Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )"

Transcrição

1 Lista de Geometria espacial Para PO ET Manhã 3C13 1 (ENEM) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior mede 12 cm e a do cubo menor, que é interno, mede 8 cm. O volume de madeira utilizado na confecção desse objeto foi de A) 12 cm 3. B) 64 cm 3. C) 96 cm 3. D) cm 3. E) cm 3. 2 (ENEM) O administrador de uma cidade, implantando uma política de reutilização de materiais descartados, aproveitou milhares de tambores cilíndricos dispensados por empresas da região e montou kits com seis tambores para o abastecimento de água em casas de famílias de baixa renda, conforme a figura seguinte. Além disso, cada família envolvida com o programa irá pagar somente R$ 2,50 por metro cúbico utilizado. Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 ) a) R$ 86,40. b) R$ 21,60. c) R$ 8,64. d) R$ 7,20. e) R$ 1,80.

2 3 (ENEM) Uma carga de 100 contêineres, idênticos ao modelo apresentado na Figura 1, deverá ser descarregada no porto de uma cidade. Para isso, uma área retangular de 10 m por 32 m foi cedida para o empilhamento desses contêineres (Figura 2). De acordo com as normas desse porto, os contêineres deverão ser empilhados de forma a não sobrarem espaços nem ultrapassarem a área delimitada. Após o empilhamento total da carga e atendendo à norma do porto, a altura mínima a ser atingida por essa pilha de contêineres é: A) 12,5 m. B) 17,5 m. C) 25,0 m. D) 22,5 m. E) 32,5 m. 4 (ENEM) Um carpinteiro fabrica portas retangulares maciças, feitas de um mesmo material. Por ter recebido de seus clientes pedidos de portas mais altas, aumentou sua altura em 1/8, preservando suas espessuras. A fim de manter o custo com o material de cada porta, precisou reduzir a largura. A razão entre a largura da nova porta e a largura da porta anterior é: A) 1/8 B) 7/8 C) 8/7 D) 8/9 E) 9/8 5 (ENEM) Uma fábrica produz barras de chocolates no formato de paralelepípedos e de cubos, com o mesmo volume. As arestas da barra de chocolate no formato de paralelepípedo medem 3cm de largura, 18cm de comprimento e 4cm de espessura. Analisando as características das figuras geométricas descritas, a medida das arestas dos chocolates que têm o formato de cubo é igual a: a) 5 cm b) 6 cm c) 12 cm d) 24 cm e) 25 cm 6 (ENEM) Dona Maria, diarista na casa da família Teixeira, precisa fazer café para servir as vinte pessoas que se encontram numa reunião na sala. Para fazer o café, Dona Maria dispõe de uma leiteira cilíndrica e copinhos plásticos, também cilíndricos. Com o objetivo de não

3 desperdiçar café, a diarista deseja colocar a quantidade mínima de água na leiteira para encher os vinte copinhos pela metade. Para que isso ocorra, Dona Maria deverá: a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do b) Encher a leiteira toda de água, pois ela tem um volume 20 vezes maior que o volume do c) Encher a leiteira toda de água, pois ela tem um volume 10 vezes maior que o volume do d) Encher duas leiteiras de água, pois ela tem um volume 10 vezes maior que o volume do e) Encher cinco leiteiras de água, pois ela tem um volume 10 vezes maior que o volume do 7 (ENEM) Para construir uma manilha de esgoto, um cilindro com 2m de diâmetro e 4m de altura (de espessura desprezível), foi envolvido homogeneamente por uma camada de concreto, contendo 20cm de espessura. Supondo que cada metro cúbico de concreto custe R$10,00 e tomando 3,1 como valor aproximado de, então o preço dessa manilha e igual a: a) R$ 230,40 b) R$ 124,00 c) R$104,16 d) R$ 54,56 e) R$ 49,60 8 (ENEM) Um arquiteto está fazendo um projeto de iluminação de ambiente e necessita saber a altura que deverá instalar a luminária ilustrada na figura. Sabendo-se que a luminária deverá iluminar uma área circular de 28,26 m 2, considerando = 3,14, a altura h será igual a: a) 3 m. b) 4 m. c) 5 m. d) 9 m. e) 16 m.

