1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume"

Transcrição

1 Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do círculo. Ele também pode ser obtido pela rotação de um triângulo retângulo em torno de um eixo que contém um dos seus catetos. O eixo é a reta que passa pelo centro da base e pelo vértice. Além disso, o raio da base é denominado raio da base (claro) e o segmento de reta que liga o vértice a um ponto da circunferência da base é denominado geratriz. Finalmente, a altura do cone é a distância entre a base e o vértice. Na prática: o cone é uma pirâmide com base circular! Observação: A seção meridiana de um cone é um triângulo isósceles de base e dois lados iguais a Observação: Se a seção meridiana de um cone for um triângulo equilátero, temos um cone equilátero. Nesse caso, 3 ÁREAS E VOLUME DO CONE 3.1 Área lateral Seja o raio da base de um cone e a sua geratriz. Planificando a superfície lateral do cone, é obtido um setor circular de raio e ângulo, que enxerga um arco de comprimento. Logo a área lateral do cone é a área do setor circular abaixo: Figura 3 planificação da superfície lateral do cone Figura 1 elementos do cone Na figura acima,, e. Além disso, note que o triângulo é retângulo. Usando Pitágoras no triângulo A área do círculo de raio é A razão entre a área do setor e a área do círculo de raio é, que também é a razão entre o comprimento do arco e o comprimento da circunferência de raio : 2 SECÇÃO MERIDIANA É a secção feita no cone por um plano que contém o seu eixo. 3.2 Área da base Como a base do cone é um círculo de raio, a sua área da base é: 3.3 Área total A área total de um cone é a soma da área lateral com a área da base: 3.4 Volume Figura 2 secção meridiana do cone O volume de um cone é do produto da área da sua base pela sua altura : 1 Geometria CASD Vestibulares

2 Nível I EXERCÍCIOS PROPOSTOS 1. (ENEM - 11) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. 4. (UEL - 09) Uma chapa com forma de um setor de raio e ângulo de graus é manuseada para se transformar num cone. Se o raio da base do cone obtido é então o valor de é: Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. b) semiesfera. c) cilindro. d) tronco de cone. e) cone. 2. (ENEM 2ª APLICAÇÃO - 10) Um arquiteto está fazendo um projeto de iluminação de ambiente e necessita saber a altura que deverá instalar a luminária ilustrada na figura 5. (UECE - 10) A superfície lateral de um cone circular reto, quando planificada, torna-se um setor circular de de raio com um ângulo central de graus. A medida, em centímetros quadrados, da área da base deste cone é a) b) c) d) 6. (UPE - 11) Ao se planificar um cone reto, sua superfície lateral é igual a um quarto de um círculo e a sua área é igual a. Nessas condições, a área de sua base é igual a 7. (ITA - 12) A superfície lateral de um cone circular reto é um setor circular de e área igual a. A área total e o volume deste cone medem, em e, respectivamente Sabendo-se que a luminária deverá iluminar uma área circular de, considerando, a altura será igual a a) e d) e b) e e) e c) e 3. (UNICAMP - 11) Depois de encher de areia um molde cilíndrico, uma criança virou-o sobre uma superfície horizontal. Após a retirada do molde, a areia escorreu, formando um cone cuja base tinha raio igual ao dobro do raio da base do cilindro. 8. (UPE - 14) Um torneiro mecânico construiu uma peça retirando, de um cilindro metálico maciço, uma forma cônica, de acordo com a figura 01 a seguir: Considere A altura do cone formado pela areia era igual a a) da altura do cilindro. b) da altura do cilindro. c) da altura do cilindro. d) da altura do cilindro. Qual é o volume aproximado da peça em milímetros cúbicos? a) b) c) d) e) CASD Vestibulares Geometria 2

