Solução: Por equilíbrio: F A + F B = 20 kn (1) Pela restrição de deslocamento total de A até C: (2)

Tamanho: px
Começar a partir da página:

Download "Solução: Por equilíbrio: F A + F B = 20 kn (1) Pela restrição de deslocamento total de A até C: (2)"

Transcrição

1 eitêni do Mterii xeríio de rr ttimente Indetermind x. -5 rr de ço motrd n figur o ldo tem um diâmetro de 5. l é rigidmente fixd à prede e, nte de er rregd, há um folg de entre prede e extremidde d rr. Determine reçõe em e pr um forç xil =0 k plid à rr onforme indido. Depreze dimenõe do olr. ç ço = 00 G. or equilírio: + = 0 k () el retrição de delomento totl de té : n i i i i i () Ddo: ço = 00 G = 00 k/ d =,5 = 00 = 800 forço normi: = = 0 Áre d eçõe trnveri: d (5 ) 9, ço ,6395 ço , , ,60583 k 00 De () vem que: 0 6, ,397 k , ,6395 epot: reçõe em e ão 6,6 k e 3,39 k, repetivmente. págin

2 eitêni do Mterii xeríio de rr ttimente Indetermind págin. olun de onreto é reforçd om qutro rr de ço, d um om diâmetro de 8. Determinr tenão médi do onreto e do ço e olun é umetid um rg xil de 800 k. ço = 00 G e = 5 G. =00 G =5 G 8898, ,88 8 =800 k prte d forç no onreto prte d forç no ço 8, M 8898, 7397,7 65,9 M 07, ,3 7397,7 6707, ,3 07, , , epot: tenão norml médi do onreto é de 8, M e tenão norml médi do ço é de 65,9 M.

3 eitêni do Mterii xeríio de rr ttimente Indetermind págin 3.3 olun motrd n figur é frid de onreto om lt reitêni ( =9 G) e qutro rr de reforço de ço 36. Se olun é umetid um rg xil de 800 k, determine o diâmetro neeário d rr pr que um qurto d rg ej utentd pelo ço e trê qurto pelo onreto. =00 G =5 G =800 k prte d forç no onreto prte d forç no ço 36, d d d epot: O diâmetro neeário é de 36,3 d rr pr que um qurto d rg ej utentdo pelo ço e trê qurto pelo onreto.

4 eitêni do Mterii xeríio de rr ttimente Indetermind.5 O doi tuo ão feito do memo mteril e etão opldo omo motrdo ixo. Supondo que áre d eção trnverl de ej e de D ej, determinr reçõe em e D qundo forç for plid n junção. D or equilírio: + D = () n ii el retrição de delomento totl de té D: D 0 i i i () forço normi: = D = D D De () vem que: D 3 D epot: reçõe em e D ão /3 e /3, repetivmente. págin

5 eitêni do Mterii xeríio de rr ttimente Indetermind.53 olun entrl d etrutur motrd n figur tem um omprimento originl de,7, enqunto olun e têm omprimento de 5. Se vig do topo e d e forem oniderd rígid, determine tenão norml médi tunte em d olun. olun ão feit de lumínio e tem áre de eção trnverl médi de 00 ². onidere l =70 G. quçõe de equilírio etátio: 0 0 y M 0 () 0, 0, 0 () qução de omptiilidde de delomento: 0,3 5,7 0,3 0,3 5,7 0,3 k k = 800 k/m 0, m k 5,7 0, ,7 800 (3) eolvendo equçõe (), () e (3): 75,76 k 8,570 k im: 75,76 k k 0, ,570 k k 0, epot: tenõe normi médi tunte n olun, e ão 89 M,, M e 89 M, repetivmente. págin 5

6 eitêni do Mterii xeríio de rr ttimente Indetermind.5 O onjunto onite em du rr e D do memo mteril, om módulo de eltiidde e oefiiente de expnão térmi, e um rr om módulo de eltiidde e oefiiente de expnão térmi. Tod rr têm o memo omprimento e áre d eção trnverl. Se vig rígid etiver iniilmente horizontl n tempertur T, determinr o ângulo que el fz om horizontl qundo tempertur ument pr T. y M (d) (d) 0 0 () () d T T d T T T T D T T T T T T T T T D omptiilidde geométri: eolvendo equçõe, e 3 imultnemente, temo: T T 5 T T 5 im: 3 T tg( ) d T d5 (3) epot: O ângulo que vig rígid fz om horizontl é: ( )( ) ( ) págin 6

