Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca"

Transcrição

1 Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular. ula 37 - Prisma regular. ula 38 - Pirâmide regular. ula 39 - Pirâmide regular. ula 40 - Pirâmide regular. ula 41 - Tetraedro. ula 4 - Tetraedro. ula 43 - ilindro de revolução. ula 44 - ilindro de revolução. ula 45 - one de revolução. ula 46 - one de revolução. ula 47 - Troncos: sólidos semelhantes. ula 48 - Esfera.

2 Relação da matéria para a recuperação final. 3º olegial / eometria / Jeca ula 53 - Prisma reto. ula 54 - Prisma reto: paralelepípedo retorretangular. ula 55 - Prisma reta: cubo. ula 56 - Prisma regular. ula 57 - Pirâmide regular. ula 58 - Pirâmide: tetraedro. ula 59 - Tetraedro regular. ula 60 - Octaedro regular. ula 61 - ilindro de revolução. ula 6 - one de revolução. ula 63 - Tronco de cone e tronco de pirâmide: sólidos semelhantes. ula 64 - Esferas.

3 anglo são joão Nome nº série º olegial / eometria / Jeca Recuperação Lista de exercícios 01) área total de um cubo é 94 cm. Determine: a) a medida da aresta do cubo; b) o volume do cubo; c) a medida da diagonal do cubo. 0) O sólido DEFH abaixo é um paralelepípedo retorretangular de dimensões = 11 cm, E = 6 cm e D = 10 cm. onsiderando-se como base do sólido a face F, determinar: H a) a área lateral do paralelepípedo; b) o volume do paralelepípedo; c) a medida da diagonal do paralelepípedo. E F D 03) De um cubo DEFH de aresta 10 cm, é retirada uma pirâmide DE conforme a figura ao lado. Determinar : a) a área total do sólido restante b) o volume do sólido restante D DEFH. DEFH. H E F 04) De um cubo DEFH de aresta 1 cm, é retirado um prisma MNEPQ conforme a figura ao lado. Sendo M, N, P e Q os pontos médios das respectivas arestas a que pertencem, determinar : M D N a) a área total do sólido restante DMNFHQP. b) o volume do sólido restante DMNFHQP. E Q H P F Jeca 01

4 05) Nas figuras abaixo, os 3 prismas são regulares,têm aresta da base 4 cm e altura 1 cm. Determinar : a) o nome do sólido. a) o nome do sólido. a) o nome do sólido. b) a área da base do prisma ( b). b) a área da base do prisma ( b). b) a área da base do prisma ( b). c) a área de cada face lateral ( 1F). c) a área de cada face lateral ( 1F). c) a área de cada face lateral ( 1F). d) a área lateral do prisma ( l ) d) a área lateral do prisma ( l ) d) a área lateral do prisma ( l ) e) a área total do prisma ( T). e) a área total do prisma ( T). e) a área total do prisma ( T). f) o volume do prisma (V). f) o volume do prisma (V). f) o volume do prisma (V). Jeca 0

5 06) Nas figuras abaixo, as 3 pirâmides são regulares,têm aresta da base 4 cm e altura 1 cm. Determinar : a) o nome do sólido. a) o nome do sólido. a) o nome do sólido. b) o apótema da base (a). b) o apótema da base (a). b) o apótema da base (a). a a a c) a área da base da pirâmide ( b). c) a área da base da pirâmide ( b). c) a área da base da pirâmide ( b). d) o apótema da pirâmide (m). d) o apótema da pirâmide (m). d) o apótema da pirâmide (m). e) a área lateral da pirâmide ( l ) e) a área lateral da pirâmide ( l ) e) a área lateral da pirâmide ( l ) f) a área total da pirâmide ( T). f) a área total da pirâmide ( T). f) a área total da pirâmide ( T). g) o volume da pirâmide (V). g) o volume da pirâmide (V). g) o volume da pirâmide (V). Jeca 03

