MATEMÁTICA - 2 o ANO MÓDULO 05 CILINDRO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA - 2 o ANO MÓDULO 05 CILINDRO"

Transcrição

1 MATEMÁTICA - 2 o ANO MÓDULO 05 CILINDRO

2

3

4

5

6

7

8 Como pode cair no enem (ENEM) O administrador de uma cidade, implantando uma política de reutilização de materiais descartados, aproveitou milhares de tambores cilíndricos dispensados por empresas da região e montou kits com seis tambores para o abastecimento de água em casas de famílias de baixa renda, conforme a figura seguinte. Além disso, cada família envolvida com o programa irá pagar somente R$2,50 por metro cúbico utilizado.uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de: (considere π = 3) a) R$ 86,40 d) R$ 7,20 b) R$ 21,60 e) R$ 1,80 c) R$ 8,64

9 Fixação 1) O raio da base de um cilindro reto mede 2 cm. Sabendo que a altura mede 10 cm, calcule a área lateral, a área total e o volume desse cilindro.

10 Fixação F 2) A área lateral de um cilindro é 20πcm². Se o raio da base mede 5 cm, calcule a medida h 3 da altura deste cilindro. a fi a b c d

11 ixação ) Um aquário cilíndrico, com 30 cm de altura e área da base igual a cm², está com água té a metade de sua capacidade. Colocando-se pedras dentro desse aquário, de modo que quem totalmente submersas, o nível da água sobe para 16,5 cm. Então, o volume das pedras é: ) cm³ ) cm³ ) cm³ ) cm³

12 Fixação F 4) (UNIRIO) Num cilindro reto de base circular, cujo diâmetro mede 2 m, e de altura igual a 10 m, 5 faz-se um furo central, vazando-se este cilindro, de base a base. Sabendo-se que o diâmetro dot furo é igual à metade do diâmetro da base do cilindro, qual é o volume do sólido assim obtido? m a b c d e

13 ixação ) (UNIFICADO) Um salame tem a forma de cilindro reto com 40 cm de altura e pesa 1 kg. entando servir um freguês que queria meio quilo de salame, João cortou um pedaço, obliquaente, de modo que a altura do pedaço variava entre 22 cm e 26 cm. O peso do pedaço de: ) 600 g ) 610 g ) 620 g ) 630 g ) 640 g

14 Fixação F 6) O raio de um cilindro circular reto é aumentado em 20% e sua altura é diminuída em 25%. 7 O volume deste cilindro sofrerá um aumento de: c a) 2% b) 4% c) 6% d) 8% a b c d e

15 ixação ) (UFRRJ) Um caminhão pipa carrega 9,42 mil litros d água. Para encher uma cisterna cilíndrica om 2 metros de diâmetro e 3 metros de altura são necessários, no mínimo. ) 10 caminhões; ) 100 caminhões; ) 1 caminhão; ) 2 caminhões; ) 4 caminhões.

16 Fixação F r a b c d 8) (MACKENZIE) Uma lata tem forma cilíndrica com diâmetro da base e altura iguais a 10 cm. 9 Do volume total, 4/5 é ocupado por leite em pó. Adotando-se π =3, o volume de leite em pó, s em cm³, contido na lata é: a) 650 c) 600 e) 290 b) 385 d) 570

17 ixação ) (UERJ) Um recipiente cilíndrico de 60 cm de altura e base com 20 cm de raio está sobre uma uperfície plana horizontal e contém água até a altura de 40 cm, conforme indicado na figura. Imergindo-se totalmente um bloco cúbico no recipiente, o nível da água sobe 25%. Consideando π igual a 3, a medida, em cm, da aresta do cubo colocado na água é igual a: ) ) 10 2 ) ) 10 12

18 Fixação a) 900 b) 800 c) 700 d) 600 e) ) (UNIRIO) Se a equipe de profissionais de engenharia da Universidade determinasse a escavação de um túnel em forma de paralelepípedo retângulo com 100 m de extensão, 2 m de largura e π de altura e com a pretensão de colocar a terra removida em latões cilíndricos de raio 0,5 m e altura 1 m, o número mínimo de latões seria:

