COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017)"

Transcrição

1 COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) Na modelagem matemática de um processo de fabricação, é comum supor que não há perda de material com emendas, sobreposição de partes etc. Deseja-se construir um reservatório cilíndrico com diâmetro de 120 cm e capacidade de 1,5 m. Neste problema, estamos nos referindo a um cilindro circular reto perfeito. Para fazer a lateral desse cilindro, será usada uma chapa metálica retangular de comprimento b e altura h. Use,14 e dê suas respostas com duas casas decimais. a) Calcule o comprimento b que a chapa deve ter. b) Calcule a altura h que a chapa deve ter. 2. (Upf 2017) Um tonel está com 0% da sua capacidade preenchida por um certo combustível. Sabendo que esse tonel tem diâmetro de 60 cm e altura de 600 cm, quantidade de combustível contida nesse tonel, em litros, é a a) 1,62 b) 16,2 c) 162 d) 180 e) (G1 - ifba 2017) Um metalúrgico utilizou num determinado trabalho, uma folha de metal retangular de dimensões 20 cm e 0 cm, com o intuito de formar um cilindro, unindo os lados da folha de metal de mesma dimensão, e verificou que existiam duas possibilidades: A: Utilizar o lado de 20 cm como altura do cilindro; B: Utilizar o lado de 0 cm como altura do cilindro. Considerando, e chamando de V A o volume da possibilidade A, e possibilidade B. Podemos afirmar que: V B o volume da

2 a) VA VB b) VA VB c) VA e V B d) VA e V B.000 e) VA e V B (Famema 2017) Um cilindro circular reto A, com raio da base igual a 6 cm e altura H, possui a mesma área lateral que um cilindro circular reto B, com raio da base r e altura h, conforme mostram as figuras. Sabendo que h 1,2 H e que o volume do cilindro B é 240 cm, é correto afirmar que a diferença entre os volumes dos cilindros é a) 50 cm. b) c) d) e) 42 cm. 45 cm. 48 cm. 7 cm. 5. (Upe-ssa 2017) Dois vasilhames A e B, representados a seguir, possuem a mesma capacidade e foram cheios por duas torneiras que mantiveram a mesma vazão de água no mesmo intervalo de tempo. Identifique qual dos gráficos melhor representa o momento em que os dois vasilhames estavam sendo cheios e atingiram a altura h.

3 a) b) c) d) e) 6. (Pucsp 2017) O volume de um cilindro de 8 cm de altura equivale a 75% do volume de uma esfera com 8 cm de diâmetro. A área lateral do cilindro, em a) 42 2 b) 6 c) cm, é

4 d) (Acafe 2016) Uma pirâmide de base triangular regular reta e um cone reto estão inscritos num cilindro reto, cujo raio da base é r e altura h. A relação entre a altura e o raio do cilindro, 4 para que a diferença entre o volume do cone e da pirâmide seja equivalente a 12 unidades, é: a) r 2 h 1. b) h. r c) rh. 12 d) rh (Uefs 2017) Se um cone circular reto tem altura igual a 4 cm e base circunscrita a um hexágono regular de lado medindo 2 cm, então a sua área lateral, em aproximadamente, a) 4 6 b) 4 5 c) 4 d) e) 2 2 cm, mede, 9. (Upe-ssa ) Um cone reto está inscrito num cubo de aresta 8 cm. Se a altura do cone e o diâmetro de sua base têm medidas iguais, qual é a diferença entre as medidas dos seus volumes? Considere,0. a) b) c) d) e) 128 cm 256 cm 84 cm 424 cm 512 cm 10. (Espcex (Aman) 2017) Corta-se de uma circunferência de raio 4 cm, um setor circular de ângulo rad (ver desenho ilustrativo), onde o ponto C é o centro da circunferência. Um cone 2 circular reto é construído a partir desse setor circular ao se juntar os raios CA e CB.