6 07) Sabendo-se que o volume de um prisma hexagonal regular que tem as 18 arestas congruentes é cm, determinar a altura desse prisma. 08) Na figura abaixo, estão representados um cubo DEFH de aresta k e uma pirâmide DH. Determinar a área total e o volume da pirâmide em função de k. H E F D 09) Todas as arestas do sólido representado na figura abaixo medem 4 cm. s faces DE e FHIJ são paralelas entre si e perpendiculares ao quadrado DIH da base. Determinar a área total e o volume do sólido. F J H E I D 10) Na figura abaixo, estão representados um prisma triangular regular e uma pirâmide num de seus vértices. Sendo M, N e P os pontos médios das respectivas arestas, determinar a razão entre o volume do prisma e o volume da pirâmide. M N P 11) Na figura ao lado, a área do quadrilátero DEF é 64 cm. Sendo DEFH um cubo, determinar a área total desse cubo. E H F D Jeca 04

7 1) Determinar a área total e o volume de um tetraedro regular de aresta K. OSERVÇÃO - Um tetraedro regular é uma pirâmide triangular regular que tem todas as 4 faces formadas por triângulos equiláteros congruentes. k k V k k 13) O tetraedro V abaixo tem um triângulo na base, de tal forma que é um ângulo reto e = = 6 cm. Sabe-se ainda que a aresta V é perpendicular ao plano e que os ângulos V e V são congruentes e medem 30º. Determine: a) a medida da altura V; V b) a medida da aresta V; c) a medida da aresta ; d) a área do triângulo ; e) o volume do tretraedro V. k M 14) Uma caixa d água tem a forma de um cubo, a sua base inferior é perfeitamente horizontal e as suas arestas medem internamente 5,0 m. Estando a caixa inicialmente com água até a altura de 1 m, num determinado instante, é aberto um registro que permite uma entrada constante de 00 litros de água por minuto. Sabendo-se que 1 metro cúbico equivale a 1000 litros e que nesse período não existe saída de água, determinar qual a altura de água na caixa seis horas após o registro ter sido aberto. 15) Uma caixa d água tem a forma de um cubo, a sua base inferior é perfeitamente horizontal e as suas arestas medem internamente 3,0 m. Estando a caixa inicialmente cheia de água, num determinado instante, é aberto um registro que permite uma saída constante de 60 litros de água por minuto. Sabendo-se que 1 metro cúbico equivale a 1000 litros e que nesse período não existe entrada de água na caixa, determinar qual a altura de água na caixa quatro horas após o registro ter sido aberto. Jeca 05

8 16) Dado um cilindro de revolução de altura 1 cm e raio da base 7 cm, determinar: a) a área da base; 17) Dado um cilindro de revolução de altura 15 cm e raio da base 4 cm, determinar: a) a área da base; b) a área lateral; b) a área lateral; c) a área total; c) a área total; d) a área da secção meridiana; d) a área da secção meridiana; e) o volume do cilindro. e) o volume do cilindro. 18) Dado um cilindro de revolução de área lateral igual a 88 cm e altura 16 cm, determine: a) a medida do raio da base do cilindro; 19) Dado um cilindro de revolução de volume cm e altura 14 cm, determine: a) a medida do raio da base do cilindro; b) a área total do cilindro; b) a área lateral do cilindro; c) o volume do cilindro. c) a área total do cilindro. Jeca 06

9 0) Dado um cilindro equilátero de altura 10 cm, determine: a) o raio da base; 3 1) Um cilindro equilátero tem volume 54 cm. Determine: a) o raio da base; b) a área da base; c) a área lateral; b) a altura do cilindro; d) a área total; c) a área total do cilindro. e) a área da secção meridiana; f) o volume do cilindro. ) Dado um cone de revolução de raio da base 9 cm e altura 1 cm, determinar: 3) Dado um cone de revolução de raio da base 5 cm e altura 1 cm, determinar: a) a geratriz do cone; a) a geratriz do cone; b) a área da base; c) a área lateral; b) a área da secção meridiana do cone; d) a área total; c) a medida do ângulo central, em graus; e) o volume do cone. d) o volume do cone. Jeca 07

