO À CONVECÇÃO A tranferência de calor or conecção ocorre qando eite o contato entre m ólido e m flido em moimento: conite na combinação da condção com a adecção (tranferência de calor deido

Leia mais

INTRODUÇÃO AOS MÉTODOS DE REDUÇÃO DE MODELOS ADAPTADOS A SISTEMAS MECÂNICOS COM CARACTERÍSTICAS NÃO LINEARES

INTRODUÇÃO AOS MÉTODOS DE REDUÇÃO DE MODELOS ADAPTADOS A SISTEMAS MECÂNICOS COM CARACTERÍSTICAS NÃO LINEARES UNIVERSIDADE FEDERAL DE GOIÁS REGIONAL CATALÃO UNIDADE ACADÊMICA ESPECIAL DE MATEMÁTICA E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM E OTIMIZAÇÃO DANIEL FERREIRA GONÇALVES INTRODUÇÃO AOS MÉTODOS

Leia mais

Física I para Engenharia. Aula 7 Massa variável - colisões

Física I para Engenharia. Aula 7 Massa variável - colisões Físca I para Engenhara º Seestre de 04 Insttuto de Físca- Unersdade de São Paulo Aula 7 Massa aráel - colsões Proessor: Valdr Guarães E-al: aldrg@.usp.br Massa Contnuaente Varáel F res F res F res dp d(

Leia mais

Viscoplasticidade. R. M. Natal Jorge. Departamento de Engenharia Mecânica e Gestão Industrial Faculdade de Engenharia Universidade do Porto

Viscoplasticidade. R. M. Natal Jorge. Departamento de Engenharia Mecânica e Gestão Industrial Faculdade de Engenharia Universidade do Porto R. M. Natal Jorge Vcoplatcdade Departamento de Engenhara Mecânca e Getão Indutral Faculdade de Engenhara Unerdade do Porto (004/005) Vcoplatcdade Vcoplatcdade. Introdução Na teora da platcdade apreentada

Leia mais

SISTEMAS LINEARES EM MALHA FECHADA. O sistema de controle

SISTEMAS LINEARES EM MALHA FECHADA. O sistema de controle SISEMAS LINEAES EM MALA FECADA O tea de ontrole Stea de ontrole para u tanque de aqueento energa elétra ou vapor eleento fnal de ontrole regtrador ontrolador., q. proeo eleento de edda de teperatura. o,

Leia mais

Elasticidade aplicada à Infraestrutura de Transportes

Elasticidade aplicada à Infraestrutura de Transportes SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO Pós-graduação e Engenharia de Transportes Elasticidade aplicada à Infraestrutura de Transportes MAJ MONIZ DE ARAGÃO PROBLEMAS PLANOS EM COORDENADAS

Leia mais

Fernando Nogueira Programação Linear 1

Fernando Nogueira Programação Linear 1 rogramação Linear Fernando Nogeira rogramação Linear Eemplo Típico Uma indstria prodz prodtos I e II sendo qe cada prodto consome m certo número de horas em máqinas A B e C para ser prodzido conforme a

Leia mais

Redes de Petri. Definições:

Redes de Petri. Definições: Redes de Petr Defnções: Uma Rede de Petr (PN) é m grafo dreto bpartdo o qal tem dos tpos de nós denomnados lgares (qe representam estados) e transções (qe representam eventos). O estado é alterado pelo

Leia mais

Modelação e Simulação Problemas - 3

Modelação e Simulação Problemas - 3 Modelação e Silação - Probleas 3 Modelação e Silação Probleas - 3 P1. Considere o sistea ecânico de translação esqeatiado na figra seginte Asse-se qe a força indicada na figra é o reanescente de a força

Leia mais

3 Modelo Transiente Proposto

3 Modelo Transiente Proposto 3 Modelo raniente Propoto No iten a egir ão apreentada a eqaçõe do modelo implementado dada pela eqaçõe de conervação de maa para o ólido e para o líqido e a eqaçõe de conervação de qantidade de movimento