5 O volume desse cone, em a) b) c) d) e) cm, é igual a 11. (Acafe 2017) Um cone de revolução tem altura 8 cm e está circunscrito a uma esfera de raio igual a 2 cm. A razão entre o volume da esfera e o volume do cone igual a a) 1 4. b) 1 8. c) 1 2. d) (Fmp 2017) Um recipiente cilíndrico possui raio da base medindo 4 cm e altura medindo 20 cm. Um segundo recipiente tem a forma de um cone, e as medidas do raio de sua base e de sua altura são iguais às respectivas medidas do recipiente cilíndrico. Qual é a razão entre o volume do recipiente cilíndrico e o volume do recipiente cônico? a) 1 2 b) 1 5 c) d) 4 e) 5 1. (Ufu 2017) Um recipiente cônico utilizado em experiências de química deve ter duas marcas horizontais circulares, uma situada a 1 centímetro do vértice do cone, marcando um certo volume v, e outra marcando o dobro deste volume, situada a H centímetros do vértice, conforme figura. Nestas condições, a distância H, em centímetros, é igual a: a) 2 b)

6 c) 4 d) (Fuvest 2017) Um reservatório de água tem o formato de um cone circular reto. O diâmetro de sua base (que está apoiada sobre o chão horizontal) é igual a 8 m. Sua altura é igual a 12 m. A partir de um instante em que o reservatório está completamente vazio, inicia-se seu enchimento com água a uma vazão constante de 500 litros por minuto. O tempo gasto para que o nível de água atinja metade da altura do reservatório é de, aproximadamente, Dados: - é aproximadamente,14. - O volume V do cone circular reto de altura h e raio da base r é a) 4 horas e 50 minutos. b) 5 horas e 20 minutos. c) 5 horas e 50 minutos. d) 6 horas e 20 minutos. e) 6 horas e 50 minutos. 1 2 V r h. 15. (Epcar (Afa) 2017) Se uma pirâmide hexagonal regular está inscrita num cone equilátero cujo volume é igual a a) 45 7 b) 15 7 c) 0 7 d) cm, 7 então o volume dessa pirâmide, em cm, é igual a 16. (Acafe 2017) Com uma chapa de um certo material na forma de um setor circular de ângulo central igual a 4 radianos e raio igual a 5 dm, constrói-se um cone circular de volume V. Diminuindo-se em 20% o valor do raio e mantendo-se o mesmo ângulo central, a capacidade do novo cone diminui: a) entre 49% e 50%. b) entre 48% e 49%. c) entre 50% e 51%. d) entre 51% e 52%. 17. (Ufjf-pism ) São dados dois cones equiláteros C 1 e C 2 tais que a área total de C 2 é o dobro da área total de C 1 e que o raio da base de C 1 é cm. Sabendo que em um cone equilátero, a geratriz é o dobro do raio da base, o volume do cone C, 2 em centímetros cúbicos, é a) 9 b) 9 10 c) 18 d) 18 6 e) 54 6

7 18. (Enem 2016) Em regiões agrícolas, é comum a presença de silos para armazenamento e secagem da produção de grãos, no formato de um cilindro reto, sobreposta por um cone, e dimensões indicadas na figura. O silo fica cheio e o transporte dos grãos é feito em caminhões de carga cuja capacidade é de 20 m. Uma região possui um silo cheio e apenas um caminhão para transportar os grãos para a usina de beneficiamento. Utilize como aproximação para. O número mínimo de viagens que o caminhão precisará fazer para transportar todo o volume de grãos armazenados no silo é a) 6. b) 16. c) 17. d) 18. e) (Uece 2016) O volume do sólido gerado pela rotação, em torno do eixo dos X, da região do plano limitada pelo triângulo com vértices nos pontos (6,0), (8,0) e (8,9) é igual a u.v. unidade de volume a) 81 u.v. b) 72 u.v. c) 64 u.v. d) 54 u.v. 20. (Eear 2017) Um escultor irá pintar completamente a superfície de uma esfera de 6m de diâmetro, utilizando uma tinta que, para essa superfície, rende o escultor gastará, no mínimo, litros de tinta. (Considere ) a) 18 b) 24 c) 6 d) 48 2 m por litro. Para essa tarefa, 21. (Efomm 2016) Seja uma esfera de raio R e um cubo de aresta A, ambos com a mesma área de superfície. A razão entre o volume do cubo e o volume da esfera é igual a 1 a). b). 12