7 eitêni do Mterii xeríio de rr ttimente Indetermind págin 7 7) Um rr tem eção reduzid omo e vê n figur o ldo, etá engtd entre uporte rígido (indeloávei), e uport um forç xil,. lulr reçõe de poio em e, upondo = áre d eção trnverl n prte equerd e = áre d eção trnverl direit. (Ur o eguinte vlore numério: = 76 k; =500 ; =750 ; =0 ; =0 ; =0G). Tornndo rr iotáti, tirndo o poio, podemo lulr o delomento totl que é om do delomento de d treho (tomndo eçõe à direit). o entnto, pr que o poio exit, ee delomento totl deve er nulo: 5333, trvé d equção d iotáti podemo enontrr o vlor de 50666, , epot: reçõe em e ão 50,7 k e 5,3 k, repetivmente.

8 eitêni do Mterii xeríio de rr ttimente Indetermind 8) Um rr de ço 36, de 5 m de diâmetro, e enix entre doi uporte rígido, à tempertur miente. lulr reçõe de poio, qundo tempertur ument 0. dmitir o oefiiente de diltção térmi do ço = e o módulo de eltiidde longitudinl do ço = 00 G. 50 m 50 m 0 y 0 () o não exitie o poio, terímo o enurtmento devido à forç : o não exitie o poio, terímo o longmento devido à vrição de tempertur T: T T omo o poio exite, não temo longmento nem enurtmento d rr, dí equção de omptiilidde de delomento: T T T im: k 5 m 0000 m 9,77796 k 0 6 o 0 o epot: reçõe em e ão de ompreão igui 9, k. págin 8

9 eitêni do Mterii xeríio de rr ttimente Indetermind págin 9 9) O tuo de ço de 500 de omprimento é preenhido om onreto e ujeito um forç ompreiv de 80 k. Determine tenõe no onreto e no ço devid ete rregmento. O tuo de ço tem diâmetro externo de 80 e um diâmetro interno de 70. onidere ço =00 G e on = G 80k =forç no tuo =prte d forç no onreto =prte d forç no ço omptiilidde de delomento omo: 388,5 70 e 78, k / e 00 k / im:,59 k 57, ,7 k 78, ,5 78, ntão tenõe no ço e no onreto ão: 5,85 M 388,5 59 8,8 M 78, epot: tenão norml médi do onreto é de 5,85 M e tenão norml médi do ço é de 8,8 M.

10 eitêni do Mterii xeríio de rr ttimente Indetermind 0) Qul eri reção,, d rr engtd d figur ixo, e o invé de um vrição de tempertur T, rr tivee um omprimento iniil + em lugr de. (dmitir ditâni entre o uporte igul.) etirndo o poio uperior e plindo reção omo um rg, podemo lulr o delomento n extremidde d rr:. (). m emo que ete delomento é, ou melhor: = () ominndo () e (), temo que:.. portnto reção é:.. epot: reçõe de poio ão ompreiv igui págin 0

F ds = mv dv. U F θds. Dinâmica de um Ponto Material: Trabalho e Energia Cap. 14. = 2 s1

F ds = mv dv. U F θds. Dinâmica de um Ponto Material: Trabalho e Energia Cap. 14. = 2 s1 4. Trblho de um orç MECÂNICA - DINÂMICA Dinâmi de um Ponto Mteril: Trblho e Energi Cp. 4 Prof Dr. Cláudio Curotto Adptdo por: Prof Dr. Ronldo Medeiro-Junior TC07 - Meâni Gerl III - Dinâmi 4. Prinípio do

Leia mais

10. Análise da estabilidade no plano complexo (s)

10. Análise da estabilidade no plano complexo (s) . Análie d etilidde no plno omplexo ( A nálie d etilidde de um item liner em mlh fehd pode er feit prtir d lolizção do pólo em mlh fehd no plno. Se qulquer do pólo e lolizr no emiplno direito, então qundo