Leia mais

3.4 - O Modelo de 02 GDL

3.4 - O Modelo de 02 GDL 3.4 - O Modelo de 0 GDL x (t) x (t) //\\//\\ //\\//\\ k k k 3 f (t) f (t) c c //\\//\\ //\\//\\ Eqações de oviento na fora atricial: c 3 //\\//\\ //\\//\\ [ M]{ x&& } + [ C]{ x& } + [ K]{ x} { f( t) }

Leia mais

5 Validação dos Elementos

5 Validação dos Elementos 5 Valdação dos Elementos Para valdar os elementos fntos baseados nas Wavelets de Daubeches e nas Interpolets de Deslaurers-Dubuc, foram formulados dversos exemplos de análse lnear estátca, bem como o cálculo

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) Físca I p/ IO FEP (4300) º Seestre de 03 Insttuto de Físca Unersdade de São Paulo Proessor: Luz Carlos C M Nagane E-al: nagane@.usp.br Fone: 309.6877 4 e 0 de outubro Quantdade de Moento º Seestre de 03

Leia mais

O MÉTODO DOS ELEMENTOS FINITOS APLICADO À TRELIÇAS PLANAS

O MÉTODO DOS ELEMENTOS FINITOS APLICADO À TRELIÇAS PLANAS O MÉTODO DOS EEMENTOS FINITOS PICDO À TREIÇS PNS Vsando eemplfcar os concetos ntroduzdos anterormente, trabalharemos com trelças planas. pesar do fato das trelças planas gerarem problemas etremamente smples,

Leia mais

Capítulo 6. Misturas de Gases

Capítulo 6. Misturas de Gases Caítlo 6 stras de Gases Objetvos Desenvolver regras ara se estdar as roredades de stras de gases não-reatvos co base no conhecento da coosção da stra e das roredades dos coonentes ndvdas Defnr grandezas

Leia mais

Modelação Matemática de Sistemas Físicos

Modelação Matemática de Sistemas Físicos SS-TSS odelação atemátca de Stema Fíco 5 odelação atemátca de Stema Fíco Para o tema repreentado na fgura, aumndo delocamento apena na vertcal e um comportamento lnear do elemento do modelo, obtenha: X()

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 NOTAS DE AULA DA DISCIPLINA CE76 6. ANÁLISE FATORIAL 6.. Introdução A Análse Fatoral teve níco odernaente no prncípo do século XX co K. Pearson e C. Spearan, que estudara as eddas de ntelgnca. A dfculdade

Leia mais

Dinâmica Estocástica. Instituto de Física, novembro de Tânia -Din Estoc

Dinâmica Estocástica. Instituto de Física, novembro de Tânia -Din Estoc Dnâca Estocástca Insttuto de Físca, novebro de 06 Modelo de Glauber-Isng Equação de evolução para agnetzação Abordage de capo édo & transção de fase no odelo e expoentes crítcos Equação Mestra para dnâcas

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

5 Modelos Econométricos

5 Modelos Econométricos 5 Modelos Econoétricos 5. Fronteira Estocástica de Prodção Segndo Baer [3], os prieiros odelos de fronteira estocástica (tabé conhecida na literatra coo odelos de erro-coposto) fora introdzidos por Meesen

Leia mais

Capítulo 1 Vapor d água e seus efeitos termodinâmicos. Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron Derivação das equações

Capítulo 1 Vapor d água e seus efeitos termodinâmicos. Energia livre de Gibbs e Helmholtz Equação de Clausius Clapeyron Derivação das equações Capítulo 1 Vapor d água e eu efeito termodinâmico Energia lire de Gibb e Helmholtz Equação de Clauiu Clapeyron Deriação da equaçõe Energia Lire de Helmholtz - F A energia lire de Helmholtz, F, de um corpo

Leia mais

2 - Derivadas parciais

2 - Derivadas parciais 8 - ervadas parcas Sea por eemplo: Estma-se qe a prodção semanal de ma ábrca sea dada pela nção Q 00 500 ndades onde representa o número de operáros qalcados e representa o número dos não-qalcados. Atalmente