8 c) 2. d). e) (Uece 2016) Duas esferas que se tangenciam estão em repouso sobre um plano horizontal. Os volumes das esferas são respectivamente 204 m e 6 m. A distância, em metros, entre os pontos de contato das esferas com o plano é igual a a) 9. b) 12. c) 15. d) (Ufrgs 2016) Se um jarro com capacidade para 2 litros está completamente cheio de água, a menor medida inteira, em cm, que o raio de uma bacia com a forma semiesférica deve ter para comportar toda a água do jarro é a) 8. b) 10. c) 12. d) 14. e) (Enem 2ª aplicação 2016) Uma indústria de perfumes embala seus produtos, atualmente, 4 em frascos esféricos de raio R, com volume dado por (R). Observou-se que haverá redução de custos se forem utilizados frascos cilíndricos com raio da base R 2 R, cujo volume será dado por h, sendo h a altura da nova embalagem. Para que seja mantida a mesma capacidade do frasco esférico, a altura do frasco cilíndrico (em termos de R) deverá ser igual a a) 2R. b) 4R. c) 6R. d) 9R. e) 12R. 25. (G1 - ifpe 2016) Uma bola maciça, totalmente vedada, em formato de uma esfera perfeita, de diâmetro igual a 6 cm, foi lançada em uma panela cilíndrica cujo raio da base mede 5 cm e altura 10 cm. Sabendo que inicialmente a panela estava com água até a altura de 5 cm e que a bola ficou completamente submersa pela água, quantos centímetros o nível da água se elevará? (Dado: Considere ) a) 6 25 b) 5 c) 25

9 d) 0 25 e) Gabarito: Resposta da questão 1: 2 R 2,14 0,6a),768 m b) 1,m Resposta da questão 2: Resposta da questão : [E] Resposta da questão 4: [D] Resposta da questão 5: ANULADA Questão anulada no gabarito oficial. Justificativa: A banca equivocou-se ao apresentar nos gráficos o volume como função do tempo e não altura como função do tempo. Resposta da questão 6: Resposta da questão 7: [A] Resposta da questão 8: [B] Resposta da questão 9: Resposta da questão 10: Resposta da questão 11: Resposta da questão 12: Resposta da questão 1: [A] Resposta da questão 14: Resposta da questão 15: [A] Resposta da questão 16: [B] Resposta da questão 17: [D] Resposta da questão 18: [D] Resposta da questão 19: [D] Resposta da questão 20: Resposta da questão 21: [E] Resposta da questão 22: [B] Resposta da questão 2: [B] Resposta da questão 24: [E] Resposta da questão 25: [A] Observação: Uma bola de diâmetro 6 não poderá ficar totalmente submersa num cilindro com altura 5 cm.

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t.

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t. EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== - Assunto: Matrizes 5 Dadas as matrizes A

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Insper 01) De cada vértice de um prisma hexagonal regular foi retirado um tetraedro, como exemplificado para um dos vértices do prisma desenhado a seguir. O plano que definiu cada corte feito para

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2.

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2. MATEMÁTICA Prof. Favalessa. A figura representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura. a) Sendo que AB = BC = DE = EF e HI = KL = JL = JG = AG

Leia mais

Geometria Espacial - Troncos

Geometria Espacial - Troncos Geometria Espacial - Troncos ) (SpeedSoft) ) (Fuvest) A altura de um cone circular reto é H. Seja α um plano que é paralelo à base e que divide o cone em dois sólidos de mesmo volume. Calcule a distância

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 A figura ilustra a planificação da superfície lateral de um cilindro reto de 10 metros de altura. Considere π = 3,14. Qual o valor da área total desse cilindro, em metros quadrados?