4 9 (ENEM) A pirâmide a seguir foi construída com cubos maciços de mesmas dimensões. Considerando-se que, na construção da pirâmide não foram deixados espaços vazios em seu interior e que o volume de cada cubo é 1m 3, pode-se afirmar que o volume total e a altura desta pirâmide são, respectivamente: a) 5m 3 e 1m b) 25m 3 e 5m c) 125m 3 e 25m d) 165m 3 e 5m e) 625m 3 e 25m 10 (ENEM) Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes formatos. Nas imagens apresentadas estão as planificações dessas caixas. Quais serão os sólidos geométricos que Maria obterá a partir dessas planificações? a) Cilindro, prisma de base pentagonal e pirâmide b) Cone, prisma de base pentagonal e pirâmide c) Cone, trondo de pirâmide e prisma d) Cilindro, tronco de pirâmide e prisma e) Cilindro, prisma e tronco de cone 11 (ENEM) O tampo de vidro de uma mesa quebrou-se e deverá ser substituído por outro que tenha a forma de círculo. O suporte de apoio da mesa tem o formato de um prisma reto, de base em forma de triângulo equilátero com lados medindo 30cm. Uma loja comercializa cinco tipos de tampos de vidro circulares com cortes já padronizados, cujos raios medem 18 cm, 26 cm, 30 cm, 35 cm e 60 cm. O proprietário da mesa deseja adquirir nessa loja o tampo de menor diâmetro que seja suficiente para cobrir a base superior do suporte da mesa. Considere 1,7 como aproximação da raiz de 3. O tampo a ser escolhido será aquele cujo raio, em cm, é igual a: A) 18 B) 26 C) 30 D) 35 E) 60

5 12 (Fuvest) O cubo ABCDEFGH possui arestas de comprimento a. O ponto M está na aresta AE e AM = 3 ME. Calcule: a) O volume do tetraedro BCGM. b) A área do triângulo BCM. c) A distância do ponto B à reta suporte do segmento CM 13 (Fuvest) Um castelo está cercado por uma vala cujas bordas são dois círculos concêntricos de raios 41m e 45m. A profundidade da vala é constante e igual a 3m. O proprietário decidiu enchê-la com água e, para este fim, contratou caminhões-pipa, cujos reservatórios são cilindros circulares retos com raio da base de 1,5m e altura igual a 8m. Determine o número mínimo de caminhões-pipa necessário para encher completamente a vala. 14 (Unicamp) A base de uma pirâmide é um triângulo eqüilátero de lado L = 6cm e arestas laterais das faces A= 4cm. a) Calcule a altura da pirâmide. b) Qual é o raio da esfera circunscrita à pirâmide?

6 15 (UPF) Uma pequena empresa especializada em embalagens para presentes produz, mensalmente 100 embalagens retangulares com altura de 10cm e base com dimensões 15cm 20cm, levando-se em conta 100% de aproveitamento do material utilizado. Num determinado mês, foi feito um pedido especial para embalagens com a base em forma de prisma hexagonal regular, com altura da caixa de 10cm e com o lado da base do polígono de 15cm. Como a empresa dispõe de estoque apenas para a produção habitual e levando-se em conta que, para esse pedido especial, serão consumidos 20% a mais de papelão do que o calculado, para o acabamento da caixa, será possível confeccionar, aproximadamente, (Obs.: Considere que a raiz quadrada de 3 é 1,73) a) 32 embalagens. b) 42 embalagens. c) 52 embalagens. d) 62 embalagens. e) 72 embalagens. 16 (Fuvest) Numa caixa em forma de paralelepípedo reto-retângulo, de dimensões 26 cm, 17 cm e 8 cm, que deve ser tampada, coloca-se a maior esfera que nela couber. O maior número de esferas iguais a essa que cabem juntas na caixa é a) 1. b) 2. c) 4. d) 6. e) (ESPM) Numa pirâmide regular de base quadrada, as arestas laterais medem 6cm e formam 60º com o plano da base. O volume dessa pirâmide, em cm 3, é igual a: a) 8 raiz(3). b) 9 raiz(3). c) 12 raiz(3). d) 15 raiz(3). e) 18 raiz(3). 18 (UNESP) O prefeito de uma cidade pretende colocar em frente à prefeitura um mastro com uma bandeira, que será apoiado sobre uma pirâmide de base quadrada feita de concreto maciço, como mostra a figura. Sabendo-se que a aresta da base da pirâmide terá 3m e que a altura da pirâmide será de 4m, o volume de concreto (em m 3 ) necessário para a construção da pirâmide será A) 36. B) 27. C) 18. D) 12. E) 4.

7 19 (Vassouras) Em um cone de revolução, a altura é igual ao raio da base. Quanto vale o ângulo formado pelas geratrizes com a altura do cone? (A) 15º (B) 30º (C) 45º (D) 60º (E) (UFSCAR) Retirando-se um semicilindro de um paralelepípedo retoretângulo, obtivemos um sólido cujas fotografias, em vista frontal e vista superior, estão indicadas nas figuras. Se a escala das medidas indicadas na fotografia é 1:100, o volume do sólido fotografado, em m 3, é igual a A) 2( ). B) 2(14 + ). C) 2(14 - ). D) 2(21 - ). E) 2(21-2 ) (UNICAMP-2009) Uma caixa d água tem o formato de um tronco de pirâmide de bases quadradas e paralelas, como mostra a figura abaixo, na qual são apresentadas as medidas referentes ao interior da caixa. a) Qual o volume total da caixa d água? b) Se a caixa contém (13/6) m 3 de água, a que altura de sua base está o nível d água?

8 22 (FGV) As alturas de um cone circular reto de volume P e de um cilindro reto de volume Q são iguais ao diâmetro de uma esfera de volume R. Se os raios das bases do cone e do cilindro são iguais ao raio da esfera, então, P - Q + R é igual a (A) 0 (B) 2 /3 (C) (D) 4 /3 (E) (UFPR) Duas esferas metálicas maciças, uma com raio igual a 4 cm e a outra com raio de 8 cm, são fundidas e moldadas em forma de um cilindro circular reto com altura igual a 12 cm. Determine, em cm, o raio do cilindro O volume de uma esfera A é 1/8 do volume de uma esfera B. Se o raio da esfera B mede 10, então quanto mede o raio da esfera A? 25 - Dois cubos de metal, de aresta π* cm e 2π cm, fundem-se para formar uma esfera. Qual o comprimento do raio dessa esfera? 26 - (FFT) Considere a Terra como uma esfera de raio 6.370km. Qual é sua área superficial? Descobrir a área da superfície coberta de água, sabendo que ela corresponde a aproximadamente 3/4 da superfície total. Gabaritos 1 D 2 B 3 A 4 D 5 B 6 A 7 D 8 B 9 D 10 A 11 A 12 a) a 3 /6 b) 5a 2 /8 c) 5 41/ a) 2cm b) 4cm 15 C 16 D 17 E 18 D 19 C 20 E 21 a) 21/4m 3 3 b) 2m 22 A π/ km 2 e km 2

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança 1. Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes

Leia mais

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. 1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. b) semiesfera. c)

Leia mais

Cones e cilindros. Matemática 29/10/2015. Exatas para Todos

Cones e cilindros. Matemática 29/10/2015. Exatas para Todos Cones e cilindros 1. Um recipiente cilíndrico de 60 cm de altura e base com 20 cm de raio está sobre uma superfície plana horizontal e contém água até a altura de 40 cm, conforme indicado na figura. lmergindo-se