19 Proposto 1) (ENEM) Em uma padaria, há dois tipos de forma de bolo, formas 1 e 2, como mostra a figura. Sejam L o lado da base da forma quadrada, r o raio da base da forma redonda, A 1 e A 2 as áreas das bases das formas 1 e 2, e V 1 e V 2 os seus volumes, respectivamente. Se as formas têm a mesma altura h, para que elas comportem a mesma quantidade de massa de bolo, qual é a relação entre r e L? a) L = r d) L = r π b) L = 2r e) L = πr2 2 c) L = 3r

20 Proposto 2) (ENEM) Em uma praça pública, há uma fonte que é formada por dois cilindros, um de raio r e altura h 1, e outro de raio R e altura h 2. O cilindro do meio enche e, após transbordar, começa a encher o outro. Se R = r 2 e h 2 = h 1 3 e, para encher o cilindro do meio, foram necessários 30 minutos, então, para se conseguir encher essa fonte e o segundo cilindro, de modo que fique completamente cheio, serão necessários: a) 20 minutos d) 50 minutos b) 30 minutos e) 60 minutos c) 40 minutos

21 Proposto 3) (ENEM) Uma empresa de refrigerantes, que funciona sem interrupções, produz um volume constante de cm 3 de líquido por dia. A máquina de encher garrafas apresentou um defeito durante 24 horas. O inspetor de produção percebeu que o líquido chegou apenas à altura de 12 cm dos 20 cm previstos em cada garrafa. A parte inferior da garrafa em que foi depositado o líquido tem forma cilíndrica com raio da base de 3 cm. Por questões de higiene, o líquido já engarrafado não será reutilizado.utilizando π = 3, no período em que a máquina apresentou defeito, aproximadamente quantas garrafas foram utilizadas? a) 555 d) b) 5555 e) c) 1333

22 Proposto 4) (ENEM) Dona Maria, diarista na casa da família Teixeira, precisa fazer café para servir as vinte pessoas que se encontram numa reunião na sala. Para fazer o café, Dona Maria dispõe de uma leiteira cilíndrica e copinhos plásticos, também cilíndricos.com o objetivo de não desperdiçar café, a diarista deseja colocar a quantidade mínima de água na leiteira para encher os vinte copinhos pela metade. Para que isso ocorra, Dona Maria deverá: a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. b) Encher a leiteira toda de água, pois ela tem um volume 20 vezes maior que o volume do copo. c) Encher a leiteira toda de água, pois ela tem um volume 10 vezes maior que o volume do copo. d) Encher duas leiteiras de água, pois ela tem um volume 10 vezes maior que o volume do copo. e) Encher cinco leiteiras de água, pois ela tem um volume 10 vezes maior que o volume do copo.

23 Proposto 5) (MACKENZIE) Uma empresa usa, para um determinado produto, as embalagens fechadas da figura, confeccionadas com o mesmo material, que custa R$ 0,10 cm². Supondo π = 3, a diferença entre os custos das embalagens A e B é de: a) R$ 9,00 b) R$ 7,00 c) R$ 10,00 d) R$ 8,00 e) R$ 0,00

24 Proposto 6) (UFRJ) Um produto é embalado em latas cilíndricas (cilindros de revolução). O raio da embalagem A é igual ao diâmetro de B e a altura de B é o dobro da altura de A. Assim, CILINDRO A altura h : raio da base 2R CILINDRO B altura 2h : raio da base R A B a) as embalagens são feitas do mesmo material (mesma chapa). Qual delas gasta mais material para ser montada? b) O preço do produto na embalagem A é R$ 0,78 e na embalagem B é R$ 0,40. Qual das opções é mais econômica para o consumidor, supondo-se as duas latas completamente cheias?