3 Nível II 9. (UEL - 13) Considere uma lata, com o formato de um cilindro reto de altura e raio (Figura 1), completamente cheia de doce de leite. Parte do doce dessa lata foi transferido para dois recipientes (Figura 2), iguais entre si e em forma de cone, que têm a mesma altura da lata e o raio da base igual à metade do raio da base da lata. Considere também que os dois recipientes ficaram completamente cheios de doce de leite. 11. (ENEM CANCELADO - 09) Um vasilhame na forma de um cilindro circular reto de raio da base de e altura de está parcialmente ocupado por de álcool. Suponha que sobre o vasilhame seja fixado um funil na forma de um cone circular reto de raio da base de e altura de, conforme ilustra a figura 1. O conjunto, como mostra a figura 2, é virado para baixo, sendo a distância da superfície do álcool até o fundo do vasilhame. Volume do cone: Desprezando a espessura do material de que são feitos os recipientes e a lata, determine quantos outros recipientes, também em forma de cone, mas com a altura igual à metade da altura da lata e de mesmo raio da lata (Figura 3), podem ser totalmente preenchidos com o doce de leite que restou na lata. Considerando-se essas informações, qual é o valor da distância? Observação: Na lata e nos recipientes completamente cheios de doce de leite, o doce não excede a altura de cada um deles e, na transferência do doce de leite da lata para os recipientes, não há perda de doce. 10. (UFMG - 13) Um cone circular reto de raio e altura é iluminado pelo sol a um ângulo de, como ilustrado a seguir. 12. (UNESP - 06) Um paciente recebe por via intravenosa um medicamento à taxa constante de. O frasco do medicamento é formado por uma parte cilíndrica e uma parte cônica, cujas medidas são dadas na figura, e estava cheio quando se iniciou a medicação. A sombra projetada pelo cone é delimitada pelos segmentos e, tangentes ao círculo da base do cone nos pontos e, respectivamente. Com base nessas informações, a) DETERMINE a distância de ao centro do círculo. b) DETERMINE o ângulo. c) DETERMINE a área da sombra projetada pelo cone. Após de administração contínua, a medicação foi interrompida. Dado que, e usando a aproximação, o volume, em, do medicamento restante no frasco após a interrupção da medicação é, aproximadamente, 3 Geometria CASD Vestibulares

4 13. (UFPB - 11) A prefeitura de certo município realizou um processo de licitação para a construção de cisternas de placas de cimento para famílias da zona rural do município. Esse sistema de armazenamento de água é muito simples, de baixo custo e não poluente. A empreiteira vencedora estipulou o preço de reais por construído, tomando por base a área externa da cisterna. O modelo de cisterna pedido no processo tem a forma de um cilindro com uma cobertura em forma de cone, conforme a figura abaixo. 16. (UEMG - 14) Uma empresa deseja fabricar uma peça maciça cujo formato é um sólido de revolução obtido pela rotação de um trapézio isósceles em torno da base menor, como mostra a figura a seguir. As dimensões do trapézio são: base maior igual a, base menor igual a e altura do trapézio igual a. Considerando que a construção da base das cisternas deve estar incluída nos custos, é correto afirmar que o valor, em reais, a ser gasto pela prefeitura na construção das cisternas será, no máximo, de: Use: a) b) c) d) e) 14. (UFG - 13) Um chapeuzinho, distribuído em uma festa, tem a forma de um cone circular reto e, quando planificado, fornece um semicírculo com de raio. Para o cone, que representa o formato do chapeuzinho, a) o raio da base é b) a área da base é c) a área lateral é d) a geratriz mede e) o volume é Considerando-se, o volume, em litros, da peça fabricada corresponde a a) b) c) d) Nível III 17. (ITA - 05) Um dos catetos de um triângulo retângulo mede. O volume do sólido gerado pela rotação deste triângulo em torno da hipotenusa é. Determine os ângulos deste triângulo. 18. (UFMG - 09) Nesta figura, está representada a região, do plano cartesiano, limitada pelo eixo e pelas retas e 15. (UFPR - 10) A parte superior de uma taça tem o formato de um cone, com as dimensões indicadas na figura. a) Qual o volume de líquido que essa taça comporta quando está completamente cheia? b) Obtenha uma expressão para o volume de líquido nessa taça, em função da altura indicada na figura. Seja o sólido obtido pela rotação da região em torno do eixo. Então, é correto afirmar que o volume de é: a) b) c) d) CASD Vestibulares Geometria 4