10 4) Dado um cone equilátero de altura 1 3 cm, determine: a) a geratriz do cone; 5) Dado um cone equilátero de base 16 cm, determine: a) o raio da base; b) o raio da base; b) a geratriz do cone; c) a área lateral; c) a área da secção meridiana; d) o volume do cone. d) o volume do cone. 6) Dado um cone reto de área lateral 136 cm e área total 00 cm, determine: a) a área da base; 3 7) Um cone reto de volume 45 dm tem a altura igual ao triplo do raio da base. Determine: a) o raio da base; b) o raio da base; b) a geratriz do cone; c) a geratriz do cone; c) a área total do cone. d) o ângulo central, em graus; e) o volume do cone. Jeca 08

11 8) Um cone reto de raio da base 5 cm e altura 1 cm, é seccionado por um plano paralelo à sua base e distante 8 cm do seu vértice. Determine; a) o volume do cone maior; 9) (UFM) orta-se uma pirâmide regular de base quadrangular e altura 4 cm por um plano paralelo ao plano da base, de maneira que os volumes dos dois sólidos obtidos sejam iguais. Qual é, em cm, a altura do tronco de pirâmide obtido? 4 cm b) o volume do cone menor; h c) o volume do tronco de cone. 30) Um cone de raio da base 3 cm e altura 4 cm é seccionado por um plano paralelo ao plano da base e distando 3 cm do vértice do cone. Determine: a) o volume do cone maior; 31) figura abaixo representa um tronco de cone de altura 5 cm, raio da base maior igual a 6 cm e raio da base menor igual a 4 cm. Determine a área total e o volume do tronco de cone. 4 cm tronco de cone b) o volume do cone menor; c) o volume do tronco de cone. Jeca 09

12 3) (ESRNRIO) Uma ampulheta é formada por dois cones de revolução iguais, com eixos verticais e justapostos pelo vértice, o qual tem um pequeno orifício que permite a passagem de areia da parte de cima para a parte de baixo. o ser colocada para marcar um intervalo de tempo, toda a areia está na parte de cima, e, 35 minutos após, a altura da areia na parte de cima reduziu-se à metade, como mostra a figura. Supondo que em cada minuto a quantidade de areia que passa do cone de cima para o de baixo é constante, em quanto tempo mais toda a areia terá passado para a parte de baixo? 33) (ESRNRIO) Um recipiente cônico, com altura e base horizontal de raio 1, contém água até a metade de sua altura (Fig. I). Inverte-se a posição do recipiente, como mostra a Fig. II. Qual é a distância do nível da água ao vértice, na situação da Fig. II? 1 d h h Fig. I Fig. II No início 35 minutos após 34) Dada uma esfera de raio 6 cm, determine: 35) Qual a razão entre o volume de um cilindro eqüilátero a) a área da superfície esférica; e o volume da esfera inscrita nesse cilindro? b) o volume da esfera; c) a área de um fuso esférico de ângulo central 40º; d) o volume de uma cunha esférica de ângulo central 40º. Jeca 10

13 36) Dada uma esfera de raio 1 cm, determine: 37) Na figura abaixo, uma esfera de raio 9 cm está inscrita em um cubo. Determine o volume da região espa- a) a área da superfície esférica; cial que é simultaneamente interna ao cubo e externa à esfera. b) o volume da esfera; c) a área e o perímetro da secção plana obtida do seccionamento da esfera por um plano que dista 7 cm do centro da esfera. 38) Um cilindro de revolução tem raio da base 6 cm e contém água até uma determinada altura. Uma esfera de aço é colocada nesse cilindro ficando totalmente submersa. Determinar o raio da esfera, sabendo-se que o nível da água no cilindro subiu 1 cm. 39) Sabendo-se que a área da base de um hemisfério é 64 cm, determine: a) a área total do hemisfério; 1 cm R = 6 cm b) o volume do hemisfério; c) o perímetro da base do hemisfério. Jeca 11

Resumo de Geometria Espacial Métrica

Resumo de Geometria Espacial Métrica 1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos

Leia mais

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine:

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: I) PRISMAS 1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: a) a área da base, o apótema da base, a área lateral, área total e volume considerando

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.

PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases. PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS

MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS l Como pode cair no enem (UNIFICADO) Uma ampulheta é formada por dois cones de revolução iguais, com eixos verticais e justapostos pelo

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

Geometria Espacial - Prismas

Geometria Espacial - Prismas Geometria Espacial - Prismas ) As três dimensões de um paralelepípedo reto retângulo de volume 05 m, são proporcionais a, e 5. A soma do comprimento de todas as arestas é: a) 08m b) 6m c) 80m d) m 7m )

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

Geometria Métrica Espacial

Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Mat. Rafael Jesus. Monitor: Fernanda Aranzate

Mat. Rafael Jesus. Monitor: Fernanda Aranzate Mat. Professor: Luanna Ramos Rafael Jesus Monitor: Fernanda Aranzate Exercícios de revisão geral 29 set EXERCÍCIOS DE AULA 1. Uma superfície esférica de raio 1 cm é cortada por um plano situado a uma distância

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Geometria Espacial Profº Driko

Geometria Espacial Profº Driko Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos

Leia mais

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é

Leia mais

REGULARES POLIEDROS IRREGULARES

REGULARES POLIEDROS IRREGULARES GEOMETRIA ESPACIAL ESFERA OBLÍQUO RETO CILINDRO OBLÍQUO RETO CONE SÓLIDOS DE REVOLUÇÃO REGULAR OBLÍQUA RETA PIRÂMIDE REGULAR OBLÍQUO RETO PRISMA IRREGULARES ICOSAEDRO DODECAEDRO OCTAEDRO HEXAEDRO TETRAEDRO

Leia mais

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA 3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Sólidos Inscritos e Circunscritos 3.º Ano

Sólidos Inscritos e Circunscritos 3.º Ano Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Resposta: A Matemática B 2ª série 1º trimestre Prismas Tarefa 10

Resposta: A Matemática B 2ª série 1º trimestre Prismas Tarefa 10 2011 - Matemática B 2ª série 1º trimestre Prismas Tarefa 9 1) As dimensões de um paralelepípedo retângulo são 12 cm, 15 cm e 16 cm. A área total(em cm²) e a medida da diagonal (em cm) são iguais, respectivamente

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

Lista 21 - GEOMETRIA ESPACIAL (Esfera e Pirâmides)

Lista 21 - GEOMETRIA ESPACIAL (Esfera e Pirâmides) Lista 1 - GEOMETRIA ESPACIAL (Esfera e Pirâmides) 1) Certa quantidade de queijo é vendida em embalagens esféricas com tamanhos. A embalagem menor tem capacidade pra 50g de queijo, e seu raio é a metade

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

Matemática GEOMETRIA ESPACIAL. Professor Dudan

Matemática GEOMETRIA ESPACIAL. Professor Dudan Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

REGULARES POLIEDROS IRREGULARES

REGULARES POLIEDROS IRREGULARES GEOMETRIA ESPACIAL ESFERA OBLÍQUO RETO CILINDRO OBLÍQUO RETO CONE SÓLIDOS DE REVOLUÇÃO REGULAR OBLÍQUA RETA PIRÂMIDE REGULAR OBLÍQUO RETO PRISMA IRREGULARES ICOSAEDRO DODECAEDRO OCTAEDRO HEXAEDRO TETRAEDRO

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

Responder todas as questões em folha A4. Entregar na data da realização da prova.