25 Proposto 7) A área lateral de um cilindro de revolução é metade da área da base. Se o perímetro de sua secção meridiana é 18 m, o volume vale: a) 8π m 3 b) 10π m 3 c) 12π m 3 d) 16π m 3 e) 20π m 3

26 Proposto 8) Uma caixa-d água de forma cúbica com 1 metro de lado está acoplada a um cano cilíndrico com 4 cm de diâmetro e 50 m de comprimento. Num certo instante, a caixa está cheia e o cano vazio. Solta-se a água pelo cano até que fique cheio. Qual o valor aproximado da altura da água na caixa, no instante em que o cano ficou cheio? a) 90 cm b) 92 cm c) 94 cm d) 96 cm

27 Proposto 9) (UERJ) Um recipiente cilíndrico de base circular, com raio R, contém uma certa quantidade de líquido até um nível h o. Uma estatueta de massa m e densidade π, depois de completamente submersa nesse líquido, permanece em equilíbrio no fundo do recipiente. Em tal situação, o líquido alcança um novo nível h. A variação (h-h o ) dos níveis do líquido, quando todas as grandezas estão expressas no Sistema Internacional de Unidades, corresponde a: a) mρ c) m πr 2 ρπr 2 b) m² d) ρπr 4 ρ 2 πr 3 m

28 Proposto 10) (UFRJ) Um paraquedista está no ponto A situado a 800m do solo e, devido a condições térmicas, é obrigado a seguir uma trajetória que está sempre na superfície lateral do cilindro C de revolução cujo raio r da base é igual a 200 m. p A 800 m Z C solo x B (0. 400, 0) π Determine o comprimento do menor caminho percorrido pelo paraquedista para atingir o ponto de pouso B(0, 400, 0). p

29 Proposto 11) (UFRJ) Mário e Paulo possuem piscinas em suas casas. Ambas têm a mesma profundidade e bases com o mesmo perímetro. A piscina de Mário é um cilindro circular reto e a de Paulo é um prisma reto de base quadrada. A companhia de água da cidade cobra R$ 1,00 por metro cúbico de água consumida. a) Determine qual dos dois pagará mais para encher de água sua piscina. b) Atendendo a um pedido da família, Mário resolve duplicar o perímetro da base e a profundidade de sua piscina, mantendo, porém, a forma circular. Determine quanto Mário pagará pela água para encher a nova piscina, sabendo que anteriormente ele gastava R$ 50,00.

30 Proposto 12) (UERJ) Para a obtenção do índice pluviométrico, uma das medidas de precipitação de água da chuva, utiliza-se um instrumento meteorológico denominado pluviômetro. A ilustração abaixo representa um pluviômetro com área de captação de 0,5 m² e raio interno do cilindro de depósito de 10 cm. Considere que cada milímetro de água da chuva depositado no cilindro equivale a 1L/m². No mês de janeiro, quando o índice pluviométrico foi de 90 mm, o nível de água no cilindro, em dm, atingiu a altura de, aproximadamente: captação a) 15 b) 25 c) 35 d) 45 cilindro de depósito { nível de água

Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )

Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 ) Lista de Geometria espacial Para PO ET Manhã 3C13 1 (ENEM) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior

Leia mais

Cones e cilindros. Matemática 29/10/2015. Exatas para Todos

Cones e cilindros. Matemática 29/10/2015. Exatas para Todos Cones e cilindros 1. Um recipiente cilíndrico de 60 cm de altura e base com 20 cm de raio está sobre uma superfície plana horizontal e contém água até a altura de 40 cm, conforme indicado na figura. lmergindo-se

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

UNITAU APOSTILA CILINDROS PROF. CARLINHOS

UNITAU APOSTILA CILINDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em

Leia mais

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. 1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. b) semiesfera. c)

Leia mais

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança 1. Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes

Leia mais

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS

MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS l Como pode cair no enem (UNIFICADO) Uma ampulheta é formada por dois cones de revolução iguais, com eixos verticais e justapostos pelo

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO

MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO C` D A` A C a D B` c D B b 10 x 2x Como pode cair no enem (ENEM) Uma fábrica produz barras de chocolates no formato de paralelepípedos e

Leia mais

Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro

Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro Lista de exercícios 07 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Cilindro Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: No

Leia mais

1 ELEMENTOS DO CILINDRO 3 SECÇÃO MERIDIANA 4 ÁREAS E VOLUME DO CILINDRO 2 CLASSIFICAÇÃO DE CILINDROS. 4.1 Área lateral. 4.