Leia mais

MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:

MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1º Bimestre/01 Aluno(a): Número: Turma: 1) Dado um paralelepípedo

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

PROEJA Matemática V Geometria dos Sólidos

PROEJA Matemática V Geometria dos Sólidos Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande PROEJA Matemática V Geometria dos Sólidos 011/ Profª Debora Bastos Maat teemáát ticcaa V Emeennt taa Geometria dos

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

LISTA de HIDROSTÁTICA PROFESSOR ANDRÉ

LISTA de HIDROSTÁTICA PROFESSOR ANDRÉ LISTA de HIDROSTÁTICA PROFESSOR ANDRÉ 1. (Unesp 013) Seis reservatórios cilíndricos, superiormente abertos e idênticos (A, B, C, D, E e F) estão apoiados sobre uma superfície horizontal plana e ligados

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS GEOMETRIA ESPACIAL PRISMAS Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: Dados um polígono ABC MN situado num plano α e outro polígono A B C..M N congruente

Leia mais

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros.

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros. GEOMETRIA ESPACIAL PRISMAS/CILINDROS PROFESSORES: CONES/TRONCOS EDU/VICENTE ESFERAS TURMA: A MELHOR 2302 MÓDULO VIII Prismas e cilindros 01. O volume de uma caixa cúbica é 216 litros. A medida de sua diagonal,

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura

Leia mais

Volumes Exemplo1: Exemplo2:

Volumes Exemplo1: Exemplo2: Volumes Exemplo1: Esta garrafa está cheia. Ela contém 90 mililitros (90 ml) de refrigerante: Volume 90 ml Isso significa que 90 ml é a quantidade de líquido que a garrafa pode armazenar: Capacidade 90

Leia mais

VOLUMES DE SÓLIDOS GEOMÉTRICOS

VOLUMES DE SÓLIDOS GEOMÉTRICOS 1 Nomenclatura: VOLUMES DE SÓLIDOS GEOMÉTRICOS P Perímetro da ase a Apótema da ase A FL Área de uma face lateral At Área total l Aresta ou lado da ase 1. Prisma quadrangular regular É o sólido em que:

Leia mais

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x + 9 + y 6 ) 3 1 Lista 2 de Cálculo Diferencial e Integral II Funções de Várias Variáveis e Diferenciação Parcial 1. Determine, descreva e represente geometricamente o domínio das funções abaixo: (a) f(x, y) = xy 5 x

Leia mais

Exercícios de Matemática Cilindros

Exercícios de Matemática Cilindros Exercícios de Matemática Cilindros ` TEXTO PARA A PRÓXIMA QUESTÃO (Cesgranrio) Os extintores de incêndio vendidos para automóveis têm a forma de uma cápsula cilíndrica com extremidades hemisféricas, conforme

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas

Leia mais

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real.

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real. 6/0/008 Fatec/Tatuí Calculo II - Taxas Relacionadas 1 Taxas Relacionadas Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Os passos a seguir

Leia mais

Matemática 3. Aula 1. Geometria Plana. A escolha de quem pensa! 1

Matemática 3. Aula 1. Geometria Plana. A escolha de quem pensa! 1 Matemática Aula 1 Geometria Plana 01. A bandeira do Brasil, hasteada na Praça dos Três Poderes, em Brasília, é uma das maiores bandeiras hasteadas do mundo. A figura abaixo indica as suas medidas de acordo

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade A UA UL LA Unidades de volume Introdução Com esta aula iniciamos uma nova unidade do Telecurso 2000: a Geometria Espacial. Nesta unidade você estudará as propriedades de figuras espaciais, tais como: o

Leia mais

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1 Tema de vida: Nome do Formando: Data: / / Armando Jorge Cunha Página 1 EXERCÍCIOS: 1. Calcule a área dos quadrados e rectângulos representados na figura: 2. As figuras seguintes representam terrenos agrícolas.

Leia mais

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL Tenho certeza que você se dedicou ao máximo esse ano, galerinha! Sangue no olho, muita garra nessa reta final! Essa vaga é de vocês! Forte abraço prof

Leia mais

EXERCÍCIOS 3º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS.

EXERCÍCIOS 3º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS. EXERCÍCIOS º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS. 0 1. Dado o número binomial, temos: 18 a)190 b)180 c)80 d)0 e)n.d.a. 1. Dado o binômio x, determine o polinômio que representa sua solução:.