Leia mais

SISTEMA DE POTÊNCIA. Pd(s) Figura 1. , variando entre [ 0 e + ] K = Real. Figura 2

SISTEMA DE POTÊNCIA. Pd(s) Figura 1. , variando entre [ 0 e + ] K = Real. Figura 2 0 - AUTOMAÇÃO E CONTOLE ocê é integrante de uma equipe de engenheiro em uma emprea pretadora de erviço para o etor de energia elétrica. Sua equipe etá encarregada do projeto de um itema de controle de

Leia mais

MOVIMENTO 3D PROPS. INERCIAIS E MOMENTO ANGULAR

MOVIMENTO 3D PROPS. INERCIAIS E MOMENTO ANGULAR MOVIMENTO 3D PROPS. INERCIAIS E MOMENTO ANGULAR INTRODUÇÃO ESTUDO DE CASO Os projetistas de u subarino estão predizendo seu desepenho durante anobras de ergulho. Ao conceber a torre de observação, eles

Leia mais

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO

AULA Exercícios. DETERMINAR A EXPRESSÃO GERAL E A MATRIZ DE UMA TL CONHECIDAS AS IMAGENS DE UMA BASE DO Note bem: a leitra destes apontamentos não dispensa de modo algm a leitra atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo alno resolvendo

Leia mais

ANÁLISE DE CONVERGÊNCIA DO MÉTODO ESPECTRAL PARA EQUAÇÕES INTEGRAIS DE VOLTERRA. Leonardo S. Guillermo Felipe,

ANÁLISE DE CONVERGÊNCIA DO MÉTODO ESPECTRAL PARA EQUAÇÕES INTEGRAIS DE VOLTERRA. Leonardo S. Guillermo Felipe, AÁSE DE COVERGÊCA DO MÉTODO ESPECTRA PARA EQUAÇÕES TEGRAS DE VOTERRA. eonardo S. Gllero Fele e-al: leog7@yahoo.co.br. Unverdade Etadal do Oete do Paraná/Centro de Engenhara e Cênca Eata Toledo PR. Palavra-

Leia mais

MECÂNICA CLÁSSICA. AULA N o 8. Invariância de Calibre-Partícula em um Campo Eletromagnético-Colchetes de Poisson

MECÂNICA CLÁSSICA. AULA N o 8. Invariância de Calibre-Partícula em um Campo Eletromagnético-Colchetes de Poisson 1 MECÂNICA CLÁSSICA AULA N o 8 Invarânca de Calbre-Partícula e u Capo Eletroagnétco-Colchetes de Posson Vaos ver novaente, agora co as detalhes, o ovento de ua partícula carregada e u capo eletroagnétco,

Leia mais

6. Modelagem numérica com o programa Abaqus

6. Modelagem numérica com o programa Abaqus 6. Modelagem numérca com o programa Abaqu Ete capítulo apreenta o reultado obtdo com a modelagem numérca, realzada com o programa Abaqu em dua (2D) e trê (3D) dmenõe. Ete reultado e referem à condçõe do

Leia mais

2a VERIFICAÇÃO REFINO DOS AÇOS I Julho Um aço é dessulfurado por uma escória, em condições desoxidantes.

2a VERIFICAÇÃO REFINO DOS AÇOS I Julho Um aço é dessulfurado por uma escória, em condições desoxidantes. a VERIFICAÇÃ REFIN D AÇ I Julho 8 U aço é dessulfurado por ua escóra, e condções desoxdantes. Reação quíca na nterface: + - = - +. Faça u esquea da nterface aço-escóra, lstando todas as etapas que pode

Leia mais

Mecânica e Ondas 1º Ano -2º Semestre 1º Teste 04/05/ :00h

Mecânica e Ondas 1º Ano -2º Semestre 1º Teste 04/05/ :00h Lcencatura e Engenhara Geológca e de Mnas Lcencatura e Mateátca Aplcada e Coputação Mestrado Integrado e Engenhara Boédca Mecânca e Ondas 1º Ano -º Seestre 1º Teste 04/05/017 19:00h Duração do teste: 1:30h