1 ELEMENTOS DO CILINDRO 3 SECÇÃO MERIDIANA 4 ÁREAS E VOLUME DO CILINDRO 2 CLASSIFICAÇÃO DE CILINDROS. 4.1 Área lateral. 4. Matemática Pedro Paulo GEOMETRIA ESPACIAL IV 1 ELEMENTOS DO CILINDRO Cilindro é um sólido limitado por dois círculos, congruentes e situados em planos paralelos, e por uma superfície lateral. Ele também

Leia mais

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo.

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. (UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em

Leia mais

Lista de exercícios Prisma e cilindro

Lista de exercícios Prisma e cilindro Lista de exercícios Prisma e cilindro 1. Na figura a seguir, que representa um cubo, o perímetro do quadrilátero ABCD mede 8(1 + Ë2) cm. Calcule o volume do cubo em cm. 4. Em um tanque cilíndrico com raio

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 52 CILINDRO

MATEMÁTICA - 3 o ANO MÓDULO 52 CILINDRO MATEMÁTICA - 3 o ANO MÓDULO 52 CILINDRO base O r geratriz O r h (altura) eixo base e O H H R R O H S L H R 2πR O R O R H eixo R H cm 2 cm 12 cm 8 2 cm 2 cm 12 cm 8 cm 20 cm 20 cm 8 cm 12 cm C O A B 12

Leia mais

Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é:

Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: a) 1135 m 3 b) 1800 m 3 c) 2187 m 3 d) 2742 m 3 e) 3768 m 3 2) (Vunesp) Considere uma lata cilíndrica

Leia mais

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine:

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: I) PRISMAS 1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: a) a área da base, o apótema da base, a área lateral, área total e volume considerando

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Responder todas as questões em folha A4. Entregar na data da realização da prova.

Responder todas as questões em folha A4. Entregar na data da realização da prova. INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.

Leia mais

Professor: Pedro Ítallo

Professor: Pedro Ítallo Professor: Pedro Ítallo 01 - (UNIRG TO) O reservatório de água de uma cidade tem formato cilíndrico, com 4 m de altura e 6 m de diâmetro. Para resolver o problema de abastecimento de água decidiram construir

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data: / 04 / 01 Assunto: Áreas e Volumes de Sólidos II Lições nº, 1. Para vedar um terreno quadrangular com 900 m de área, o

Leia mais

Lista de exercícios 08. Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática

Lista de exercícios 08. Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática Lista de exercícios 08 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto

PROFESSOR: Guilherme Franklin Lauxen Neto ALUNO TURMA: 2 Ano DATA / /2015 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /2015 1) Dado um cilindro de revolução de altura 12 cm e raio da base 4 cm, determine: a) a área da base do cilindro.

Leia mais

Rua 13 de junho,

Rua 13 de junho, QUESTÕES 1. (Unicamp 01) Numa piscina em formato de paralelepípedo, as medidas das arestas estão em progressão geométrica de razão q > 1. a) Determine o quociente entre o perímetro da face de maior área

Leia mais

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3 Lista 06 Matemática Geometria Espacial 1. (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número

Leia mais

01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões 3 cm e 4 cm é:

01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões 3 cm e 4 cm é: singular Lista de exercícios-(cubo-cilindro- cone)-c17-prof.liana (0/06/016) 01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões cm e 4

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA

MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA 360 = 4πR 2 α = S t 360 = 4πR 3 3 α = V c Como pode cair no enem (UERJ) A superfície de uma esfera pode ser calculada através da fórmula: 4. π. R 2, onde R é o raio

Leia mais

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 06 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 26/09/2015. A lista deverá apresentar

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA

PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA ALUNO TURMA: 2 Ano DATA / /205 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /205 LISTA DE ESFERA ) (UFJF-MG) Um reservatório de água tem a forma de um hemisfério acoplado a um cilindro circular,

Leia mais

REVISÃO UNESP Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO UNESP Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO UNESP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA ESPACIAL Uma chapa retangular de alumínio, de espessura desprezível, possui 12 metros de largura e comprimento desconhecido

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV

Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV Geometria Espacial Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV E-mail:jaquicele.costa@ufv.br Pirâmide Pirâmide Consideremos um polígono convexo qualquer ABCDE,contido

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016)

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) singular Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) 1. (Ita) Dado um prisma hexagonal regular, sabe-se que sua altura mede 3 cm e que sua área lateral é o dobro da área de sua base.