Leia mais

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado:

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado: SEMELHANÇA DE TRIÂNGULOS 1. Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 300 km de extensão. A 160 km de X, à beira da R101, fica a cidade Z, por onde passa a rodovia

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA

MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA F G J H I A E D B C C C C B B B A B A 10 cm Base 10 10 10 20 cm planificação Base a a d = 6 cm a a D = 8 cm c a b c b b. c a. c b. c a. c c a b b a b a b c d D a a

Leia mais

Perspectiva. da - 1. Perspectiva Isométrica. Marcelo Granato Rodrigo Santana Rogério Claudino

Perspectiva. da - 1. Perspectiva Isométrica. Marcelo Granato Rodrigo Santana Rogério Claudino é a representação gráfica dos objetos tridimensionais. Ela pode ser feita de várias maneiras, com resultados diferentes, que se assemelham mais ou menos à visão humana. Observe como um objeto pode ser

Leia mais

Atividade Complementar Plano de Estudo

Atividade Complementar Plano de Estudo 1. (Uerj 2014) Um sistema é constituído por uma pequena esfera metálica e pela água contida em um reservatório. Na tabela, estão apresentados dados das partes do sistema, antes de a esfera ser inteiramente

Leia mais

PA Progressão Aritmética

PA Progressão Aritmética PA Progressão Aritmética 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a) 3,0 m. b),0

Leia mais

Caderno de Respostas

Caderno de Respostas Caderno de Respostas DESENHO TÉCNICO BÁSICO Prof. Dr.Roberto Alcarria do Nascimento Ms. Luís Renato do Nascimento CAPÍTULO 1: ELEMENTOS BÁSICOS DO DESENHO TÉCNICO 1. A figura ilustra um cubo ao lado de

Leia mais

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Fundamentos Física Prof. Dra. Ângela Cristina Krabbe

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Fundamentos Física Prof. Dra. Ângela Cristina Krabbe Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU Fundamentos Física Prof. Dra. Ângela Cristina Krabbe Lista de exercícios 1. Considerando as grandezas físicas A

Leia mais

EUSTÁQUIO GOMES DE CARVALHO JÚNIOR IDENTIFICAÇÃO DE ERROS NA RESOLUÇÃO DE QUESTÕES DE VESTIBULARES COMETIDOS POR PRÉ-VESTIBULANDOS

EUSTÁQUIO GOMES DE CARVALHO JÚNIOR IDENTIFICAÇÃO DE ERROS NA RESOLUÇÃO DE QUESTÕES DE VESTIBULARES COMETIDOS POR PRÉ-VESTIBULANDOS EUSTÁQUIO GOMES DE CARVALHO JÚNIOR IDENTIFICAÇÃO DE ERROS NA RESOLUÇÃO DE QUESTÕES DE VESTIBULARES COMETIDOS POR PRÉ-VESTIBULANDOS Dissertação apresentada ao Curso de Especialização em Matemática da Universidade

Leia mais

Questão 23. Questão 21. Questão 22. Questão 24. alternativa D. alternativa A. alternativa C

Questão 23. Questão 21. Questão 22. Questão 24. alternativa D. alternativa A. alternativa C Questão 1 Um reservatório, com 40 litros de capacidade, já contém 0 litros de uma mistura gasolina/álcool com 18% de álcool. Deseja-se completar o tanque com uma nova mistura gasolina/álcool de modo que

Leia mais

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 3 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam da etiqueta

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

FÍSICA. Dados: Velocidade da luz no vácuo: 3,0 x 10 8 m/s Aceleração da gravidade: 10 m/s 2 1 4πε. Nm 2 /C 2

FÍSICA. Dados: Velocidade da luz no vácuo: 3,0 x 10 8 m/s Aceleração da gravidade: 10 m/s 2 1 4πε. Nm 2 /C 2 Dados: FÍSICA Velocidade da luz no vácuo: 3,0 x 10 8 m/s Aceleração da gravidade: 10 m/s 1 4πε 0 = 9,0 10 9 Nm /C Calor específico da água: 1,0 cal/g o C Calor latente de evaporação da água: 540 cal/g