5 DICAS E FATOS QUE AJUDAM 1. Note que a base da figura é um círculo e existe um ponto fora do círculo ligado a todos os pontos da circunferência, que é o vértice 7. Sejam o raio da base do cone e a sua geratriz. Seja o ângulo central do setor circular. Então. Como o raio do setor circular é a geratriz do cone, o raio do círculo completo também é : Sejam a altura do cilindro, a altura do cone, o raio do cilindro, o raio do cone, o volume do cilindro e o volume do cone. Como a quantidade de areia é a mesma no cilindro e no cone, o cilindro e o cone têm a mesmo volume. Então, tem-se: A área total do cone é: O volume do cone é: 4. Sejam o raio da base do cone e a sua geratriz. Como o raio do setor circular é a geratriz do cone,. Além disso,. Então: 8. Como o cilindro tem raio da base e altura, o seu volume é: 5. Sejam o raio da base do cone e a sua geratriz. Como o raio do setor circular é a geratriz do cone,. Então: Como o cone tem raio da base, o seu volume é: e altura A área da base do cone é: 6. Sejam o raio da base do cone e a sua geratriz. Como a área de um quarto do círculo é, a área do círculo completo é. Como o raio do setor circular é a geratriz do cone, o raio do círculo é. Então: Como o setor circular é igual a um quarto de círculo, o ângulo central do setor circular é O volume da peça é a diferença entre o volume do cilindro e o volume do cone: Como, 9. O volume da lata da figua 1 é. O volume de cada um dos recepientes da figura 2 é: ( ) O volume do recepiente da figura 3 é: A área da base do cone é: O volume do doce de leite que restou na lata é: 5 Geometria CASD Vestibulares

6 10. a) O triângulo está ilustrado abaixo: 11. Sejam a altura do cilindro, a altura do cone, o raio do cilindro, o raio do cone, o volume do cilindro e o volume do cone, de acordo com a figura 2. Então, e, O volume total de álcool é. Então: Como e, tem-se que: Como, o triângulo é isósceles de base. Logo, b) O plano da base do cone está ilustrado abaixo: 12. Sejam a altura do cilindro, a altura do cone, o raio do cilindro, o raio do cone, o volume do cilindro e o volume do cone. Então,, e, O volume total do frasco é: Seja. Então, tem-se: c) A área do triângulo é:. Como o paciente recebe em, o volume recebido em é. Logo o volume restante no frasco é 13. Sejam a altura do cilindro, a geratriz do cone, o raio do cilindro, o raio do cone, a área lateral do cilindro, a ára lateral do cone a área da base do cilindro e a área externa da cisterna. Então, tem-se:: A área do quadrilátero é o dobro da área do triângulo. Logo: A área da base do cone é: ( ) A área do setor circular de ângulo é: Logo, a área externa de cisternas é A área da sombra é a diferença entre a área do quadrilátero e a área do setor circular Como custa reais, o valor a ser gasto pela prefeitura na construção das cisternas é CASD Vestibulares Geometria 6

7 14. Sejam o raio da base do cone, a sua altura e a sua geratriz. Como o raio do setor circular é a geratriz do cone,. 16. A figura do problema é a seguinte: Como o setor circular é igual a um semicírculo, o ângulo central do setor circular é A área da base do cone é: A área lateral do cone é: O volume do cone é: 15. a) Sejam o raio da base da taça e a sua altura Então. Logo o volume de líquido da taça completamente cheia é: b) Quando a altura do líquido é, seja o raio da base do líquido, conforme a figura abaixo Note que o volume da peça fabricada corresponde à diferença entre o volume de um cilindro e o volume de dois cones (um embaixo e outro em cima). Sejam a altura do cilindro, a altura do cone, o raio do cilindro, o raio do cone, o volume do cilindro e o volume do cone. A altura do cilindro é a base maior do trapézio, logo, e o raio da base é a altura do trapézio. Então, o volume do cilindro é: Como o trapézio é isósceles, tem-se que a base maior do trapézio é igual à base menor do trapézio mais o dobro da altura do cone. Então, tem-se: Então, o volume do cone é: Por semelhança de triângulos, tem-se: O volume da peça fabricada é: Quando a altura do líquido é, o líquido tem a forma de um cone de raio da base e altura. Logo: ( ) Note que 7 Geometria CASD Vestibulares

8 17. Seja o triângulo retângulo, onde é a hipotenusa,, é a altura relativa a,, e. Ilustrando o triângulo abaixo: De e, tem-se: Substituindo em, tem-se: Multiplicando essaa equação por, tem-se: Girando o triângulo em torno de, será gerado um cone de raio da base e altura. Logo, o volume desse cone é ; Girando o triângulo em torno de, será gerado um cone de raio da base e altura. Logo, o volume desse cone é ; ( ) Então, o volume do sólido gerado pela rotação do triângulo em torno da hipotenusa (que é o sólido formado pelos dois cones) é : Aplicando Pitágoras no triângulo : Os triângulos e são semelhantes, pois possuem os ângulos iguais. Escolhendo os triângulos que têm seus lados, escolhemos os triângulos como um de e : é oposto aos lados (no ) e (no ); No triângulo retângulo, tem-se: : é oposto aos lados (no ) e (no ); : é oposto aos lados (no ) e (no ); No triângulo, tem-se: Semelhança entre e : Logo os ângulos do triângulo são,, CASD Vestibulares Geometria 8

9 18. Sejam a reta, a reta, o ponto em que a reta corta o eixo e o ponto em que as retas e se cortam. Como pertence ao eixo, temse que. Logo: 1. E 2. B 3. A 4. E 5. D 6. C GABARITO Logo, e ( ) A figura do problema é a seguinte: 7. A 8. A 9. recepientes como o da figura 3 podem ser totalmente preenchidos com o doce de leite que restou na lata 10. a) A distância de a é b) O ângulo é c) A área da sombra projetada pelo cone é 11. B 12. A 13. E Note que o sólido obtido pela rotação da região em torno do eixo é a diferença entre um cone maior de altura e raio da base e um cone menor de altura e raio da base. O volume do cone maior é: 14. E 15. a) O volume de líquido que essa taça comporta quando está completamente cheia é b) O volume de líquido nessa taça, em função da altura indicada na figura é ( ) 16. B 17. Os ângulos do triângulo são, e O volume do cone menor é: 18. A ( ) O volume do sólido é: 9 Geometria CASD Vestibulares

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem: 1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

6. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho.

6. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho. 1. (Unesp 2004) Um recipiente, na forma de um cilindro circular reto de raio R e altura 32 cm, está até à metade com água (figura 1). Outro recipiente, na forma de um cone circular reto, contém uma substância

Leia mais

Cone (sem outras figuras misturadas)

Cone (sem outras figuras misturadas) Cone (sem outras figuras misturadas) 1. (Pucrj 01) De um disco circular, de raio medindo 6 e centro C, cortamos um setor cujo arco mede 1. Usando o pedaço maior, fazemos um cone reto juntando os lados

Leia mais

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. 1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. b) semiesfera. c)

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE CONE 1 TRONCO DE CONE 2 SEMELHANÇA ENTRE OS CONES. 3.1 Área lateral. 3.2 Área das bases. 3.3 Área total. 3.

3 ÁREAS E VOLUME DO TRONCO DE CONE 1 TRONCO DE CONE 2 SEMELHANÇA ENTRE OS CONES. 3.1 Área lateral. 3.2 Área das bases. 3.3 Área total. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL IX 1 TRONCO DE CONE Chamaremos de tronco de cone de bases paralelas a porção do cone limitada por sua base e por uma secção transversal qualquer deste cone. A

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral

Leia mais

Cone Nível Fácil

Cone Nível Fácil Cone 016 Nível Fácil 1. (Ufjf-pism 016) São dados dois cones equiláteros C 1 e C tais que a área total de C é o dobro da área total de C 1 e que o raio da base de C 1 é cm. Sabendo que em um cone equilátero,

Leia mais

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo.

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. (UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P. 1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas

Leia mais

COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017)

COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) Na modelagem matemática de um processo de fabricação, é comum supor que não há perda de material

Leia mais

Geometria Espacial Parte 3. Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV

Geometria Espacial Parte 3. Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV Geometria Espacial Parte 3 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV e-mail:jaquice.costa@ufv.br Reflexão "Sem a curiosidade que me move, que me inquieta, que me

Leia mais

a) 6m b) 7m c) 8m d) 9m e) 10 m

a) 6m b) 7m c) 8m d) 9m e) 10 m Geometria Espacial II Exercícios 1. (G1 - ifsc 015) Um galão de vinho de formato cilíndrico tem raio da base igual a m e altura m. Se 40% do seu volume está ocupado por vinho, é CORRETO afirmar que a quantidade

Leia mais

Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é:

Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: a) 1135 m 3 b) 1800 m 3 c) 2187 m 3 d) 2742 m 3 e) 3768 m 3 2) (Vunesp) Considere uma lata cilíndrica

Leia mais

Professor: Pedro Ítallo

Professor: Pedro Ítallo Professor: Pedro Ítallo 01 - (UNIRG TO) O reservatório de água de uma cidade tem formato cilíndrico, com 4 m de altura e 6 m de diâmetro. Para resolver o problema de abastecimento de água decidiram construir

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Sólidos de Revolução

Sólidos de Revolução Sólidos de Revolução 1. (Cefet MG 015) Na figura a seguir, ABCD é um retângulo inscrito em um setor circular de raio R com AB R. O volume do sólido de revolução gerado pela rotação desse retângulo em torno

Leia mais

GEOMETRIA ESPACIAL

GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V Matemática Pedro Paulo GEOMETRIA ESPACIAL V 1 ELEMENTOS DA PIRÂMIDE Pirâmide é um poliedro formado por um polígono que é a base e um ponto fora do plano da base que é o vértice. Cada lado do polígono da

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3 Lista 06 Matemática Geometria Espacial 1. (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0). Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na

Leia mais

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios

Leia mais

4 FUSO ESFÉRICO 1 ELEMENTOS DA ESFERA A TERRA COMO UMA ESFERA 5 CUNHA ESFÉRICA 3 ÁREAS E VOLUME DA ESFERA. 3.1 Área da superfície esférica. 3.

4 FUSO ESFÉRICO 1 ELEMENTOS DA ESFERA A TERRA COMO UMA ESFERA 5 CUNHA ESFÉRICA 3 ÁREAS E VOLUME DA ESFERA. 3.1 Área da superfície esférica. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL X 1 ELEMENTOS DA ESFERA Seja um ponto e um segmento de medida. A esfera é o conjunto dos pontos do espaço cujas distâncias ao ponto são menores ou iguais a. Dizemos

Leia mais

Cones e cilindros. Matemática 29/10/2015. Exatas para Todos

Cones e cilindros. Matemática 29/10/2015. Exatas para Todos Cones e cilindros 1. Um recipiente cilíndrico de 60 cm de altura e base com 20 cm de raio está sobre uma superfície plana horizontal e contém água até a altura de 40 cm, conforme indicado na figura. lmergindo-se

Leia mais

Elementos do cone Em um cone, podem ser identificados vários elementos:

Elementos do cone Em um cone, podem ser identificados vários elementos: Cones O conceito de cone Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS

MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS l Como pode cair no enem (UNIFICADO) Uma ampulheta é formada por dois cones de revolução iguais, com eixos verticais e justapostos pelo

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

Lista de exercícios Prisma e cilindro

Lista de exercícios Prisma e cilindro Lista de exercícios Prisma e cilindro 1. Na figura a seguir, que representa um cubo, o perímetro do quadrilátero ABCD mede 8(1 + Ë2) cm. Calcule o volume do cubo em cm. 4. Em um tanque cilíndrico com raio

Leia mais

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

g 2 2 = ( 5) = = 9 g = 3 cm

g 2 2 = ( 5) = = 9 g = 3 cm Matemática Unidade III Geometria espacial Série 11 - Cone circular reto 01 a) Considere esta figura: g = ( 5) + = 5 + 4 = 9 g = 3 cm b) Ab = π r = 4π cm c) Al = π r g = π 3 = 6π cm d) At = Ab + Al = 4π

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )

Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 ) Lista de Geometria espacial Para PO ET Manhã 3C13 1 (ENEM) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior

Leia mais

UNITAU APOSTILA CILINDROS PROF. CARLINHOS

UNITAU APOSTILA CILINDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em

Leia mais

01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões 3 cm e 4 cm é:

01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões 3 cm e 4 cm é: singular Lista de exercícios-(cubo-cilindro- cone)-c17-prof.liana (0/06/016) 01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões cm e 4

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

Projeto Jovem Nota 10 Cilindros - Lista 2 Professor Marco Costa 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos.

Projeto Jovem Nota 10 Cilindros - Lista 2 Professor Marco Costa 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos. 1. (Fgv 96) Um produto é embalado em recipientes com formato de cilindros retos. O cilindro A tem altura 20cm e raio da base 5cm. O cilindro B tem altura 10cm e raio da base de 10cm. a) Em qual das duas

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

# Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto. Altura. Raio. Base

# Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto. Altura. Raio. Base # Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto Eixo eratriz Superfície Lateral eratriz eratriz Altura eratriz Altura Raio Base Raio Base Raio Base Raio # Secção Meridiana do Cone

Leia mais

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016 COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Geometria Métrica Espacial

Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

Por Pitágoras: # Fuso Esférico: Intersecção da # Cunha Esférica: Intersecção de uma

Por Pitágoras: # Fuso Esférico: Intersecção da # Cunha Esférica: Intersecção de uma # Esfera / Elementos # Secção: Círculo de raio r Polo Eixo Meridianos O Raio Equador Paralelo d r R Polo Por Pitágoras: R r d # Fuso Esférico: Intersecção da # Cunha Esférica: Intersecção de uma superfície

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3. Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

1 ELEMENTOS DO CILINDRO 3 SECÇÃO MERIDIANA 4 ÁREAS E VOLUME DO CILINDRO 2 CLASSIFICAÇÃO DE CILINDROS. 4.1 Área lateral. 4.

1 ELEMENTOS DO CILINDRO 3 SECÇÃO MERIDIANA 4 ÁREAS E VOLUME DO CILINDRO 2 CLASSIFICAÇÃO DE CILINDROS. 4.1 Área lateral. 4. Matemática Pedro Paulo GEOMETRIA ESPACIAL IV 1 ELEMENTOS DO CILINDRO Cilindro é um sólido limitado por dois círculos, congruentes e situados em planos paralelos, e por uma superfície lateral. Ele também

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: QUESTÕES 1. Um recipiente em forma de cone circular reto, com raio da base R e altura h, está completamente cheio com água e óleo. Sabe-se que a superfície de contato entre os líquidos está inicialmente

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

REVISÃO ENEM 2013 Professor: FABRÍCIO MAIA

REVISÃO ENEM 2013 Professor: FABRÍCIO MAIA REVISÃO ENEM 013 Professor: FABRÍCIO MAIA ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Problema 01 Para trocar uma lâmpada, Roberto encostou uma escada na parede de sua casa, de forma que o topo da escada

Leia mais

Lista de exercícios Geometria Espacial 2º ANO Prof. Ulisses Motta

Lista de exercícios Geometria Espacial 2º ANO Prof. Ulisses Motta Lista de exercícios Geometria Espacial º ANO Prof. Ulisses Motta 1. (Uerj) Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros regulares. Se os dodecaedros estão justapostos por

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO

MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO BC B C A D A D Triângulo Retângulo Cone emicírculo Esfera 4 12 16 12 8 6 Cone Cone semelhante + Tronco de Cone Pirâmide Pirâmide

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data: / 04 / 01 Assunto: Áreas e Volumes de Sólidos II Lições nº, 1. Para vedar um terreno quadrangular com 900 m de área, o

Leia mais

III CAPÍTULO 21 ÁREAS DE POLÍGONOS

III CAPÍTULO 21 ÁREAS DE POLÍGONOS 1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além

Leia mais

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA 3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados

Leia mais

2, 1x 4 se x > 10 representa a quantidade de água consumida (em m 3 ) e B(x) representa o valor a ser pago (em reais).

2, 1x 4 se x > 10 representa a quantidade de água consumida (em m 3 ) e B(x) representa o valor a ser pago (em reais). MATEMÁTICA 1 Na cidade A, o valor a ser pago pelo consumo de água é calculado pela companhia de saneamento, conforme mostra o quadro a seguir Quantidade de água consumida (em m 3 ) Valor a ser pago pelo

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar lista de exercícios - 3º ano - matemática Aluno: Série: Turma: Data: Questão 1 É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo,

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas

Leia mais

Prof Alexandre Assis

Prof Alexandre Assis 1 1. Na figura adiante, têm-se um cilindro circular reto, onde A e B são os centros das bases e C é um ponto da intersecção da superfície lateral com a base inferior do cilindro. Se D é o ponto do segmento

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:

Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site: GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem

Leia mais