Leia mais

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar lista de exercícios - 3º ano - matemática Aluno: Série: Turma: Data: Questão 1 É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo,

Leia mais

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Perímetros, Áreas e Volumes Matemática 6. Conteúdo. Perímetros, Áreas e Volumes... 3 Exercícios... 3 Exercício de Exame... 6

Perímetros, Áreas e Volumes Matemática 6. Conteúdo. Perímetros, Áreas e Volumes... 3 Exercícios... 3 Exercício de Exame... 6 Perímetros, Áreas e Volumes Matemática 6 Conteúdo Perímetros, Áreas e Volumes... 3 Exercícios... 3 Exercício de Exame... 6 2 http://explicapvl.blogs.sapo.pt Perímetros, Áreas e Volumes Caderno de Exercícios

Leia mais

FÍSICA - 2 o ANO MÓDULO 02 HIDROSTÁTICA EXERCÍCIOS PARTE 1

FÍSICA - 2 o ANO MÓDULO 02 HIDROSTÁTICA EXERCÍCIOS PARTE 1 FÍSICA - 2 o ANO MÓDULO 02 HIDROSTÁTICA EXERCÍCIOS PARTE 1 Como pode cair no enem (ENEM) Com a frequente adultertação de combustíveis, além de fiscalização, há necessidade de prover meios para que o consumidor

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

a) 6m b) 7m c) 8m d) 9m e) 10 m

a) 6m b) 7m c) 8m d) 9m e) 10 m Geometria Espacial II Exercícios 1. (G1 - ifsc 015) Um galão de vinho de formato cilíndrico tem raio da base igual a m e altura m. Se 40% do seu volume está ocupado por vinho, é CORRETO afirmar que a quantidade

Leia mais

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016 COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

2;5 é o ponto médio do segmento de extremos

2;5 é o ponto médio do segmento de extremos Professor: MARA BASTOS E CARLOS JR. Turma: 1 Nota: Obs.: Data: 4/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou

Leia mais

Prof Alexandre Assis

Prof Alexandre Assis 1 1. Na figura adiante, têm-se um cilindro circular reto, onde A e B são os centros das bases e C é um ponto da intersecção da superfície lateral com a base inferior do cilindro. Se D é o ponto do segmento

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA 3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: Data da entrega

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

30 s. Matemática Volume Questão O valor de 2, é: a) 1,2 b) 1, c) 1,5 d) Um número entre 0,5 e 1

30 s. Matemática Volume Questão O valor de 2, é: a) 1,2 b) 1, c) 1,5 d) Um número entre 0,5 e 1 30 s Matemática Volume 5 1. Questão Determine a soma e o produto das raízes 7x + x + 5 = 0.. Questão O valor de,777... é: a) 1, b) 1,666... c) 1,5 d) Um número entre 0,5 e 1 3. Questão Para que a média

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

V = (4 1)(3 1)(0,5) = 3dm que

V = (4 1)(3 1)(0,5) = 3dm que Resposta da questão 1: [E] Sejam a, b e c as medidas das arestas do paralelepípedo. a b c = = = k a = k, b = k e c = 5k. 5 k + k + 5k = 8 1k = 8 k =. Portanto, a= 1cm,b= 16cm e c = 0cm. Então, a área total

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 55 ESFERA

MATEMÁTICA - 3 o ANO MÓDULO 55 ESFERA MATEMÁTICA - 3 o ANO MÓDULO 55 ESFERA R r d R d r R esfera melancia cunha esférica fatia de melancia fuso esférico casca de melancia r d R d a a R a 2R Como pode cair no enem (ENEM) O globo da morte é

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem: 1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados

Leia mais

COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017)

COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) COLÉGIO PREVEST LISTA DE GEOMETRIA ESPACIAL CILINDROS, CONES E ESFERAS PROF. ULISSES MOTTA 1. (Ufpr 2017) Na modelagem matemática de um processo de fabricação, é comum supor que não há perda de material