Leia mais

LISTA DE EXERCÍCIOS 2 3ª SÉRIE FÍSICA TRABALHO/POTÊNCIA/ENERGIA

LISTA DE EXERCÍCIOS 2 3ª SÉRIE FÍSICA TRABALHO/POTÊNCIA/ENERGIA LISTA DE EXERCÍCIOS 3ª SÉRIE FÍSICA TRABALHO/POTÊNCIA/ENERGIA 1. (Upe 013) Um bloco de massa M = 1,0 kg é solto a partir do repouso no ponto A, a uma altura H = 0,8 m, conforme mostrado na figura. No trecho

Leia mais

AMARELA EFOMM-2008 AMARELA

AMARELA EFOMM-2008 AMARELA 1ª Questão: PROVA DE FÍSICA - EFOMM 2008 Coloque F (falso) ou V (verdadeiro) nas afirmativas abaixo e assinale a seguir a alternativa correta. ( ) A miopia é corrigida por lentes cilíndricas. ( ) A hipermetropia

Leia mais

IFSC - Campus São José Área de Refrigeração e Ar Condicionado Prof. Gilson Desenvolvimento de Chapas

IFSC - Campus São José Área de Refrigeração e Ar Condicionado Prof. Gilson Desenvolvimento de Chapas DESENVOLVIMENTO DE CHAPAS É o processo empregado para transformar em superfície plana, peças, reservatórios, uniões de tubulações e de dutos, normalmente feitos em chapas, razão pela qual este processo

Leia mais

Espelhos Esféricos Gauss 2013

Espelhos Esféricos Gauss 2013 Espelhos Esféricos Gauss 2013 1. (Unesp 2012) Observe o adesivo plástico apresentado no espelho côncavo de raio de curvatura igual a 1,0 m, na figura 1. Essa informação indica que o espelho produz imagens

Leia mais

QUESTÕES DE MATEMÁTICA

QUESTÕES DE MATEMÁTICA LEANDRO CARVALHO VIEIRA E GILMAR DE PAULA MATTA QUESTÕES DE MATEMÁTICA NO VESTIBULAR - VOLUME QUESTÕES RESOLVIDAS E COMENTADAS 007-010 (FUVEST, PUC, UERJ, UFF, UFJF, UFLA, UFOP, UFRJ, UFSJ, UFV, UNESP,

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

COLÉGIO MILITAR DE CURITIBA - Projeto Pré-Requisitos 7º ano

COLÉGIO MILITAR DE CURITIBA - Projeto Pré-Requisitos 7º ano Caro aluno Este Caderno de Apoio à Aprendizagem em Matemática foi produzido com o objetivo de colaborar em sua aprendizagem. Ele apresenta uma série de atividades a serem resolvidas por você. Estas atividades

Leia mais

Campo Magnético. e horário. e anti-horário. e horário. e anti-horário. e horário. a) b) c) d) e)

Campo Magnético. e horário. e anti-horário. e horário. e anti-horário. e horário. a) b) c) d) e) Campo Magnético 1. (Ita 2013) Uma espira circular de raio R é percorrida por uma corrente elétrica i criando um campo magnético. Em seguida, no mesmo plano da espira, mas em lados opostos, a uma distância

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Geometria Espacial - Prismas

Geometria Espacial - Prismas Geometria Espacial - Prismas 1) (NOVO ENEM) Em Florença, Itália, na Igreja de Santa Croce, é possível encontrar um portão em que aparecem os anéis de Borromeo. Alguns historiadores acreditavam que os círculos

Leia mais

Revisão de Física Vestibular ITA 2011

Revisão de Física Vestibular ITA 2011 Vestibular ITA 011 Questão 1 Um cilindro oco, feito de material isolante, é fechado em uma das extremidades por uma placa metálica fixa e na outra por um pistão metálico bem ajustado livre para se mover.