Responder todas as questões em folha A4. Entregar na data da realização da prova. INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo

Leia mais

Geometria Espacial. 1) Poliedros convexos

Geometria Espacial. 1) Poliedros convexos 1) Poliedros convexos Geometria Espacial Observe os sólidos abaixo cujas faces são polígonos convexos. Podemos observar que: a) Cada aresta é comum a duas e somente a duas faces b) Duas faces nunca estão

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones)

Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones) Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones) 1) Um tipo de descarga de água para vaso sanitário é formado por um cilindro com altura de m e diâmetro interno de 8 cm. Então, dos valores abaixo, o mais

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3 Lista 06 Matemática Geometria Espacial 1. (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS)

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) 56. Exame de 1998 Prova Modelo (código 109) Represente, no sistema de dupla projecção ortogonal, dois segmentos de recta concorrentes, [AE] e [AI]. Os

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de

Leia mais

MATEMÁTICA. Geometria Espacial

MATEMÁTICA. Geometria Espacial MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I scola Secundária com º ciclo. inis 10º no de Matemática TM 1 OMTRI NO PLNO NO SPÇO I 1º Teste de avaliação versão rupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas

Leia mais

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0). Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na

Leia mais

2;5 é o ponto médio do segmento de extremos

2;5 é o ponto médio do segmento de extremos Professor: MARA BASTOS E CARLOS JR. Turma: 1 Nota: Obs.: Data: 4/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou

Leia mais

Mat. Monitor: Roberta Teixeira

Mat. Monitor: Roberta Teixeira Professor: Rafael Jesus Monitor: Roberta Teixeira Exercícios de revisão sobre geometria espacial 22 set EXERCÍCIOS DE AULA 1. Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros

Leia mais

Matemática Pirâmides Fácil [20 Questões]

Matemática Pirâmides Fácil [20 Questões] Matemática Pirâmides Fácil [0 Questões] 01 - (MACK SP) Considere uma pirâmide cuja base é um polígono convexo. Se a soma das medidas dos ângulos internos de todas as suas faces é 600º, o número de lados

Leia mais

Aula 29 Volume de pirâmides, cones e esferas

Aula 29 Volume de pirâmides, cones e esferas MÓULO 2 - UL 29 ula 29 Volume de pirâmides, cones e esferas Objetivos alcular o volume de uma pirâmide. alcular o volume de um cone. alcular o volume de uma esfera. Introdução Sabemos que se cortarmos

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares 59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

48 3cm. 1) A aresta da base e a altura de um prisma regular triangular medem 8cm e 6cm, respectivamente. Calcule:

48 3cm. 1) A aresta da base e a altura de um prisma regular triangular medem 8cm e 6cm, respectivamente. Calcule: LISTA DE EXERCÍCIO 01 GEOMETRIA ESPACIAL - PRISMA - 2019 1) A aresta da base e a altura de um prisma regular triangular medem 8cm e 6cm, respectivamente. Calcule: a) a área de cada face lateral (AF) 48cm

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros

Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros Geometria Descritiva Revisão: Polígonos regulares/irregulares Linhas e Pontos pertencentes a Faces/Arestas de Poliedros - Os Poliedros em estudo em GD podem ser: regulares (cujas fases são polígonos regulares,

Leia mais

Lista 19 GEOMETRIA ESPACIAL (Prismas)

Lista 19 GEOMETRIA ESPACIAL (Prismas) Lista 19 GEOMETRIA ESPACIAL (Prismas) 1) A diagonal da base de um prisma quadrangular regular mede 6 dm e a altura do sólido, volume do sólido, em dm, vale a) c) 6 dm. O ) O volume de um prisma reto, cuja

Leia mais

Disciplina: Matemática Data da entrega: 21/11/2014.

Disciplina: Matemática Data da entrega: 21/11/2014. Lista de Exercícios - 08 Aluno (a): Nº. Professor: Flávio Série: 2º (Ensino médio) Disciplina: Matemática Data da entrega: 21/11/2014. Observação: A lista deverá apresentar capa e enunciados. 1. Uma pirâmide

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

Apostila De Matemática ESFERA

Apostila De Matemática ESFERA Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual

Leia mais

COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017)

COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) Na modelagem matemática de um processo de fabricação, é comum supor que não há perda de material

Leia mais

FICHA FORMATIVA. Represente, pelas suas projecções, a recta p, perpendicular ao plano alfa.

FICHA FORMATIVA. Represente, pelas suas projecções, a recta p, perpendicular ao plano alfa. Curso Cientifico- Humanístico de Ciências e Tecnologias Artes Visuais Geometria Descritiva A Ano Lectivo 2010/11 FICHA FORMATIVA Prof.Emilia Peixoto PARALELISMO DE RECTAS E PLANOS 1. Exame de 2008, 2ª

Leia mais

Lista de Pirâmides- 2 s anos Mat2-2018

Lista de Pirâmides- 2 s anos Mat2-2018 Lista de Pirâmides- s anos Mat- 018 1. (Uece ) A medida da aresta de um tetraedro regular com altura igual a 5 metros é: a) 5,5 m. b) 5 1,5 m. c) 1,5 m. d),5 m.. (Uepb 014) O volume de um tetraedro regular

Leia mais

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem: 1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados

Leia mais

Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PIRÂMIDES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PIRÂMIDES Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PIRÂMIDES... 1 CLASSIFICAÇÃO DE UMA PIRÂMIDE... 1 EXERCÍCIOS FUNDAMENTAIS... 2 ÁREAS EM UMA PIRÂMIDE...

Leia mais

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P. 1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares

Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares 31 PARTE III REPRESENTAÇÃ D PLAN 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares b) um ponto e uma reta que não se pertencem 32 c) duas retas concorrentes d)

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 14/fevereiro 17/fevereiro 21/fevereiro 24/fevereiro 28/fevereiro 03/março

Leia mais

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

Atividades de Recuperação Paralela de Matemática

Atividades de Recuperação Paralela de Matemática Atividades de Recuperação Paralela de Matemática º ANO Ensino Médio 1º Trimestre Leia as orientações de estudos antes de responder as questões Conteúdos para estudos: ÁLGEBRA Função do 1ºgrau Função do

Leia mais

RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5.

RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5. Qual dos seguintes pares de pontos define uma reta perpendicular à reta r? (A) (B) ( C) (D) 2. A condição que define o domínio plano

Leia mais

Lista de exercícios Prisma e cilindro

Lista de exercícios Prisma e cilindro Lista de exercícios Prisma e cilindro 1. Na figura a seguir, que representa um cubo, o perímetro do quadrilátero ABCD mede 8(1 + Ë2) cm. Calcule o volume do cubo em cm. 4. Em um tanque cilíndrico com raio

Leia mais

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

O plano e a esfera têm em comum infinitos pontos que formam um círculo chamado de secção plana da esfera.

O plano e a esfera têm em comum infinitos pontos que formam um círculo chamado de secção plana da esfera. COLÉGIO MILITA DO IO E JANEIO LISTA DE EXECÍCIOS COMPLEMENTAES GEOMETIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 4º BIMESTE DE 015 ESFEA 1- Conceito

Leia mais

ROTEIRO DE RECUPERAÇÃO DE GEOMETRIA 1º TRIMESTRE. Professor: LILIAN SAUEIA CACCURI

ROTEIRO DE RECUPERAÇÃO DE GEOMETRIA 1º TRIMESTRE. Professor: LILIAN SAUEIA CACCURI ROTEIRO DE RECUPERAÇÃO DE GEOMETRIA 1º TRIMESTRE Nome: º ano Data: / / 2019 Professor: LILIAN SAUEIA CACCURI 1. Qual o volume de um tronco de pirâmide sabendo que suas bases são quadrados de lados 4 cm

Leia mais