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

LISTA UERJ - EMPUXO. A razão. entre as intensidades das forças, quando o sistema está em equilíbrio, corresponde a: a) 12 b) 6 c) 3 d) 2

LISTA UERJ - EMPUXO. A razão. entre as intensidades das forças, quando o sistema está em equilíbrio, corresponde a: a) 12 b) 6 c) 3 d) 2 LISTA UERJ - EMPUXO 1. (Uerj 2013) Observe, na figura a seguir, a representação de uma prensa hidráulica, na qual as forças F 1 e F 2 atuam, respectivamente, sobre os êmbolos dos cilindros I e II. Admita

Leia mais

Sólidos Inscritos e Circunscritos 3.º Ano

Sólidos Inscritos e Circunscritos 3.º Ano Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO

MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO MATEMÁTICA - 3 o ANO MÓDULO 56 SÓLIDOS DE REVOLUÇÃO, SEMELHANÇA E TRONCO BC B C A D A D Triângulo Retângulo Cone emicírculo Esfera 4 12 16 12 8 6 Cone Cone semelhante + Tronco de Cone Pirâmide Pirâmide

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VESTIBULAR UFPE UFRPE / 1998 2ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: FÍSICA 1 VALORES DE ALGUMAS GRANDEZAS FÍSICAS Aceleração da gravidade : 10 m/s 2 Número de Avogadro : 6,0 x 10 23 /mol Constante

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-2º ENSINO MÉDIO

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-2º ENSINO MÉDIO ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU ATEÁTICA-PROF. CARLINHOS/KOBA-º ENSINO ÉDIO EXERCÍCIOS PARA ESTUDO DE RECUPERAÇÃO DO º SEESTRE ATEÁTICA I ) Um corretor de imóveis pretende vender o terreno

Leia mais

De acordo com as normas desse porto, os contêineres deverão ser empilhados de forma a não sobrarem espaços nem ultrapassarem a área delimitada

De acordo com as normas desse porto, os contêineres deverão ser empilhados de forma a não sobrarem espaços nem ultrapassarem a área delimitada 1) (ENEM) Para construir uma manilha de esgoto, um cilindro com 2m de diâmetro e 4m de altura (de espessura desprezível), foi envolvido homogeneamente por uma camada de concreto, contendo 20cm de espessura.

Leia mais

Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre

Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Geometria Espacial [2014 - FUVEST] Três das arestas de um cubo, com um vértice em comum, são também arestas de

Leia mais

EXERCÍCIOS AVALIATIVOS EM SALA DE FÍSICA I NOME:

EXERCÍCIOS AVALIATIVOS EM SALA DE FÍSICA I NOME: UNIPAC- CAMPUS TEÓFILO OTONI CURSO: ENGENHARIA CIVIL DISCIPLINA: FÍSICA I PERÍODO: 2 PROFESSOR: ARNON RIHS. DATA: / / EXERCÍCIOS AVALIATIVOS EM SALA DE FÍSICA I NOME: O sucesso é um professor perverso.

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Professor: LEONARDO, THIAGO E CARLOS JR. Turma: 31 Nota: Questão 3. a) 40 min. b) 240 min. a) 1 2. b) 1 64 c) 400 min. d) 480 min.

Professor: LEONARDO, THIAGO E CARLOS JR. Turma: 31 Nota: Questão 3. a) 40 min. b) 240 min. a) 1 2. b) 1 64 c) 400 min. d) 480 min. Obs.: Data: 18/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou preta, respostas à lápis não serão consideradas para

Leia mais

Lista de exercícios 08 Aluno (a):

Lista de exercícios 08 Aluno (a): Lista de exercícios 08 Aluno (a): Turma: 3º série (Ensino médio) Professores: Flávio Disciplina: Matemática Prismas e pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Bateria de Exercícios Matemática II

Bateria de Exercícios Matemática II Sem limite para crescer Colégio: Nome: nº Professor(a): Série: 2ª EM Turma: Data: / /2013 Desconto Ortográfico: Nota: Bateria de Exercícios Matemática II 1. Represente graficamente a solução das seguintes

Leia mais

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados.

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados. ALUNO(A) AULA 002 MATEMÁTICA DATA 18 / 10 /2013 PROFESSOR: Paulo Roberto Weissheimer AULA 002 - DE MATEMÁTICA Geometria Espacial Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: QUESTÕES 1. Um recipiente em forma de cone circular reto, com raio da base R e altura h, está completamente cheio com água e óleo. Sabe-se que a superfície de contato entre os líquidos está inicialmente

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

FÍSICA - 3 o ANO MÓDULO 29 HIDROSTÁTICA: PRINCÍPIO DE PASCAL E EMPUXO

FÍSICA - 3 o ANO MÓDULO 29 HIDROSTÁTICA: PRINCÍPIO DE PASCAL E EMPUXO FÍSICA - 3 o ANO MÓDULO 29 HIDROSTÁTICA: PRINCÍPIO DE PASCAL E EMPUXO Como pode cair no enem (UERJ) Uma rolha de cortiça tem a forma de um cilin-dro circular reto cujo raio mede 2 cm. Num recipiente

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

AULA 01. Assim sendo, a quantidade total dessa substância no lago é de: (A) g (B) g (C) g (D) 0, g (E) 0, g

AULA 01. Assim sendo, a quantidade total dessa substância no lago é de: (A) g (B) g (C) g (D) 0, g (E) 0, g AULA 01 (ITA-SP/1999) Um poliedro convexo de 10 vértices apresenta faces triangulares e quadrangulares. O número de faces quadrangulares, o número de faces triangulares e o número total de faces formam,

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

d) 12 e) 15 valor numérico de é 1000π a) 0,9 mm³ b) 36 mm³ c) 36 mm³ d) 810 mm³ e) 3600 mm³

d) 12 e) 15 valor numérico de é 1000π a) 0,9 mm³ b) 36 mm³ c) 36 mm³ d) 810 mm³ e) 3600 mm³ 01 - (UFG GO) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em cinco

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do

Leia mais

Volumes parte 01. Isabelle Araujo

Volumes parte 01. Isabelle Araujo Volumes parte 01 Isabelle Araujo Introdução Suponha que queiramos medir a quantidade de espaço ocupado por um sólido S. Para isso, precisamos comparar S com uma unidade de volume. O resultado dessa comparação

Leia mais

Não efetues arredondamentos nos cálculos intermédios.

Não efetues arredondamentos nos cálculos intermédios. COLÉGIO DE SANTA TERESINHA Ficha de Avaliação n.º1- Matemática 6.ºAno Caderno 1-40 minutos (com recurso à calculadora) Nome: N.º Turma: Class: Enc.Educ.: Prof: 1. Considera a figura ao lado, composta por

Leia mais

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura.

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura. (UEPB PB/005) Para se fabricar uma caixa de sabão em pó com 5 cm de altura, 16 cm de largura e 5 cm comprimento serão necessários quantos cm de papelão? a) 1 10 b) 1 100 c) 605 d) 550 e) 1 500 (Unifor

Leia mais

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral

V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é

Leia mais

Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 18 Exercícios Complementares Tópicos Abordados Nesta Aula. Exercícios Complementares. 1) A massa específica de uma determinada substância é igual a 900kg/m³, determine o volume ocupado por uma massa

Leia mais

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular.

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine

Leia mais

UNIPAC- CAMPUS TEÓFILO OTONI CURSO: ENGENHARIA CIVIL DISCIPLINA: FÍSICA I PERÍODO: 2 VALOR: 5 PONTOS. PROFESSOR: ARNON RIHS.

UNIPAC- CAMPUS TEÓFILO OTONI CURSO: ENGENHARIA CIVIL DISCIPLINA: FÍSICA I PERÍODO: 2 VALOR: 5 PONTOS. PROFESSOR: ARNON RIHS. UNIPAC- CAMPUS TEÓFILO OTONI CURSO: ENGENHARIA CIVIL DISCIPLINA: FÍSICA I PERÍODO: 2 VALOR: 5 PONTOS. PROFESSOR: ARNON RIHS. DATA: 16 /02 /16 TRABALHO AVALIATIVO DE FÍSICA I NOME: O sucesso é um professor

Leia mais