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

LISTA DE RECUPERAÇÃO 3º ANO PARA 07/12

LISTA DE RECUPERAÇÃO 3º ANO PARA 07/12 LISTA DE RECUPERAÇÃO 3º ANO PARA 07/12 Questão 01) Quando uma pessoa se aproxima de um espelho plano ao longo da direção perpendicular a este e com uma velocidade de módulo 1 m/s, é correto afirmar que

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

Pirâmides e cones. Módulo 3 Unidade 24. Para início de conversa... Matemática e suas Tecnologias Matemática 5

Pirâmides e cones. Módulo 3 Unidade 24. Para início de conversa... Matemática e suas Tecnologias Matemática 5 Módulo Unidade 4 Pirâmides e cones Para início de conversa... A cidade de Gizé, também conhecida como Guizé ou Guiza, está localizada no Egito, na margem oeste do rio Nilo, distante cerca de 0 km a sudoeste

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 4 Disciplina: matemática Prova: desafio nota: QUESTÃO Como prêmio de final de ano, o dono de uma loja quer dividir uma

Leia mais

(1) FÍSICA (2) (3) PROVA A 1

(1) FÍSICA (2) (3) PROVA A 1 FÍSICA 0 - O gráfico ao lado apresenta a superposição de três gráficos de uma grandeza (z) em função do tempo (t). A grandeza (z) pode representar: (0) no caso (), o espaço em um movimento uniforme. (0)

Leia mais

FÍSICA. Temperatura C K Fusão 0 273 Ebulição 100 373. Pontos críticos

FÍSICA. Temperatura C K Fusão 0 273 Ebulição 100 373. Pontos críticos FÍSICA Prof. Raphael Fracalossi 1. (Uerj 014) Observe na tabela os valores das temperaturas dos pontos críticos de fusão e de ebulição, respectivamente, do gelo e da água, à pressão de 1 atm, nas escalas

Leia mais

MATEMÁTICA. 10 10 t = = t = anos

MATEMÁTICA. 10 10 t = = t = anos MATEMÁTICA 9 d Seja n um número qualquer, inteiro e positivo. Se n é par, divida-o por ; se n é ímpar, multiplique-o por e adicione ao resultado. Esse procedimento deve ser repetido até que se obtenha

Leia mais

16 Comprimento e área do círculo

16 Comprimento e área do círculo A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.

Leia mais

1 1 1 3 0 x 2. 1 1 1 3 0 x

1 1 1 3 0 x 2. 1 1 1 3 0 x Foi realizada uma pesquisa, num bairro de determinada cidade, com um grupo de 500 crianças de a 1 anos de idade. Para esse grupo, em função da idade x da criança, concluiu-se que o peso médio p(x), em

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/11 Págs. Duração da prova: 150

Leia mais

12) A círculo = π r 2. 1 13) A lateral cone = π.r.g. 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 1 13) A lateral cone = π.r.g. 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA (Prova AMARELA). INTRODUÇÃO A prova de Matemática do Vestibular 04 foi elaborada com o intuito de contemplar todos os tópicos do programa, associando convenientemente a parte teórica com as

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DE ESTADO DA EDUCAÇÃO EXEMPLOS DE ITENS NOS PONTOS DA ESCALA DE PROFICIÊNCIA MATEMÁTICA SARESP 2007

GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DE ESTADO DA EDUCAÇÃO EXEMPLOS DE ITENS NOS PONTOS DA ESCALA DE PROFICIÊNCIA MATEMÁTICA SARESP 2007 Nível 125-4ª EF O barco na figura ao lado está localizado na posição X. Que posição é esta? (A) D4 (B) D5 (C) E4 (D) E5 Descritor/Habilidade: Identificar a localização / movimentação de objetos em mapas,

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011 Material Extra 011 MATEMÁTICA C PROFº LAWRENCE 01. (Cefet - MG) Um menino com altura de 1,0m empina um papagaio, em local apropriado, com um carretel de 10m de linha, conforme a figura abaixo. A altura

Leia mais

(A) (B) (C) (D) (E) RESPOSTA: (A)

(A) (B) (C) (D) (E) RESPOSTA: (A) 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

II- Quanto mais próximo está um objeto de um espelho plano, mais distante está sua imagem do espelho.

II- Quanto mais próximo está um objeto de um espelho plano, mais distante está sua imagem do espelho. Professor: DUDU (óptica geométrica e espelhos planos) 1ºLista de exercícios física 1-Considere a figura a seguir que representa uma caixa cúbica que tem, em uma de suas faces, um espelho plano com a face

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 31/maio/015 Prova A MATEMÁTICA 01. Fabiana recebeu um empréstimo de R$ 15 000,00 a juros compostos à taxa de 1% ao ano. Um ano depois, pagou uma parcela de

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Final. 2ª Etapa 2013. Ano: 6 Turma: 61

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Final. 2ª Etapa 2013. Ano: 6 Turma: 61 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 2ª Etapa 203 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6 Turma: 6 Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação.