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 05 CILINDRO

MATEMÁTICA - 2 o ANO MÓDULO 05 CILINDRO MATEMÁTICA - 2 o ANO MÓDULO 05 CILINDRO Como pode cair no enem (ENEM) O administrador de uma cidade, implantando uma política de reutilização de materiais descartados, aproveitou milhares de tambores

Leia mais

De acordo com as normas desse porto, os contêineres deverão ser empilhados de forma a não sobrarem espaços nem ultrapassarem a área delimitada

De acordo com as normas desse porto, os contêineres deverão ser empilhados de forma a não sobrarem espaços nem ultrapassarem a área delimitada 1) (ENEM) Para construir uma manilha de esgoto, um cilindro com 2m de diâmetro e 4m de altura (de espessura desprezível), foi envolvido homogeneamente por uma camada de concreto, contendo 20cm de espessura.

Leia mais

Sólidos Inscritos e Circunscritos 3.º Ano

Sólidos Inscritos e Circunscritos 3.º Ano Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho De Recuperação final E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

Projeto Jovem Nota 10 Cilindros - Lista 2 Professor Marco Costa 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos.

Projeto Jovem Nota 10 Cilindros - Lista 2 Professor Marco Costa 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos. 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos. O cilindro A tem altura 20cm e raio da base 5cm. O cilindro B tem altura 10cm e raio da base de 10cm. a) Em qual das duas

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Lista de exercícios Prisma e cilindro

Lista de exercícios Prisma e cilindro Lista de exercícios Prisma e cilindro 1. Na figura a seguir, que representa um cubo, o perímetro do quadrilátero ABCD mede 8(1 + Ë2) cm. Calcule o volume do cubo em cm. 4. Em um tanque cilíndrico com raio

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo.

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. (UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV

Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV Geometria Espacial Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV E-mail:jaquicele.costa@ufv.br Pirâmide Pirâmide Consideremos um polígono convexo qualquer ABCDE,contido

Leia mais

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3 Lista 06 Matemática Geometria Espacial 1. (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número

Leia mais

Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre

Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Geometria Espacial [2014 - FUVEST] Três das arestas de um cubo, com um vértice em comum, são também arestas de

Leia mais

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0). Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - 3 Matemática Questões Professores: Guilherme Neydiwan 01-5 6-45 ª Série 3º Bimestre - N 30 / 09 / 016 LEIA ATENTAMENTE AS INSTRUÇÕES

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

Professor: LEONARDO, THIAGO E CARLOS JR. Turma: 31 Nota: Questão 3. a) 40 min. b) 240 min. a) 1 2. b) 1 64 c) 400 min. d) 480 min.

Professor: LEONARDO, THIAGO E CARLOS JR. Turma: 31 Nota: Questão 3. a) 40 min. b) 240 min. a) 1 2. b) 1 64 c) 400 min. d) 480 min. Obs.: Data: 18/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou preta, respostas à lápis não serão consideradas para

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

D3 Relacionar diferentes poliedros ou corpos redondos com suas planificações ou vistas. ***********************************

D3 Relacionar diferentes poliedros ou corpos redondos com suas planificações ou vistas. *********************************** Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é *********************************** Ao fazer um molde de um

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

a) 6m b) 7m c) 8m d) 9m e) 10 m

a) 6m b) 7m c) 8m d) 9m e) 10 m Geometria Espacial II Exercícios 1. (G1 - ifsc 015) Um galão de vinho de formato cilíndrico tem raio da base igual a m e altura m. Se 40% do seu volume está ocupado por vinho, é CORRETO afirmar que a quantidade

Leia mais

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA 3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Ita 2003) Quatro esferas de mesmo raio R > 0 são tangentes externamente duas a duas, de forma que seus centros formam um tetraedro regular com arestas de comprimento 2 R. Determine, em função de R,

Leia mais

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar lista de exercícios - 3º ano - matemática Aluno: Série: Turma: Data: Questão 1 É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo,

Leia mais

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do

Leia mais

COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017)

COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) Na modelagem matemática de um processo de fabricação, é comum supor que não há perda de material

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

Responder todas as questões em folha A4. Entregar na data da realização da prova.

Responder todas as questões em folha A4. Entregar na data da realização da prova. INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro

Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: No

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine:

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: I) PRISMAS 1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: a) a área da base, o apótema da base, a área lateral, área total e volume considerando

Leia mais

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

Lista de exercícios 08 Aluno (a):

Lista de exercícios 08 Aluno (a): Lista de exercícios 08 Aluno (a): Turma: 3º série (Ensino médio) Professores: Flávio Disciplina: Matemática Prismas e pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE

MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE h a p 4 a p = 5 6 a b 6 a p = 3 B Como pode cair no enem (ENEM) Uma fábrica produz velas de parafina em forma de pirâmide quadrangular regular com 19 cm de altura

Leia mais

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de

Leia mais

Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é:

Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: a) 1135 m 3 b) 1800 m 3 c) 2187 m 3 d) 2742 m 3 e) 3768 m 3 2) (Vunesp) Considere uma lata cilíndrica

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides

Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

2;5 é o ponto médio do segmento de extremos

2;5 é o ponto médio do segmento de extremos Professor: MARA BASTOS E CARLOS JR. Turma: 1 Nota: Obs.: Data: 4/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016 COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem: 1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados

Leia mais

Geometria Espacial Profº Driko

Geometria Espacial Profº Driko Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Pirâmide, cone e esfera

Pirâmide, cone e esfera A UA UL LA Pirâmide, cone e esfera Introdução Dando continuidade à unidade de Geometria Espacial, nesta aula vamos estudar mais três dos sólidos geométricos: a pirâmide, o cone e a esfera. Nossa aula A

Leia mais

GEOMETRIA ESPACIAL CONTEÚDOS. Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS

GEOMETRIA ESPACIAL CONTEÚDOS. Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS GEOMETRIA ESPACIAL CONTEÚDOS Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS Capacidade e volume Na receita de bolo estava indicado 500 ml de leite ou 500 cm³?

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA

PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA ALUNO TURMA: 2 Ano DATA / /205 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /205 LISTA DE ESFERA ) (UFJF-MG) Um reservatório de água tem a forma de um hemisfério acoplado a um cilindro circular,

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 8 / 5 / 2017 Valor: xxx pontos Caro(a) aluno(a),

Leia mais

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura.

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura. (UEPB PB/005) Para se fabricar uma caixa de sabão em pó com 5 cm de altura, 16 cm de largura e 5 cm comprimento serão necessários quantos cm de papelão? a) 1 10 b) 1 100 c) 605 d) 550 e) 1 500 (Unifor

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

Geometria Espacial. Parte I. Página 1

Geometria Espacial. Parte I.  Página 1 Geometria Espacial Parte I 1. (Insper 014) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: 2 a - Ensino Médio Professor: Elias Bittar Atividades para Estudos Autônomos Data: 11 / 5 / 2016 Caro(a) aluno(a), Aluno(a): N o

Leia mais

REVISÃO UNESP Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO UNESP Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO UNESP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA ESPACIAL Uma chapa retangular de alumínio, de espessura desprezível, possui 12 metros de largura e comprimento desconhecido

Leia mais

Prof Alexandre Assis

Prof Alexandre Assis 1 1. Na figura adiante, têm-se um cilindro circular reto, onde A e B são os centros das bases e C é um ponto da intersecção da superfície lateral com a base inferior do cilindro. Se D é o ponto do segmento

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA

MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA 360 = 4πR 2 α = S t 360 = 4πR 3 3 α = V c Como pode cair no enem (UERJ) A superfície de uma esfera pode ser calculada através da fórmula: 4. π. R 2, onde R é o raio

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 06 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 26/09/2015. A lista deverá apresentar

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016)

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) singular Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) 1. (Ita) Dado um prisma hexagonal regular, sabe-se que sua altura mede 3 cm e que sua área lateral é o dobro da área de sua base.

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA 1 Série/Ano: 2º ANO - EM Professores: CEBOLA, FIGO, GUILHERME, MARCELO, RAFAEL, ROD, SABDRA, TAMMY Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados

Leia mais

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.

Leia mais

Cone (sem outras figuras misturadas)

Cone (sem outras figuras misturadas) Cone (sem outras figuras misturadas) 1. (Pucrj 01) De um disco circular, de raio medindo 6 e centro C, cortamos um setor cujo arco mede 1. Usando o pedaço maior, fazemos um cone reto juntando os lados

Leia mais

TRABALHO 3 o TRIMESTRE

TRABALHO 3 o TRIMESTRE TRABALHO o TRIMESTRE Disciplina: Matemática 1 Série: o Turma: ( ) Am / ( ) Az Data: 251115 Professor: Sérgio Tambellini Ensino: Médio Trimestre: o Valor: 1,5 pto Nome: n o : Nome: n o : Nota: Nome: n o

Leia mais

Eduardo. Matemática Geometria

Eduardo. Matemática Geometria Matemática Geometria Eduardo Matemática Geometria 3. (ENEM 2010 ) Em canteiros de obras de construção civil é comum perceber trabalhadores realizando medidas de comprimento e de ângulos e fazendo demarcações

Leia mais

Em relação à área original, a área da base dessa peça, após o cozimento, ficou reduzida em a) 4%. b) 20%. c) 36%. d) 64%. e) 96%.

Em relação à área original, a área da base dessa peça, após o cozimento, ficou reduzida em a) 4%. b) 20%. c) 36%. d) 64%. e) 96%. Geometria no ENEM 1. (Enem) A cerâmica constitui-se em um artefato bastante presente na história da humanidade. Uma de suas várias propriedades é a retração (contração), que consiste na evaporação da água

Leia mais

1 ELEMENTOS DO CILINDRO 3 SECÇÃO MERIDIANA 4 ÁREAS E VOLUME DO CILINDRO 2 CLASSIFICAÇÃO DE CILINDROS. 4.1 Área lateral. 4.

1 ELEMENTOS DO CILINDRO 3 SECÇÃO MERIDIANA 4 ÁREAS E VOLUME DO CILINDRO 2 CLASSIFICAÇÃO DE CILINDROS. 4.1 Área lateral. 4. Matemática Pedro Paulo GEOMETRIA ESPACIAL IV 1 ELEMENTOS DO CILINDRO Cilindro é um sólido limitado por dois círculos, congruentes e situados em planos paralelos, e por uma superfície lateral. Ele também

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Matemática Pirâmides Fácil [20 Questões]

Matemática Pirâmides Fácil [20 Questões] Matemática Pirâmides Fácil [0 Questões] 01 - (MACK SP) Considere uma pirâmide cuja base é um polígono convexo. Se a soma das medidas dos ângulos internos de todas as suas faces é 600º, o número de lados

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

Geometria Espacial. Parte I. Página 1

Geometria Espacial. Parte I.  Página 1 Geometria Espacial Parte I 1. (Insper 014) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais

Leia mais

Rua 13 de junho,

Rua 13 de junho, QUESTÕES 1. (Unicamp 01) Numa piscina em formato de paralelepípedo, as medidas das arestas estão em progressão geométrica de razão q > 1. a) Determine o quociente entre o perímetro da face de maior área

Leia mais

Resumo de Geometria Espacial Métrica

Resumo de Geometria Espacial Métrica 1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos

Leia mais