Leia mais

Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO

Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO Vlor 2,0 omponente urriulr: Professor(): Turno: Dt: Mtemáti PULO EZR Mtutino luno(): Nº do Série: Turm: luno: 9º no Suesso! Pontução EXTR List de Eeríios ONTINUÇÂO List de eeríios do teorem de Tles. Semelhnç

Leia mais

2 A trigonometria no triângulo retângulo

2 A trigonometria no triângulo retângulo 16 A trigonometri no triângulo retângulo A trigonometri foi inventd á mis de dois mil nos. El onsiste, essenilmente, em ssoir d ângulo, definido omo união de um pr de semirrets de mesm origem, não ontids

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

Questão 1 No plano cartesiano, considere uma haste metálica rígida, de espessura desprezível, com extremidades nos pontos A (3,3) e B (5,1).

Questão 1 No plano cartesiano, considere uma haste metálica rígida, de espessura desprezível, com extremidades nos pontos A (3,3) e B (5,1). UJ OURSO VSTIULR 0- RITO PROV ISURSIV TÁTI Questão o plno crtesino, considere u hste etálic rígid, de espessur desprezível, co extreiddes nos pontos (,) e (5,) ) eterine equção d circunferênci de centro

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras.

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras. UT 01 Vetore Oerve itução eguir: A prtícul vermelh etá e movendo num di quente, onde o termômetro indic tempertur de 41 gru Celiu! GRANDEZA ESCALAR É um grndez fíic completmente crcterizd omente com o

Leia mais

n = número de camadas de Neoprene b

n = número de camadas de Neoprene b 1/13 Aprelho de Apoio de Neoprene fretdo ( segundo norm lemã DIN 4141-14 ) Espessur totl de Neoprene = T ( mm) = n = número de cmds de Neoprene n t + 5mm 5,5mm d t = Neoprene s = chp de ço t = Neoprene,5mm

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale:

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO ) (UNISINOS) O ldo do qudrdo ABCD, d figur ixo, mede m e M é o ponto médio do ldo CD. 1) No triângulo ixo, o seno do ângulo B vle: 9 ) 0 9 ) 1 0 ) 9 0 1 1 9 ) (UFRGS)

Leia mais

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS 49 UL 7 EFICIÊNCI E EFETIVIDDE DE LETS Efiiêni de let teori desenvolvid n ul nterior é stnte útil pr um nálise em detlhes pr o projeto de novs onfigurções e geometris de lets. Pr lguns sos simples, existem

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica Mtemáti Bái Unidde 8 Função Logrítmi RANILDO LOPES Slide diponívei no noo SITE: http://ueedgrtito.wordpre.om Logritmndo Be do ritmo Logritmo Condição de Eitêni > > Logritmo Logritmo Logritmo Logritmndo

Leia mais

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço 2º. Teste de Introdução à Mecânic dos Sólidos Engenhri Mecânic 25/09/2008 25 Pontos 1ª. Questão: eterminr os digrms de esforços solicitntes d Vig i-poid com blnço bixo. 40kN 30 0 150 kn 60 kn/m 3 m 2 m

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Resposta de Modelos Dinâmicos Variáveis de estado

Resposta de Modelos Dinâmicos Variáveis de estado epot de Modelo Dinâmio Vriávei de etdo Outro Proeo de Seprção Prof Ninok Bojorge Deprtmento de Engenri uími e de Petróleo UFF ontrole Feedbk... ontinução ontroldor G tudor G V POESSO G P G Senor Introdução

Leia mais

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação 1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm

Leia mais

TRIÂNGULO 1 - CONCEITO 2 - CLASSIFICAÇÃO. acutângulo 2º) Quanto aos ângulos retângulo obtusângulo. Sejam, não colineares, os pontos A, B, e C A.