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação. Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 62/2.ª Fase Critérios de Classificação 9 Páginas 2015 Prova 62/2.ª F. CC Página 1/ 9 CRITÉRIOS GERAIS

Leia mais

Mecânica dos Fluidos Fundamentos da Cinemática dos Fluidos

Mecânica dos Fluidos Fundamentos da Cinemática dos Fluidos Mecânica dos Fluidos Fundamentos da Cinemática dos Fluidos Prof. Dr. Gabriel L. Tacchi Nascimento O que estuda a Cinemática? A cinemática dos fluidos estuda o movimento dos fluidos em termos dos deslocamentos,

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

Anual de Física 2014 1ª Lista de embasamento Espelhos Planos e Esféricos

Anual de Física 2014 1ª Lista de embasamento Espelhos Planos e Esféricos nual de Física 2014 Questão 01 figura mostra um par de espelhos E 1 e E 2 verticais distanciados 40 cm entre si. Dois pontos e encontram-se alinhados verticalmente e equidistantes dos dois espelhos como

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

2. (Ufrgs 2014) A figura abaixo representa o movimento de um pêndulo que oscila sem atrito entre os pontos x 1 e x 2.

2. (Ufrgs 2014) A figura abaixo representa o movimento de um pêndulo que oscila sem atrito entre os pontos x 1 e x 2. 1. (Ufg 2013) Baseado nas propriedades ondulatórias de transmissão e reflexão, as ondas de ultrassom podem ser empregadas para medir a espessura de vasos sanguíneos. A figura a seguir representa um exame

Leia mais

Exercícios de Matemática Geometria Espacial

Exercícios de Matemática Geometria Espacial Exercícios de Matemática Geometria Espacial e se ) (FUVEST-00) Dois planos interceptam ao longo de uma reta r, de maneira que o ângulo entre eles meça α radianos, 0. Um triângulo equilátero ABC, de lado

Leia mais

Mat. Fundamental 2º ANO REGULAR

Mat. Fundamental 2º ANO REGULAR TC Prof.: Marcondes Jr. (ENEM) Mat. Fundamental 2º ANO REGULAR 1. (Enem 2014) Um show especial de Natal teve 45.000 ingressos vendidos. Esse evento ocorrerá em um estádio de futebol que disponibilizará

Leia mais

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7. Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes

Leia mais

GOIÂNIA, / / 2015. ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1

GOIÂNIA, / / 2015. ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1 GOIÂNIA, / / 2015 PROFESSOR: Fabrízio Gentil Bueno DISCIPLINA: FÍSICA SÉRIE: 2 o ALUNO(a): NOTA: No Anhanguera você é + Enem LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1 01 - (UDESC) João e Maria estão a 3m de

Leia mais

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE 1. NÚMEROS NATURAIS ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE CRITÉRIOS DE AVALIAÇÃO ESPECÍFICOS (Aprovados em Conselho Pedagógico a 21 de Outubro de 2014) No caso específico da disciplina de Matemática,

Leia mais

COLÉGIO PEDRO II MEC EXAME DE SELEÇÃO E CLASSIFICAÇÃO 1ª SÉRIE DO ENSINO MÉDIO REGULAR/ DIURNO 2008 QUESTÃO 1

COLÉGIO PEDRO II MEC EXAME DE SELEÇÃO E CLASSIFICAÇÃO 1ª SÉRIE DO ENSINO MÉDIO REGULAR/ DIURNO 2008 QUESTÃO 1 QUESTÃO 1 COLÉGIO PEDRO II MEC EXAME DE SELEÇÃO E CLASSIFICAÇÃO 1ª SÉRIE DO ENSINO MÉDIO REGULAR/ DIURNO 2008 No inverno de 2007, o calor e a seca foram causadores de um grande problema ecológico. Leia

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais