Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido.

Tamanho: px
Começar a partir da página:

Download "Um fluido é considerado estático quando as partículas não se deformam, isto é, estão em repouso ou em movimento de corpo rígido."

Transcrição

1 Estátic de Fluidos Um fluido é considerdo estático qundo s rtículs não se deformm, isto é, estão em reouso ou em movimento de coro ríido. Como um fluido não suort tensões cislhntes sem se deformr, em um fluido estático só tum tensões normis (ressão). ressão exercid em um onto é iul em tods s direções. O estudo de estátic de fluidos é imortnte em diverss licções, como mnometri, rorieddes d tmosfer, forçs em sistems hidráulicos e forçs em coros submersos. PUC-Rio, nel Nieckele 1

2 Equções básics d estátic de fluidos Considere um cubo de fluido Seund Lei de Newton: F m Estátic: F F F s F c Forç de suerfície Forç de coro Equções diferenciis: equções or unidde de volume Equções válids em todos os ontos do esço e instntes de temo f F / d f s f c Equção d estátic Forçs de Coro F c P m d f c PUC-Rio, nel Nieckele

3 Forçs de Suerfície d ( x) dd ( x,, ) ( x dx) dd d N direção x ( x) dd ( x dx) dd dx F x ( x) ( x dx) dx dx d d fx Fx d ( x dx) dx ( x) x f ; f f s x i j k f s PUC-Rio, nel Nieckele

4 4 s f c f Em coordends crtesins x x PUC-Rio, nel Nieckele

5 5 Vrição d ressão em um fluido estático k x d d x x, d d d d ) ( Como ressão no fundo erlmente não é conhecid, tomr oriem no fundo não é um rocedimento rático. Normlmente, ressão n suerfície do líquido é conhecid (ressão tmosféric). PUC-Rio, nel Nieckele

6 k h h h B h d dh ( h) d h dh ( dh d) h diferenç de ressão entre dois fluidos estáticos é dd or: B h h B B h Pontos n mesm horiontl, ossuem mesm ressão. 1 Exlique orque ltur de líquido é mesm em todos os reciientes. PUC-Rio, nel Nieckele 6

7 Mnometri Mnômetro é um disositivo r medir diferenç de ressão entre dois ontos. Mnômetro em U : B C tm B C Como os ontos B e C estão em um mesm horiontl de um trecho contínuo de fluido: B C tm Qundo s dus erns do mnômetro estão n mesm ltur: tm ressão em relção ressão tmosféric é denomind de PRESSÃO MNOMÉTRIC mn tm PUC-Rio, nel Nieckele 7

8 Exemlo 1: Um mnômetro ossui um diâmetro interno uniforme D = 6,5 mm. O tubo em U é rcilmente enchido com áu. Em seuid, um volume de,5 cm de óleo com densidde de 8 k/m é diciondo no ldo esquerdo, como mostrdo n fiur. Clcule ltur de equilíbrio se mbs s erns estão berts r tmosfer. óleo áu Exemlo : Determine diferenç de ressão entre os ontos e B. d d o,8 1,6 PUC-Rio, nel Nieckele 8

9 Exemlo PUC-Rio, nel Nieckele 11

10 Forç em suerfícies submerss lns Um ve que não ode hver tensões cislhntes num fluido em reouso, forç hidrostátic sobre qulquer elemento d suerfície deve ser norml ele. df n d o sinl netivo indic que forç tu no sentido contr suerfície. resultnte ds forçs hidrostátics que tum no coro é determind el interl d forç em cd onto. O onto de licção d forç resultnte deve ser tl que o seu momento em relção qulquer eixo sej iul o momento d forç distribuíd. F R * F F R R * df df PUC-Rio, nel Nieckele 1

11 Forç em suerfícies submerss lns PUC-Rio, nel Nieckele 1

12 Exemlo 1: PUC-Rio, nel Nieckele 14

13 Exemlo : comort é rticuld em e tem metros de lrur em um lno norml o dirm mostrdo. Clcule forç requerid em r mnter comort fechd. R PUC-Rio, nel Nieckele 17

14 18 Exemlo : P tm tu em mbos os ldos, e cncel. O forç resultnte r mnter comort fechd, deve ser tl que o momento em relção oriem sej nulo. sin ] sin [ L L w w d L R O L O sin O R tm R sin L L R O w w d R L M L O o ] sin [ PUC-Rio, nel Nieckele N R 67k ) sin(.

15 Exemlo : d c.4 PUC-Rio, nel Nieckele 19

16 Exemlo : b w b w Relção de triânulos d w d df F tm R ) ( tm c N b d b d b F O c c c R 76.4 d c Ponto de licção d forç resultnte m F M b d b d b M F R c O c c c c R * * PUC-Rio, nel Nieckele

17 Emuxo k df 1 d n 1 1 df d n É resultnte ds forçs de ressão n direção verticl df df df d F k df k h d d df 1 1 k d 1 k 1 d volume submerso Exemlo: Determine s leiturs ds escls e B indicds n fiur. Desree o eso do reciiente. roch ossui um mss de 15 k e volume de,1m. O volume de áu no tnque é de litros. B PUC-Rio, nel Nieckele 1

18 Emuxo Exemlo: Determine s leiturs ds escls e B indicds n fiur. Desree o eso do reciiente. roch ossui um mss de 15 k e volume de,1m. O volume de áu no tnque é de litros. E T P F T E P B T Peso E m O r ( ) N B F T Peso totl NB NB Peso tnque Pesoroch T ms vimos que Pesoroch T E NB Peso tnque T E T NB Peso tnque E Ot Or N N B T Peso totl N B PUC-Rio, nel Nieckele

19 Exercício Inicilmente o istão com diâmetro D= 5 cm reous no fluido mnométrico, que ossui m = k/m. Ocorre um deslocmento h= cm do fluido mnométrico, do tubo com diâmetro d=1 cm. Clcule forç licd sob o istão se o deslocmento é =1cm D d F P h F P F F P tm m h D P ( tm m h) 4 F P F 18, N F F F F P F ( tm m ) ( tm m h) ( tm m ) m ( Note que deslocdo h) / 4 PUC-Rio, nel Nieckele ( D D h) 4

Fluido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. F t

Fluido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. F t Mecânica dos luidos Sólido luido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. t t luido (t) t d dt t Estática de luidos Um fluido é considerado estático quando

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes UNIVESIDDE FEDEL D HI ESCOL POLITÉCNIC DEPTMENTO DE ENGENHI QUÍMIC ENG 008 Fenômenos de Trnsorte I Profª Fátim Loes VSOS COMUNICNTES E MNÔMETOS Considerndo um fluido incomressível num tubo em U cujs extremiddes

Leia mais

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS Universidde ederl Rurl do Semi-Árido ENÔMENOS DE TRANSPORTE MECÂNICA DOS LUIDOS ESTÁTICA DOS LUIDOS UERSA Universidde ederl Rurl do Semi-Árido Prof. Roberto Vieir Pordeus Nots de ul enômenos de Trnsorte

Leia mais

Física Fascículo 02 Eliana S. de Souza Braga

Física Fascículo 02 Eliana S. de Souza Braga ísic scículo 0 Elin S. de Souz r Índice Dinâmic Resumo eórico...1 Exercícios... Gbrito...4 Dinâmic Resumo eórico s 3 leis de ewton: 1. lei ou princípio d Inérci: res = 0 = 0 v = 0 v é constnte. lei ou

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO M 100 MÂNI Seund ro 19 de outuro de 010 Durção d ro: 100 minutos (não é ermitido o uso de clculdors ) QUSTÃ 1 (3,0 ontos): Sendo que os dois discos têm o mesmo rio e o mesmo eso m, e que o coeficiente

Leia mais

6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3.

6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3. 6 Fich de eercícios de Cálculo pr Informátic CÁLCULO INTEGRAL 6- Determine primitiv F d função f que stisfz condição indicd, em cd um dos csos seguintes: ) f() = sin, F (π) = 3. b) f() = 3 + +, F (0) =

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

FÍSICA. 16) Uma pedra é solta de um penhasco e leva t 1 segundos para chegar no solo. Se t 2 é o

FÍSICA. 16) Uma pedra é solta de um penhasco e leva t 1 segundos para chegar no solo. Se t 2 é o FÍSICA 16) Um pedr é solt de um penhsco e lev t 1 segundos pr chegr no solo. Se t 2 é o tempo necessário pr pedr percorrer primeir metde do percurso, então podemos firmr que rzão entre t 1 e t 2 vle: A)

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017 Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics

Leia mais

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019 Físic III - 4323203 Escol Politécnic - 2019 GABARITO DA P2 09 de mio de 2019 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio 2. A esfer e csc esféric são concêntrics

Leia mais

FENÔMENOS DE TRANSPORTE Estática dos Fluidos

FENÔMENOS DE TRANSPORTE Estática dos Fluidos FENÔMENOS DE TRANSPORTE Estática dos Fluidos CAPÍTULO. 1 HIDROSTÁTICA HIDRODINÂMICA reouso ou equilíbrio (1ª e 3ª leis de Newton) movimento (comlexo e será tratado suerficialmente) OU HIDROSTÁTICA 1 Densidade

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS -

LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS - LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS - 1) Um reservatório de água possui formato cilíndrico com altura de 20m e diâmetro de 5m. Qual a pressão efetiva no fundo do reservatório

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss 1 1 ist de Eercícios Forç Elétric Cmpo Elétrico ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis

Leia mais

Soluοc~o d Quest~o 1 () r r > c s contribuiοc~oes do cilindro interno e d csc se cncelm. r < r < b somente o cilindro interno contribui produzindo um

Soluοc~o d Quest~o 1 () r r > c s contribuiοc~oes do cilindro interno e d csc se cncelm. r < r < b somente o cilindro interno contribui produzindo um ffω Ψ Φ 2 ' $ & F sic Escol olitécnic - 2004 FGE 2203 - Gbrito d 2 20 de mio de 2004 % } Est vliοc~o tem 100 minutos de durοc~o. } É proibid consult colegs, livros e pontmentos. } Escrev de form leg vel.

Leia mais

ESTRUTURAS DE CONTENÇÃO PARTE 2

ESTRUTURAS DE CONTENÇÃO PARTE 2 ESTRUTURAS DE CONTENÇÃO ARTE uro de Arrimo A designção uros de Arrimo é utilizd de um form genéric pr referir-se qulquer estrutur construíd com finlidde de servir de contenção ou rrimo um determind mss

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Apostila de Física 31 Hidrostática

Apostila de Física 31 Hidrostática Apostila de Física 31 Hidrostática 1.0 Definições 1.1 Conceito de Pressão Pressão Relação entre a intensidade da força que atua perpendicularmente e a área que ela se distribui. Uma força exerce maior

Leia mais

Aplicações da Integral

Aplicações da Integral Módulo Aplicções d Integrl Nest seção vmos ordr um ds plicções mtemático determinção d áre de um região R do plno, que estudmos n Unidde 7. f () e g() sejm funções con-, e que f () g() pr todo em,. Então,

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

Física D Extensivo V. 2

Física D Extensivo V. 2 GITO Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm =

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014 Físic III - 4320301 Escol Politécnic - 2014 GABARITO DA P2 14 de mio de 2014 Questão 1 A região entre dus cscs esférics condutors concêntrics de rios e b com b > é preenchid com um mteril de resistividde

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

1 a Lista de exercícios Análise do estado de tensões

1 a Lista de exercícios Análise do estado de tensões 1 List de eercícios Análise do estdo de tensões 1) Pr o estdo de tensões ddo, determinr s tensões, norml e de cislhmento, eercids sobre fce oblíqu do triângulo sombredo do elemento. R: τ = 25,5 MP σ =

Leia mais

DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS MEDIDAS DE PRESSÃO

DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS MEDIDAS DE PRESSÃO Nome: unesp DEPRTMENTO DE ENERGI Turma: LBORTÓRIO DE MECÂNIC DOS FLUIDOS MEDIDS DE PRESSÃO - OBJETIVO Consolidar o conceito de pressão conhecendo os diversos instrumentos de medida. - INTRODUÇÃO TEÓRIC..

Leia mais

Física D Extensivo V. 2

Física D Extensivo V. 2 Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm = 1,4.

Leia mais

1.3.1 Princípios Gerais.

1.3.1 Princípios Gerais. 1.3 HIDRODINÂMICA UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL 1.3.1 Princípios Gerais. Prof. Adão Wagner Pêgo Evangelista 1 - NOÇÕES DE HIDRÁULICA

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Tecnologia em Automação Industrial Mecânica dos Fluidos Lista 03 página 1/5

Tecnologia em Automação Industrial Mecânica dos Fluidos Lista 03 página 1/5 Curso de Tecnologia em utomação Industrial Disciplina de Mecânica dos Fluidos prof. Lin Lista de exercícios nº 3 (Estática/manometria) 1. Determine a pressão exercida sobre um mergulhador a 30 m abaixo

Leia mais

b 2 = 1: (resp. R2 e ab) 2. Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp x 3 2

b 2 = 1: (resp. R2 e ab) 2. Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp x 3 2 8. APLICAÇÕES DA INTEGRAL CÁLCULO 2-2018.1 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ;

Leia mais

Cálculo Diferencial e Integral II Prof. Ânderson Vieira

Cálculo Diferencial e Integral II Prof. Ânderson Vieira CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são

Leia mais

Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA Acesse: http://fuvestibulr.com.br/ Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de

Leia mais

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA PS 27 de junho de 2013 Questão 1 Um crg pontul Q > 0 se encontr no centro de um esfer dielétric mciç de rio R e constnte dielétric κ. Não há crgs

Leia mais

1 Introdução ao estudo dos movimentos. 2 Movimento Uniformemente Variado. 3 Aceleração Escalar. 4 Gráfico a X t. 5 Classificação

1 Introdução ao estudo dos movimentos. 2 Movimento Uniformemente Variado. 3 Aceleração Escalar. 4 Gráfico a X t. 5 Classificação 1 Introdução o estudo dos movimentos Movimento Uniformemente Vrido 3 Acelerção Esclr 4 Gráfico X t 5 Clssificção 6 Equção d Velocidde 7 Gráfico v X t 8 Equção d Velocidde Médi (MUV) 9 Função Horári dos

Leia mais

a outro tanque de altura H (ambos os tanques abertos à pressão atmosférica p

a outro tanque de altura H (ambos os tanques abertos à pressão atmosférica p ABORATÓRIO E AIAÇÕES E MEÂNIA OS FUIOS (ME 33) NOÇÕES E MEÂNIA OS FUIOS (ME 333) Gbrito Terceir rov - 05. (3 ontos) No sistem d figur, bomb deve elevr águ de um tnque grnde com ltur H outro tnque de ltur

Leia mais

Sobre o teorema de classificação das cônicas pela análise dos invariantes

Sobre o teorema de classificação das cônicas pela análise dos invariantes Revist Ffibe On Line n go 7 ISSN 88-699 wwwffibebr/revistonline Fculddes Integrds Ffibe Bebedouro SP Sobre o teorem de clssificção ds cônics pel nálise dos invrintes (About the conics clssifiction theorem

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015 Físic - 4323203 Escol olitécnic - 2015 GABARTO DA 2 14 de mio de 2015 Questão 1 Considere um csc esféric condutor de rios interno e externo e b, respectivmente, conforme mostrdo n figur o ldo. A resistividde

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Resistência de Materiais 2

Resistência de Materiais 2 Resistênci de Mteriis Ano ectivo 0/04 º Exme 8 de Jneiro de 04 Durção: hors Oservções: Não podem ser consultdos quisquer elementos de estudo pr lém do formulário fornecido. Resolver os prolems em grupos

Leia mais

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017 Físic III - 4323203 Escol Politécnic - 2017 GABARITO DA P1 20 de ril de 2017 Questão 1 O cmpo elétrico sore o eixo de simetri (eixo z) de um nel de rio r e crg totl Q > 0 é ddo por z E nel = 1 Qz k. (r

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Prof. Dr. Amnd Liz Pcífico Mnfrim Perticrrri mnd.perticrrri@unesp.r DEFINIÇÃO. Se f é um função contínu definid em x, dividimos o intervlo, em n suintervlos de comprimentos iguis: x = n Sejm

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

HIDROSTÁTICA 1 INTRODUÇÃO

HIDROSTÁTICA 1 INTRODUÇÃO utor: Professor Ms. Lourival Gomes 1 INTRODUÇÃO Um barco no mar, Por que não afunda? Por que não odemos mergular em grandes rofundidades? O que ocorre com nossos ouvidos ao subirmos ou descermos a serra?

Leia mais

Física A Semiextensivo V. 2

Física A Semiextensivo V. 2 Semiextensivo V. Exercícios 0) 00 y (m) 80 50m 60 30m 0m 40 40m s (m) 0 A 0m 0 x (m) 0 0 40 60 80 00 ) s A = 0 m s A = 40 m + 30 m + 0 m + 50 m 0) C 0 m s = 50 m s = s s A s = 50 0 s = 40 m b) v m = s

Leia mais

FÍSICA EXERCÍCIOS DE HIDROSTÁTICA

FÍSICA EXERCÍCIOS DE HIDROSTÁTICA FÍSICA EXERCÍCIOS DE HIDROSTÁTICA 1 SOBRE Apanhado de exercícios sobre hidrostática selecionados por segrev. O objetivo é que com esses exercícios você esteja preparado para a prova, mas não use-os como

Leia mais

1) Determine o peso de um reservatório de óleo que possui uma massa de 825 kg.

1) Determine o peso de um reservatório de óleo que possui uma massa de 825 kg. PONTÍFICIA UNIVERSIDADE CATÓLICA DE GOIÁS PRÓ-REITORIA DE GRADUAÇÃO ESCOLA DE ENGENHARIA Disciplina: Fenômenos de Transporte Professor: M. Sc. Felipe Corrêa Veloso dos Santos Lista de exercício pré-avaliação

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escol Secundári com º ciclo D. Dinis 11º no de Mtemátic Tem II Introdução o álculo Diferencil I Funções Rcionis e com Rdicis Tx de Vrição e Derivd Tref nº 0 1. Estude função f(x) = x, evidencindo s seguintes

Leia mais

Objetivos da segunda aula da unidade 6. Introduzir a classificação da perda de carga em uma instalação hidráulica.

Objetivos da segunda aula da unidade 6. Introduzir a classificação da perda de carga em uma instalação hidráulica. 370 Unidade 6 - Cálculo de Perda de Carga Objetivos da segunda aula da unidade 6 Introduzir a classificação da perda de carga em uma instalação hidráulica. Caracterizar as condições para ocorrer à perda

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

Dinâmica dos corpos rígidos

Dinâmica dos corpos rígidos Dinâmi dos orpos ríidos Moimento em D Métodos de resolução Num instnte prtiulr: Equções de moimento Moimento finito: Prinípio d onserção de eneri meâni (forçs onsertis) Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL,

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Prof. lvro Muriel Lim Mchdo justmento de Observções Qundo s medids não são feits diretmente sobre s grndezs procurds, ms sim

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Universidde de São Pulo Instituto de Físic FÍSIC MODRN I U 5 Pro. Márci de lmeid Rizzutto Pelletron sl 0 rizzutto@i.us.br o. Semestre de 05 Monitor: Gbriel M. de Souz Sntos Págin do curso: htt:discilins.sto.us.brcourseview.h?id=55

Leia mais

Assíntotas horizontais, verticais e oblíquas

Assíntotas horizontais, verticais e oblíquas Assíntots horizontis, verticis e olíqus Méricles Thdeu Moretti MTM/PPGECT/UFSC INTRODUÇÃO Dizemos que um ret é um ssíntot de um curv qundo um ponto o mover-se o longo d prte etrem d curv se proim dest

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I scol Secundári com º ciclo. inis 0º no de Mtemátic TM MTRI N PLN N SPÇ I s questões 5 são de escolh múltipl TP nº 5 entregr no di 0 ª prte Pr cd um dels são indicds qutro lterntivs, ds quis só um está

Leia mais

LΔz (b) ½RΔz ½LΔz ½RΔz ½LΔz

LΔz (b) ½RΔz ½LΔz ½RΔz ½LΔz LISTA DE EXERCÍCIOS Nº 3 Problems 1) Um ds possíveis forms de descrever quntittivmente um linh de trnsmissão é trvés d Teori de Circuitos prâmetros distribuídos. Pr tnto, segment- se um pequeno elemento

Leia mais

Prof. A.F.Guimarães Física 3 Questões 9

Prof. A.F.Guimarães Física 3 Questões 9 Questão 1 Um fio retilíneo de rio R conduz um corrente constnte i; outro fio retilíneo de mesmo rio conduz um corrente contínu i cujo sentido é contrário o d corrente que flui no outro fio. Estime o módulo

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

No caso do movimento retilíneo a direção do vetor é constante e coincide com a trajetória (reta).

No caso do movimento retilíneo a direção do vetor é constante e coincide com a trajetória (reta). Cinemátic Trjetóri: É o lugr geométrico dos pontos sucessimente ocupdos por um prtícul durnte o seu moimento. 1. No cso do moimento retilíneo trjetóri é um ret Velocidde: É um etor, tngente à trjetóri

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. O número de csos possíveis é. Como se pretende que o número sej pr, então pr o lgrismo ds uniddes existem

Leia mais

Nome Completo: Documento de Identidade: Assinatura: INSTRUÇÕES

Nome Completo: Documento de Identidade: Assinatura: INSTRUÇÕES rov EXME DE TRNSFERÊNCI EXTERN 018/019 (SEGUND FSE) EXME R ORTDORES DE DIOM DE NÍVE SUERIOR 018/019 UNIVERSIDDE DE SÃO UO ESCO OITÉCNIC 01/07/018 Nome Completo: Documento de Identidde: ssintur: INSTRUÇÕES

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :... SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como

e como . 2 contradomínio e como contradomínio [ 0,π ]. Y = arcsen(x) 1 x Y = arccos(x) -1 1 x A função arccos(x) tem como domínio [ 1,1 ] e como Análise Mtemátic I - 6/7 Y rcsen y - A unção rcos tem como domínio [, ] e como A unção rcsen tem como domínio [, ] contrdomínio,. e como Y rccos y - A unção rccos tem como domínio [, ] contrdomínio [,

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

MATEMÁTICA Questões de 01 a 04

MATEMÁTICA Questões de 01 a 04 GRUPO TIPO MT. MTEMÁTIC Questões de. Um correi trnsortdor deosit rei num monte de formto cônico reto um t constnte de m /. No monte que se form, rzão entre ltur e o rio d bse ermnece constnte e igul. )

Leia mais