TRIÂNGULO 1 - CONCEITO 2 - CLASSIFICAÇÃO. acutângulo 2º) Quanto aos ângulos retângulo obtusângulo. Sejam, não colineares, os pontos A, B, e C A. TRIÂNGULO 1 - ONITO Sejm, não olineres, os pontos,, e utângulo 2º Qunto os ângulos retângulo otusângulo I é utângulo é união dos segmentos, e. m ( = Ldos: m ( = Vérties: m ( = II, e são gudos 2 - LSSIFIÇÃO

Leia mais

Estruturas de Betão Armado II 13 Pré-Esforço - Introdução

Estruturas de Betão Armado II 13 Pré-Esforço - Introdução Estruturs de Betão Armdo II 1 Pré-Esforço é plição de esforços em peçs de betão, ntes do iníio d su utilizção, que ontrrim os efeitos ds ções que ests vão estr sujeits. O pré-esforço pode ser plido por

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

Física Fascículo 02 Eliana S. de Souza Braga

Física Fascículo 02 Eliana S. de Souza Braga ísic scículo 0 Elin S. de Souz r Índice Dinâmic Resumo eórico...1 Exercícios... Gbrito...4 Dinâmic Resumo eórico s 3 leis de ewton: 1. lei ou princípio d Inérci: res = 0 = 0 v = 0 v é constnte. lei ou

Leia mais

GRANDEZAS PROPORCIONAIS

GRANDEZAS PROPORCIONAIS Hewlett-Pkrd GRANDEZAS PROPORCIONAIS Auls 01 03 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE PROPORCIONAIS

Leia mais

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R. 7 ATEÁTICA Prov Diuriv. Sej um mtriz rel. Defin um função n qul element mtriz e elo pr poição eguinte no entio horário, ej, e,impli que ( f. Enontre to mtrize imétri rei n qul = (. Sej um mtriz form e

Leia mais

Gabarito CN Solução: 1ª Solução: 2ª Solução:

Gabarito CN Solução: 1ª Solução: 2ª Solução: ) Sejm P e 5 9 Q 5 9 Qul é o resto de (A) (B) (C) 5 (D) (E) 5 P? Q GABARITO: B 6 8 0 5 9 P 5 9 6 8 0 5 9 Q 5 9 P Q P Q Dí, ) Sbendo que ABC é um triângulo retângulo de hipotenus BC =, qul é o vlor máximo

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

TRIGONOMETRIA ESFÉRICA

TRIGONOMETRIA ESFÉRICA TRIGONOMETRI ESFÉRI Dr. Dniele rro Mrr lve Dr. Joé Milton rn Deprtmento de rtogrfi Fuldde de iêni e Tenologi Unep mpu de Preidente Prudente 017 SUMÁRIO 1. TRIGONOMETRI ESFÉRI... 3 1.1. oneito áio... 3

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Sólidos semelhantes. Um problema matemático, que despertou. Nossa aula. Recordando semelhança 2 = 9 3 = 12 4

Sólidos semelhantes. Um problema matemático, que despertou. Nossa aula. Recordando semelhança 2 = 9 3 = 12 4 A UA UL LA Sólidos semelhntes Introdução Um problem mtemático, que despertou curiosidde e mobilizou inúmeros ciddãos n Gréci Antig, foi o d dupli- cção do cubo. Ou sej, ddo um cubo de rest, qul deverá

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações Universidde de São ulo Esol oliténi - Engenhri Civil EF - Deprtmento de Engenhri de Estruturs e Fundções - Coneitos Fundmentis de Dimensionmento de Estruturs de Conreto: Vigs, Ljes e ilres ILARES DE CONTRAVENTAMENTO

Leia mais

Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2

Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2 Profª Gbriel Rezende Fernndes Disciplin: Análise Estruturl 2 INCÓGNITAS = ESFORÇOS HIPERESTÁTICOS (reções de poio e/ou esforços em excesso que estrutur possui) N 0 TOTAL DE INCÓGNITAS = g =gru de hiperestticidde

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

WWW.escoladoeletrotecnico.com.br

WWW.escoladoeletrotecnico.com.br USOPE USO PEPAATÓIO PAA ONUSOS EM ELETOTÉNIA PE ELETIIDADE (Ligções SÉI E E PAALELA. EDE DELTA E ESTELA) AULA Prof.: Jen WWW.esoldoeletrotenio.om.r 0 de Setemro de 007 LIGAÇÕES SÉIES E PAALELAS USOPE.

Leia mais

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido.

Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido. Estátic de Fluidos Um fluido é considerdo estático qundo s rtículs não se deformm, isto é, estão em reouso ou em movimento de coro ríido. Como um fluido não suort tensões cislhntes sem se deformr, em um

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

E(s) U(s) A evolução do ganho pode ser observada no Root-Locus ou LGR conforme os pólos da cadeia fechada se deslocam.

E(s) U(s) A evolução do ganho pode ser observada no Root-Locus ou LGR conforme os pólos da cadeia fechada se deslocam. . COMPENSAÇÃO R() E() G () U() G() Y() e(t) inl de erro u(t) inl de ontrolo G (t) função de trnferêni do ontroldor.. ACÇÃO PROPORCONAL A função de trnferêni do ontroldor é rzão entre trnformd de Lle d

Leia mais

Questões Análise de Tensões e Deformações

Questões Análise de Tensões e Deformações Questões nálise de Tensões e Deformções 8.8 Eeríios Resolvidos (olorção rof. láido) FORMULÁRIO pr álulo ds tensões no plno d seção Esforço Soliitnte Seção Crregmento Oservção Distriuição ds tensões n seção

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

Aplicações da Integral

Aplicações da Integral Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,

Leia mais

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas.

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas. Cpítulo II Funções Reis de Vriável Rel.. Função eponencil e logritmo. Funções trigonométrics directs e inverss. Função eponencil A um unção deinid por nome de unção eponencil de bse. ( ), onde, > 0 e,

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física)

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física) ecânic e Ond O Curo LEC º TESTE 0/0 º Seetre -04-0 8h0 Durção: h0 ep: Prof João Crlo ernnde (Dep íic) TAGUS PAK Nº: Noe: POBLEA (4 vlore) U etudnte de O potou co u igo que conegui delocr u loco de kg pen

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

Trigonometria - Primeira Parte

Trigonometria - Primeira Parte Cpítulo 7 Trigonometri - Primeir Prte 7 Introdução Triângulo é um polígono om ângulos internos, logo ldos Podemos lssiá-los de dus mneirs: qunto os tmnhos dos ldos: equilátero - ldos de mesmo omprimento,

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales INSTITUTO PLIÇÃO RNNO RORIUS SILVIR Pofeo: Mello mdeo luno(): Tum: LIST Teoem de Tle Teoem de Tle hmmo de feie de plel um onjunto de et plel de um plno, ou ej, // // //. Ret plel otd po um tnvel: onidee

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes UNIVESIDDE FEDEL D HI ESCOL POLITÉCNIC DEPTMENTO DE ENGENHI QUÍMIC ENG 008 Fenômenos de Trnsorte I Profª Fátim Loes VSOS COMUNICNTES E MNÔMETOS Considerndo um fluido incomressível num tubo em U cujs extremiddes

Leia mais

OPERAÇÕES ALGÉBRICAS

OPERAÇÕES ALGÉBRICAS MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem

Leia mais

Física Geral e Experimental I (2011/01)

Física Geral e Experimental I (2011/01) Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

x 3 x 3 27 x 4 x 9 3 x 4 3 x 5 3x x 2 AULA 3: EQUAÇÕES E INEQUAÇÕES (1º GRAU E 2º GRAU) (GABARITO) x 1 x 13 x 7 1. Resolver as seguintes equações x 5

x 3 x 3 27 x 4 x 9 3 x 4 3 x 5 3x x 2 AULA 3: EQUAÇÕES E INEQUAÇÕES (1º GRAU E 2º GRAU) (GABARITO) x 1 x 13 x 7 1. Resolver as seguintes equações x 5 AULA : EQUAÇÕE E INEQUAÇÕE (º GRAU E º GRAU) (GABARITO). Resolver s seguintes equções ) e) ) f),, ) g),,,, d) h) i) j) k) l) UNIP - Administrção - Mtemáti ási Profª Ptríi Alves Aul equções e inequções

Leia mais

No caso do movimento retilíneo a direção do vetor é constante e coincide com a trajetória (reta).

No caso do movimento retilíneo a direção do vetor é constante e coincide com a trajetória (reta). Cinemátic Trjetóri: É o lugr geométrico dos pontos sucessimente ocupdos por um prtícul durnte o seu moimento. 1. No cso do moimento retilíneo trjetóri é um ret Velocidde: É um etor, tngente à trjetóri

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

Manual de instalação. Aquecedor de reserva de monobloco de baixa temperatura Daikin Altherma EKMBUHCA3V3 EKMBUHCA9W1. Manual de instalação

Manual de instalação. Aquecedor de reserva de monobloco de baixa temperatura Daikin Altherma EKMBUHCA3V3 EKMBUHCA9W1. Manual de instalação Aquecedor de reserv de monoloco de ix tempertur Dikin EKMBUHCAV EKMBUHCA9W Portugues Índice Índice Acerc d documentção. Acerc deste documento... Acerc d cix. Aquecedor de reserv..... Pr retirr os cessórios

Leia mais

CECOMETAL. Distribuidora Ltda. CECOMETAL Distribuidora Ltda. A entrega mais rápida e confiável de Campinas

CECOMETAL. Distribuidora Ltda. CECOMETAL Distribuidora Ltda. A entrega mais rápida e confiável de Campinas Distriuidor Ltd A entreg mis rápid e onfiável de Cmpins Ru José Gonçlves Mhdo, 132, Vil Elz Cmpins-SP - CEP: 141-5 Fone/Fx: (1) 3232-7 VIVO: (1) 1-546 ID:7* E-mil: eometl@eometl.om.r CECOMETAL Distriuidor

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017 Físic III - 4323203 Escol Politécnic - 2017 GABARITO DA P1 20 de ril de 2017 Questão 1 O cmpo elétrico sore o eixo de simetri (eixo z) de um nel de rio r e crg totl Q > 0 é ddo por z E nel = 1 Qz k. (r

Leia mais

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x

Leia mais

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S.

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S. Resumo e Exemplos Resolvios roessos Termoinâmios - Físi ro. Dr. láuio S. Srtori Lei termoinâmi: U W roessos termoinâmios omuns 2 Lei Termoinâmi: uno se inluem toos os sistems que tomm prte num proesso,

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

φ p 400 mm. A carga de cálculo transmitida pela laje ao pilar é igual a Q d 1120 kn

φ p 400 mm. A carga de cálculo transmitida pela laje ao pilar é igual a Q d 1120 kn GBRITO UEL - CTU Departamento de Etrutura a. Prova TRU 04 Contruçõe em Concreto Etrutural C, 08005, 1a. Parte 1 a. Quetão ponto) ): Conidere, no ELU Punção, uma laje lia em viga), apoiada obre um pilar

Leia mais

RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO Í N D I C E

RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO Í N D I C E RAZÕES TRIGONOMÉTRIAS NO TRIÂNGULO RETÂNGULO Í N D I E Introdução... 0 oneito... 0 Rzões Trigonométris no Triânguo Retânguo... 0 Resumindo... 0 Rzões Trigonométris Espeiis... 0 Exempos... 05 Atividdes

Leia mais

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e UDESC DCC BCC DISCIPLINA : TEG0001 Teori os Grfos PRIMEIRA LISTA DE EXERCÍCIOS 1.) Ientifique pr um os três grfos ixo:. número e nós e ros;. o gru e nó;. Compre som e toos os grus os nós e grfo om o número

Leia mais

Exemplos de pilares mistos

Exemplos de pilares mistos Pilre Mio Exemplo de pilre mio Peri meálio reveido om beão Peri ubulre irulre heio om beão Peri meálio prilmene reveido om beão Peri ubulre heio om beão reveindo um peril bero Peri ubulre rengulre heio

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tem II Introdução o Cálulo Diferenil II Tref nº 1 do plno de trlho nº 7 Pr levr o est tref pode usr su luldor ou o sketh fmilis.gsp

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º nos do Ensino Fundmentl) GABARITO GABARITO NÍVEL 1) C 6) C 11) D 16) B 1) C ) E 7) A 1) A 17) B ) Anuld ) A 8) E 1) B 18) E ) A ) A 9)

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

facebook/ruilima

facebook/ruilima MATEMÁTICA UFPE ( FASE/008) 01. Sej áre totl d superfície de um cubo, e y, o volume do mesmo cubo. Anlise s firmções seguir, considerndo esss informções. 0-0) Se = 5 então y = 7. 1-1) 6y = 3 -) O gráfico

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...). 9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr

Leia mais

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida Interl Deinid Nots de ul - pro. Mrlene - 28-2 1 - Deprtmento de Mtemáti Aplid (GMA) Nots de ul - 28-2 Pro. Mrlene Dieuez Fernndez Interl deinid Oservção: esse teto ontém pens prte teóri desse ssunto, não

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 ) C 6) B ) C 6) D ) D ) C 7) B ) D 7) A ) D 3) C 8) B 3) A 8) D 3) D 4) A 9) B 4) C 9) D 4) E 5)

Leia mais

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Pckrd PORCENTAGEM Auls 01 04 Elson Rodrigues, Gbriel Crvlho e Pulo Luiz Rmos Sumário PORCENTAGEM... 1 COMPARANDO VALORES - Inspirção... 1 Porcentgem Definição:... 1... 1 UM VALOR PERCENTUAL DE

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

Lista de Exercícios Integração Numérica

Lista de Exercícios Integração Numérica List de Exercícios Integrção Numéric ) Nos exercícios ixo, proxime integrl utilizndo () Regr do Trpézio e () Regr de Simpson. (Arredonde respost pr três lgrismos significtivos.) ) x dx n = 8 Regr do Trpézio:

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

FÍSICA. 16) Uma pedra é solta de um penhasco e leva t 1 segundos para chegar no solo. Se t 2 é o

FÍSICA. 16) Uma pedra é solta de um penhasco e leva t 1 segundos para chegar no solo. Se t 2 é o FÍSICA 16) Um pedr é solt de um penhsco e lev t 1 segundos pr chegr no solo. Se t 2 é o tempo necessário pr pedr percorrer primeir metde do percurso, então podemos firmr que rzão entre t 1 e t 2 vle: A)

Leia mais

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos

TRIGONOMETRIA/GEOMETRIA 1 Arcos e ângulos Nome: n o : Ensino: Médio érie: ª. Turm: Dt: rofessor: Márcio esumo TIGNMETI/GEMETI rcos e ângulos. Elementos: C: centro d circunferênci CB = C = : rio d circunferênci CB ˆ : ângulo centrl B : rco. Medid

Leia mais

Gabarito Lista 10 Microeconomia II Profa. Joisa Dutra Monitor: Pedro Bretan

Gabarito Lista 10 Microeconomia II Profa. Joisa Dutra Monitor: Pedro Bretan Gbrito List 0 Miroeonomi II Prof. Jois Dutr Monitor: Pedro Bretn Questão Indução retrotiv: primeiro, resolvemos o jogo d segund etp entre s firms e., log 0 mx mente n p Resolvendo esse sistem, temos: Logo,

Leia mais

Manual de instalação. Aquecedor de reserva de monobloco de baixa temperatura Daikin Altherma EKMBUHCA3V3 EKMBUHCA9W1. Manual de instalação

Manual de instalação. Aquecedor de reserva de monobloco de baixa temperatura Daikin Altherma EKMBUHCA3V3 EKMBUHCA9W1. Manual de instalação Aquecedor de reserv de monoloco de ix tempertur Dikin EKMBUHCAV EKMBUHCA9W Portugues Índice Índice Acerc d documentção. Acerc deste documento... Acerc d cix. Aquecedor de reserv..... Pr retirr os cessórios

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

MEDIÇÃO. Modelos Perimetral Fixo para Batente

MEDIÇÃO. Modelos Perimetral Fixo para Batente MEDIÇÃO Perimetrl Fixo pr Btente Modelos 451 452 453 451 452 453 X A medição será sempre relizd do ldo de for, ou sej, ldo oposto à ertur d port. Mteriis neessários: Tren Lápis X1 X2 MEDIÇÃO PERIMETRAL

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1 Mteril Teório - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte 1 Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio min M.

Leia mais