Leia mais

Formulação Unificada Para a Análise de Cascas Cilíndricas Finas e Espessas pelo Método dos Elementos Finitos

Formulação Unificada Para a Análise de Cascas Cilíndricas Finas e Espessas pelo Método dos Elementos Finitos João Carlos Vrgolno Soares Formulação Unfcada Para a Análse de Cascas Clíndrcas Fnas e Espessas pelo Método dos Elementos Fntos (Unfed Fnte Element Formulaton for Tn and Tck Cylndrcal Sell Analyss) Projeto

Leia mais

, para. Assim, a soma (S) das áreas pedida é dada por:

, para. Assim, a soma (S) das áreas pedida é dada por: (9) - wwweltecapnascobr O ELITE RESOLE FUEST 9 SEGUND FSE - MTEMÁTIC MTEMÁTIC QUESTÃO Na fgura ao lado, a reta r te equação x + no plano cartesano Ox lé dsso, os pontos B, B, B, B estão na reta r, sendo

Leia mais

Fernando Nogueira Programação Linear 1

Fernando Nogueira Programação Linear 1 rogramação Linear Fernando Nogeira rogramação Linear Eemplo Típico Uma padaria prodz olos I e II sendo qe cada olo consome m certa qantidade de açúcar farinha e ovo para ser prodzido conforme a taela:

Leia mais

Sistemas Multivariaveis: conceitos fundamentais

Sistemas Multivariaveis: conceitos fundamentais Departaento de Engenharia Quíica e de Petróleo UFF Diciplina: TEQ- CONTROLE DE PROCESSOS Sitea Multivariavei: conceito fundaentai Prof a Ninoka Bojorge Sitea ultivariávei São itea co vária entrada e aída,

Leia mais

ANÁLISE DINÂMICA DE PLACAS E CASCAS ATRAVÉS DO ELEMENTO FINITO DE NOVE NÓS COM REFINAMENTO HIERÁRQUICO

ANÁLISE DINÂMICA DE PLACAS E CASCAS ATRAVÉS DO ELEMENTO FINITO DE NOVE NÓS COM REFINAMENTO HIERÁRQUICO AÁLISE DIÂMICA DE PLACAS E CASCAS ATRAVÉS DO ELEMETO FIITO DE OVE ÓS COM REFIAMETO HIERÁRQUICO Amarldo Tabone Paschoaln UESP Faculdade de Engenhara de Ilha Soltera Departamento de Engenhara Mecânca Av.

Leia mais

2. Deformação. vector que liga a posição inicial com a posição final, de cada ponto do MC

2. Deformação. vector que liga a posição inicial com a posição final, de cada ponto do MC . Deformação Otra da repota do MC ao carregamento O MC depoi da aplicação da carga mda a a poição e a a forma e olme. Delocamento (,,) T ector qe liga a poição inicial com a poição final, de cada ponto

Leia mais

Integração Numérica. Regra do 1/3 de Simpson (1ª regra) Regra dos 3/8 de Simpson (2ª regra)

Integração Numérica. Regra do 1/3 de Simpson (1ª regra) Regra dos 3/8 de Simpson (2ª regra) ntegração Nérica Regra do / de Sipson (ª regra) Regra dos /8 de Sipson (ª regra) ntrodção Seja f() a fnção contína do intervalo [a,b]. Seja F() a priitiva de f(), tal qe F () f(). Então a integral definida

Leia mais

Regressão Descontínua

Regressão Descontínua Ténas Eonométras para Avalação de Impato Regressão esontína Glherme Issam Hrata Centro Internaonal de Pobreza (IPC/PNU) Brasíla, 11 de jnho de 2008. Introdção Estamos nteressados no efeto asal de sobre

Leia mais

ÁLGEBRA LINEAR ESPAÇOS VETORIAIS

ÁLGEBRA LINEAR ESPAÇOS VETORIAIS + ÁLGEBRA LINEAR ESPAÇOS VETORIAIS + INTRODUÇÃO n Ao final do séclo XIX, após o estabelecimento das bases matemáticas da teoria de matries, foi obserado pelos matemáticos qe árias entidades matemáticas

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undade C Capítulo 4 Força agnétca esoluções dos exercícos propostos P.33 Característcas da força agnétca : dreção: perpendcular a e a, sto é: da reta s C u D r sentdo: deternado pela regra da

Leia mais

2. Deformação. Outra das repostas do sólido ao carregamento O MC depois da aplicação da carga muda a sua posição e a sua forma

2. Deformação. Outra das repostas do sólido ao carregamento O MC depois da aplicação da carga muda a sua posição e a sua forma . Deformação Otra da repota do ólido ao carregamento O MC depoi da aplicação da carga mda a a poição e a a forma. Delocamento { } ( ) T ector qe liga a poição inicial com a poição final de cada ponto do

Leia mais

Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería

Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería Rev nt étodos nuér cálc dseño ng 03;93):75 87 Revsta Internaconal de Métodos Nuércos para Cálculo y Dseño en Ingenería wwwelseveres/rn Análse elastoplástca de estruturas aportcadas co superfíces de nteraç

Leia mais

ELEMENTO PARA DISCRETIZAÇÃO DE SAPATAS RÍGIDAS COM BASE NO MÉTODO DOS ELEMENTOS DE CONTORNO

ELEMENTO PARA DISCRETIZAÇÃO DE SAPATAS RÍGIDAS COM BASE NO MÉTODO DOS ELEMENTOS DE CONTORNO ISSN 89-586 ELEMENTO PARA DISCRETIZAÇÃO DE SAPATAS RÍGIDAS COM BASE NO MÉTODO DOS ELEMENTOS DE CONTORNO Marco Antono Ramalo & Wlson Sergo Venturn 2 Resumo O presente trabalo trata do desenvolvmento de

Leia mais

Introdução à Computação Gráfica Curvas. Claudio Esperança Paulo Roma Cavalcanti

Introdução à Computação Gráfica Curvas. Claudio Esperança Paulo Roma Cavalcanti Introdção à Comptação Gráfica Crvas Cladio Esperança Palo Roma Cavalcanti Modelagem Geométrica Disciplina qe visa obter representações algébricas para crvas e sperfícies com determinado aspecto e/o propriedades

Leia mais

Cap. 4. Deformação 1. Deslocamento 2. Gradiente de deslocamento 2.1 Translação, rotação e deformação da vizinhança elementar

Cap. 4. Deformação 1. Deslocamento 2. Gradiente de deslocamento 2.1 Translação, rotação e deformação da vizinhança elementar Cap. 4. Deformação. Delocamento. Gradiente de delocamento. ranlação, rotação e deformação da iinhança elementar. Significado fíico da rotação pra 3. enor de deformação de Lagrange 4. enor da peqena deformaçõe

Leia mais

2 Análise de Campos Modais em Guias de Onda Arbitrários

2 Análise de Campos Modais em Guias de Onda Arbitrários Análse de Campos Modas em Guas de Onda Arbtráros Neste capítulo serão analsados os campos modas em guas de onda de seção arbtrára. A seção transversal do gua é apromada por um polígono conveo descrto por

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II Cálclo Diferencial e Integral II Página Universidade de Mogi das Crzes UMC Campos Villa Lobos Cálclo Diferencial e Integral II Parte II Engenharia Civil Engenharia Mecânica marilia@mc.br º semestre de

Leia mais

Lista de Exercícios 3 - Cinemática Inversa

Lista de Exercícios 3 - Cinemática Inversa PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA ENGENHAIA DE CONTOLE E AUTOMAÇÃO - SISTEMAS OBOTIZADOS Prof. Felie Kühne Lita e Exeríio - Cinemátia Invera. Determine o entro o

Leia mais

Notas de aula prática de Mecânica dos Solos II (parte 5)

Notas de aula prática de Mecânica dos Solos II (parte 5) 1 Notas de ala prática de Mecânica dos Solos II (parte 5) Hélio Marcos Fernandes Viana Conteúdo da ala prática Exercícios relacionados à porcentagem de adensamento, em ma profndidade específica de ma camada

Leia mais