Boletim de Ciências Geodésicas ISSN: Universidade Federal do Paraná Brasil

Tamanho: px
Começar a partir da página:

Download "Boletim de Ciências Geodésicas ISSN: 1413-4853 bcg_editor@ufpr.br Universidade Federal do Paraná Brasil"

Transcrição

1 Boletm de Cêncas Geodéscas ISSN: Unversdade Federal do Paraná Brasl ANDREOLA, RAFAELA; HAERTEL, VITOR CLASSIFICAÇÃO DE IMAGENS HIPERESPECTRAIS EMPREGANDO SUPPORT VECTOR MACHINES Boletm de Cêncas Geodéscas, vol. 16, núm. 2, abrl-juno, 2010, pp Unversdade Federal do Paraná Curtba, Brasl Dsponível em: Como ctar este artgo Número completo Mas artgos Home da revsta no Redalyc Sstema de Informação Centífca Rede de Revstas Centífcas da Amérca Latna, Carbe, Espanha e Portugal Projeto acadêmco sem fns lucratvos desenvolvdo no âmbto da ncatva Acesso Aberto

2 CLASSIFICAÇÃO DE IMAGENS HIPERESPECTRAIS EMPREGANDO SUPPORT VECTOR MACHINES Classfcaton of Hyperspectral Images wth Support Vector Machnes RAFAELA ANDREOLA VITOR HAERTEL Unversdade Federal do Ro Grande do Sul UFRGS Centro Estadual de Pesqusas em Sensoramento Remoto e Meteorologa - CEPSRM Caxa Postal CEP Porto Alegre - RS, Brasl RESUMO Neste estudo é nvestgado o desempenho do classfcador Support Vector Machnes (SVM) na classfcação de magens em alta dmensonaldade. Como SVM opera em um par de classes a cada vez, propõe-se aqu a sua mplementação em uma estrutura em forma de árvore bnára, onde somente duas classes são tratadas em cada nó. A acuráca da magem temátca produzda por este esquema de classfcação é avalada para duas funções kernel dstntas e em função do valor para dmensonaldade dos dados. Os testes foram realzados empregando magens hperespectras adqurdas pelo sstema sensor AVIRIS. São aqu apresentados e dscutdos os resultados obtdos. Palavras-chave: Support Vector Machnes; Classfcador em Árvore Bnára; Sensoramento Remoto; Imagens Hperespectras. ABSTRACT In ths study we nvestgate the performance of the Support Vector Machnes (SVM) classfer when appled to the classfcaton of hgh dmensonal remotely sensed mage data. As SVM deals wth a par of classes at a tme, we propose ts mplementaton n a bnary tree approach where two classes only are dealt wth at each node. The accuracy of the thematc mage produced by ths classfcaton scheme was evaluated for two dfferent kernel functons and dfferent data dmensonalty. Tests were performed usng hperspectral mage data collected by the sensor system AVIRIS. Results are presented and dscussed.

3 Andreola, R. e Haertel, V Keywords: Hyperspectral Image Data; Support Vector Machnes; Bnary Tree Classfer; Remote Sensng. 1. INTRODUÇÃO Dados em alta dmensonaldade (hperespectras) podem oferecer um poder dscrmnante bem mas elevado do que dados tradconas em baxa dmensonaldade. FUKUNAGA (1990) demonstra que classes espectralmente muto semelhantes entre s (classes que compartlham vetores de médas muto próxmos) podem, frequentemente, ser separadas satsfatoramente em espaços de dmensão mas alta. Esta é uma das motvações para o desenvolvmento de sstemas sensores com um número grande de bandas espectras, conhecdos como sensores hperespectras. Entretanto, uma das prncpas dfculdades que surgem no processo de classfcação de dados em alta dmensonaldade por meo de classfcadores paramétrcos como, por exemplo, o da Máxma Verossmlhança Gaussana (MVG), dz respeto ao número geralmente lmtado de amostras de trenamento dsponíves, em comparação com o número de parâmetros a serem estmados. Um número lmtado de amostras de trenamento resulta em uma estmatva pouco confável dos parâmetros e, conseqüentemente, em um valor reduzdo na acuráca da magem temátca produzda. Este fato pode ser comprovado varando a dmensonaldade dos dados. Incando o processo de classfcação com dados em dmensonaldade reduzda, a acuráca da magem temátca tende ncalmente a aumentar na medda em que nformações adconas (na forma de bandas espectras) são ncluídas. Em um determnado momento, a acuráca atnge um máxmo para em seguda passar a dmnur, na medda em que a dmensonaldade dos dados contnua a aumentar. Este problema é conhecdo pela comundade nternaconal como fenômeno de Hughes. Redução na dmensonaldade dos dados por meo de técncas de extração ou seleção de varáves feature selecton/extracton (WANG, 2008; ZHONG & WANG, 2008), ntrodução de mostras de trenamento sem-rotuladas (LICZBINSKI & HAERTEL, 2008; JACKSON & LANDGREBE, 2001; SHASHAHANI & LANDGREBE, 1994), técncas de análse dscrmnante regularzada (FRIEDMAN, 1989; AEBERHARD et al., 1994; KUO & CHANG, 2007; BERGE et al., 2007), são abordagens que vem sendo nvestgadas com o objetvo de mnmzar as conseqüêncas de tal fenômeno. Neste contexto, desperta o nteresse a utlzação de classfcadores não paramétrcos, como é o caso de SVM, que apresenta a vantagem de não ser afetado por este tpo de problema (HUANG et al., 2002). O emprego de SVM na classfcação de magens hperespectras em sensoramento remoto vem sendo nvestgado por alguns autores. MELGANI e BRUZZONE (2004) apresentam resultados obtdos com a aplcação de SVM em magens hperespectras. Em seu estudo os dos autores comparam os resultados obtdos por SVM com os produzdos por outros dos classfcadores também não-paramétrcos (redes neuras RBF e K- vznhos mas próxmos). No presente estudo, a avalação é feta comparando os

4 212 Classfcação de magens hperespectras empregando suport vector machnes. resultados produzdos por SVM com aqueles produzdos pelo classfcador paramétrco mas frequentemente utlzado pela comundade em sensoramento remoto (MVG). SHAH et al. (2003) apresentam um sumáro dos város trabalhos desenvolvdos por aqueles autores com vstas à classfcação de magens hperespectras, nclundo o emprego de SVM com a etapa de otmzação mplementada va método Lagrangano. WATANACHATURAPORN et al. (2004) relatam uma nvestgação ncal no emprego de SVM na classfcação de magens hperespectras em sensoramento remoto. Em seu trabalho, aqueles autores nvestgam os efetos na acuráca dos resultados causados pelos dferentes métodos de mplementar SVM em problemas com múltplas classes e pelo tpo de kernel utlzado. Outras aplcações empregando técncas de SVM têm sdo nvestgadas por outros autores como, por exemplo, BROWN et al. (2000) e BROWN et al. (1999). Nestes trabalhos os autores nvestgam a utlzação de SVM em problemas de mstura espectral, comparando uma abordagem envolvendo SVM com o bem conhecdo Modelo Lnear de Mstura Espectral. A utlzação do classfcador SVM apresenta, entretanto, algumas dfculdades. Possvelmente a mas óbva resda no fato de SVM ser aplcável dretamente a apenas um par de classes a cada vez (ABE, 2005). Na metodologa proposta, nvestga-se a mplementação de SVM em um classfcador em estágo múltplo estruturado na forma de árvore bnára. Uma vantagem adconal desta estrutura resde na possbldade de otmzação na escolha das varáves ou feções (features) que conferem um maor poder dscrmnante entre o par de classes a cada nó ndvdual da árvore bnára. 2. SUPPORT VECTOR MACHINES (SVM) SVM é um classfcador lnear no qual busca-se mnmzar o erro com relação ao conjunto das amostras de trenamento (rsco empírco) e o erro com relação ao conjunto das amostras de teste (rsco na generalzação). O objetvo de SVM consste em obter o equlíbro entre esses erros, mnmzando o excesso de ajustes com respeto às amostras de trenamento (overfttng) e aumentando, conseqüentemente, a capacdade de generalzação do classfcador (VAPNIK, 1999). O problema denomnado de overfttng consste em o classfcador memorzar os padrões de trenamento, gravando suas peculardades e ruídos, ao nvés de extrar as característcas geras que permtrão a generalzação ou reconhecmento de padrões não utlzados no trenamento do classfcador (SMOLA et al., 2000). A questão da generalzação pode ser mas bem avalada para o caso de duas classes. Assumndo que as amostras de trenamento das duas classes são lnearmente separáves, a função de decsão mas adequada é aquela para a qual a dstânca entre os conjuntos das amostras de trenamento é maxmzada. Neste contexto, a função de decsão que maxmza esta separação é denomnada de ótma (Fgura 1). Este prncípo é mplementado em SVM e a correspondente formulação matemátca dada a segur está baseada em ABE (2005).

5 Andreola, R. e Haertel, V Seja um conjunto com M amostras de trenamento x (=1,..., M) em um problema que consste de duas classes lnearmente separáves (ω 1 e ω 2 ). Cada amostra fca assocada a um rótulo: y =1 se x ω 1, y = -1 se x ω 2. A forma geral de uma função lnear de decsão é dada por: T D( x) = w x + b (1) onde x é um vetor m-dmensonal representando o padrão a ser classfcado, w também é um vetor m-dmensonal (pesos) e b o termo ndependente. Como estamos supondo amostras lnearmente separáves, não ocorrerá a stuação em que wx + b = 0. Desta forma, o crtéro para classfcação pode ser escrto como: wx +b > a para x ω 1 (y =1) (2) wx +b < -a para x ω 2 (y = -1) para a>0. Dvdndo ambos os membros da desgualdade por a, o crtéro para classfcação fca: 1 1 T para y = wx + b (3) 1 para y = 1 Deste modo, ambas as condções podem ser combnadas em uma únca: T y ( w x + b) 1 para =1, 2,..., M (4) sendo M o número de amostras dsponíves. Fgura 1 - O hperplano ótmo separando os dados com a máxma margem ρ. Os support vectors (amostras crculadas) e uma dstrbução dos dados no R 2 (atrbutos x 1 e x 2 ). Fonte: Adaptado de ABE (2005).

6 214 Classfcação de magens hperespectras empregando suport vector machnes. O hperplano: T D( x) = w x + b= c para 1< c < 1 (5) forma, então, uma superfíce de separação entre as duas classes. Para c= 0, a Equação (5) defne um hperplano stuado à mea dstânca entre os dos hperplanos extremos (c=1 e c=-1). A dstânca entre estes dos hperplanos extremos é denomnada de margem, representada por ρ na Fgura 1. Supondo a exstênca de pelo menos uma amostra x para a qual D(x)= 1, e pelo menos uma outra amostra para a qual D(x)= -1, então o hperplano D(x)= 0 representa a melhor superfíce de separação entre estas amostras, no sentdo de que maxmza o poder de generalzação do classfcador. A regão entre os dos hperplanos extremos (-1 D(x) 1) pode ser entendda como a regão de generalzação. O hperplano D(x)=0, ao maxmzar o valor da margem, maxmza a regão de generalzação sendo, portanto, neste sentdo ótmo (Fgura 1). A dstânca d(x) de uma amostra x a um plano qualquer D(x) é dada por: d(x) = D( x) / w (6) O hperplano ótmo será, portanto, aquele para o qual esta dstânca é máxma. Esta condção pode ser obtda mnmzando-se w, ou equvalentemente, mnmzando: T Q ( w) = w = w w (7) 2 2 com respeto aos parâmetros da função D(x), w e b. Para satsfazer a convenção adotada com relação ao rótulo de cada amostra (y ), a restrção da Equação (4) deve ser mposta. Tal restrção é mposta de manera a assegurar que não ocorram amostras de trenamento na regão de separação entre as duas classes (entre as margens). A nclusão das restrções (4) no problema de mnmzação da Equação (7) pode ser resolvdo por meo da técnca dos multplcadores de Lagrange (α). Esta abordagem pode ser expressa por mnmzar M 1 T T Q( w, b, α) = ww α{ y( wx + b) 1 (8) } 2 = 1 com relação a w, b e maxmzar com relação a α, sendo α=(α 1,,..., α M ) os multplcadores de Lagrange, um vetor de dmensão M, com α 0. Deste modo, obtém-se a forma dual, expressa em termos de α somente (HAMEL, 2009; ABE, 2005): M M 1 T Q( α) = α αα y y xx j j = 1 2, j= 1 j (9)

7 Andreola, R. e Haertel, V A solução deste problema permte expressar w em termos de α resultando em uma nova forma para a função de decsão (1): T D( x) = α yx x + b S onde S é o conjunto de índces dos support vectors, sto é, as amostras de trenamento para as quas α >0. A formulação acma apresenta solução somente no caso de as amostras x pertencentes às duas classes serem lnearmente separáves. Em stuações reas, entretanto, os dados frequentemente não são lnearmente separáves. Este fato ocorre com frequênca em magens multespectras cobrndo cenas naturas, como aquelas empregadas em sensoramento remoto (Landsat-TM e SPOT, entre outros sstemas sensores), nas quas as dferentes classes de cobertura do solo mutas vezes não são lnearmente separáves. Para estender a formulação acma para conjuntos de dados não lnearmente separáves, permte-se que alguns dados possam volar a restrção da Equação (4), por meo da ntrodução do conceto de varável de folga (slack varable) representada por ξ (ξ 0). Tas varáves relaxam as restrções mpostas ao problema de otmzação. Neste caso, a restrção expressa na Equação (4) torna-se: y ( w T x + b) 1 (11) Esta abordagem é conhecda como SVMs com margens suaves (soft-margn) (HAMEL, 2009; LORENA & CARVALHO, 2007; ABE, 2005). Para o caso de 0<ξ <1 a correspondente amostra x não terá margem máxma, mas será rotulada corretamente. No caso de ξ 1, a amostra x será rotulada erroneamente. Para levar em consderação o termo ξ, mnmzando assm o erro sobre os dados de trenamento, a Equação (7) é reformulada como: M 1 2 Q( w, b, ξ) = w + C ξ (12) 2 = 1 A constante C, conhecda como parâmetro de margem, estabelece o equlíbro entre a maxmzação da margem e a mnmzação dos erros. O procedmento, neste caso, é semelhante ao desenvolvdo para o caso de margens rígdas, resultando em uma função de decsão semelhante à anteror (Equação 10), com a únca dferença de C α 0 para =1,..., M (HAMEL, 2009; ABE, 2005). As SVMs lneares são efcazes na classfcação de conjuntos de dados lnearmente separáves, contamnados com a presença de alguns ruídos e outlers. Entretanto, em stuações reas ocorre com bastante freqüênca classes não lnearmente separáves. A solução mas smples nestes casos consstra na adoção ξ (10)

8 216 Classfcação de magens hperespectras empregando suport vector machnes. de polnômos de grau mas elevado. Entretanto, esta abordagem apresenta o rsco de excesso de ajuste (overfttng), e a conseqüente redução no poder de generalzação do classfcador (DUDA et al., 2000). Uma opção mas efcente consste em mapear os dados para um espaço de dmensão mas alta, no qual os dados tornam-se lnearmente separáves (HAMEL, 2009; CRISTIANINI & SHAWE-TAYLOR, 2000). Na abordagem apresentada a segur, as M amostras no espaço orgnal (x 1, x 2,..., x M ), com dmensão m são mapeadas no novo espaço (espaço característco) por meo de uma função g de dmensão n>m: g = ( g1, g2, L g n ). Neste novo espaço as M amostras x (dmensão m) são mapeadas em M amostras com dmensão n: g1( x1) g2( 1) x M g ( ) n x1, g1( x2) g2( 2) x M g ( ) n x2,..., g1( xm ) g2( M ) x M gn( xm) O processo consta então de dos passos: 1- uma função não lnear g mapea os dados do espaço orgnal para um novo espaço de dmensão mas alta; 2- a classfcação é feta neste novo espaço empregando uma função de decsão lnear. A forma geral da função de decsão no espaço orgnal é dada pela Equação (1). Neste novo espaço, a função lnear de decsão fca: D( x) = w. g( x ) + b (13) e a Equação (9) torna-se, portanto: M M 1 Q( α ) = α α α j y y j H ( x, x j ) (14) 2 = 1, j= 1 onde H(x, x j ) = g(x ) T.g(x j ), que recebe a denomnação de kernel. A condção necessára para que uma função H seja um kernel é conhecda como condção de Mercer: M hh jh( x, x j) 0 (15), j= 1 para todo M, x e h, onde h é um número real (ABE, 2005). Neste novo espaço, a função de decsão expressa em termos de α - Equação (10) - torna-se:

9 Andreola, R. e Haertel, V D( x) = α yg( x ) g( x ) + b (16) S ou alternatvamente expressa em termos de kernel: com b dado por: D ( x) = α y H ( x, x) + b (17) S 1 b = y j α y H ( x x j ) U j U S sendo U o conjunto dos support vectors denomnados de unbounded, sto é, aqueles para os quas 0<α <C. Exstem, portanto, duas possíves abordagens ao problema do mapeamento de dados em espaços de dmensão mas elevada para fns de classfcação empregando funções de decsão lneares g(x) (HAMEL, 2009; HERBRICH, 2002): 1- Selecone explctamente uma função g para mapeamento dos dados em um espaço de dmensão mas alta. 2- Selecone dretamente um kernel H que satsfaça as condções de Mercer. Este kernel va defnr de uma forma mplícta a função de mapeamento g. Do ponto de vsta matemátco, as duas possíves abordagens ctadas acma são equvalentes. A segunda abordagem (escolha dreta de um kernel) apresenta, entretanto, a vantagem de ser mas fácl de mplementar e de ser nterpretada. Outra vantagem oferecda por esta abordagem consste em não se necesstar operar dretamente no espaço em dmensão mas alta, no qual os dados estão sendo mapeados. Tanto a fase de trenamento do classfcador quanto a fase de classfcação dos dados utlza-se dretamente H(x, x) em lugar da função de mapeamento g(x). Exemplos comuns de kernel são a Radal Bass Functon (RBF) (Equação 19) e o kernel Polnomal (Equação 20): 2 H ( xx, ) = exp( γ x x ) (19) onde γ é um parâmetro postvo para controle T d H ( xx, ) = ( xx + 1) (20) e d é um número natural e determna o grau do polnômo. A regra de classfcação é dada por: D(x )>0 x ω 1 (21) D(x )<0 x ω 2 Se D(x )=0, então x está sobre o hperplano separador e não é classfcado. Quando as amostras de trenamento são lnearmente separáves, a regão {x 1>D(x)> -1} é a regão de generalzação. (18)

10 218 Classfcação de magens hperespectras empregando suport vector machnes. Pode-se mostrar que SVM apresenta vantagens com respeto a classfcadores convenconas, especalmente quando o número de amostras de trenamento é pequeno e a dmensonaldade dos dados é grande, devdo ao fato de que os classfcadores convenconas não têm mecansmos para maxmzar a margem (dstânca entre os dos hperplanos extremos). A maxmzação da margem permte aumentar a capacdade de generalzação do classfcador (ABE, 2005). 3. MATERIAIS E MÉTODOS 3.1 Materas Nestes expermentos são empregados dados em alta dmensonaldade (hperespectras) coletados pelo sstema sensor AVIRIS sobre uma área agrícola de testes, desenvolvda pela Purdue Unversty, e denomnada de Indan Pnes, localzada no noroeste do Estado de Indana, EUA, sob a denomnação de 92AV220. Da cena 92av220, fo seleconado de um segmento de magem de (435x435) um recorte de (145x118), num total de pxels. Esta área dspõe de dados de verdade terrestre. O que torna a área atraente para os estudos que empregam dados em alta dmensonaldade é esta possur classes com característcas espectras muto semelhantes entre s e, portanto, dfíces de serem separados por meo de dados tradconas em baxa dmensonaldade como, por exemplo, dados Landsat-TM. Do conjunto de 220 bandas que dspõe a cena AVIRIS (cobre a regão 0.4μm à 2.4μm do espectro eletromagnétco, com resolução espectral de 10nm), foram removdas as bandas rudosas causados por problemas atmosfércos (vapor de água, CO 2, O 3 ). A dmensonaldade fnal dos dados utlzados é de 190 bandas. A área seleconada apresenta 10 classes de cobertura do solo. Para realzar os expermentos foram seleconadas ses classes que apresentam a maor dfculdade de separação (Ver Tabela 1). Tabela 1 - Relação das classes usadas nos expermentos. A magem fo obtda no níco da época de crescmento das culturas de soja e mlho. Nesta etapa apenas aproxmadamente 5% da área está efetvamente coberta pela vegetação, sendo os restantes 95% composto por solo exposto e resíduo de colhetas anterores. Estas condções resultam em classes espectralmente muto

11 Andreola, R. e Haertel, V semelhantes (vetores de méda muto semelhantes entre s), consttundo-se por esta razão em um desafo ao processo de classfcação. A classe pastagens/árvores (grass trees) fo ncluída por possur característcas espectras bem dferentes das demas sendo, portanto, faclmente separável das demas classes, servndo de referênca no processo de classfcação. A Fgura 2 lustra o comportamento espectral médo das classes da Tabela 1, onde se verfcam dos aspectos prncpas: a dferença espectral da classe pastagens/árvores com relação às demas classes, e a alta semelhança entre as outras cnco classes (varações das culturas de mlho e soja). Fgura 2 - Curvas de resposta espectral méda para cada uma das classes: mlho cultvo mínmo (cnza pontlhada), mlho planto dreto (cnza contínua fna), pastagens/árvores (cnza contnua grossa), soja cultvo mínmo (preta contínua fna), soja planto dreto (preta contínua grossa), soja cultvo convenconal (preta pontlhada). resposta espectral [uw/(cm^2*nm*sr)] bandas Como nos dados utlzados o ntervalo numérco de varação dos contadores dgtas ao longo do conjunto das bandas espectras é muto grande, decdu-se padronzar estes dados (equações 22 e 23) para méda gual a zero e desvo padrão gual a um (JOHNSON E WICHERN,1982): ( ) ( Z= V X μ ) (22)

12 220 Classfcação de magens hperespectras empregando suport vector machnes. onde μ é o vetor de médas, X é o espaço orgnal, Z é o espaço normalzado e V 1/2 é dado por: σ11 0 L 0 (23) 1 0 σ 2 22 L 0 V = M M O M 0 0 σ L pp O resultado deste processo de padronzação está lustrado na Fgura 3. Fgura 3 - Curvas de resposta espectral méda para as classes após a padronzação: mlho cultvo mínmo (cnza pontlhada), mlho planto dreto (cnza contínua fna), pastagens/árvores (cnza contnua grossa), soja cultvo mínmo (preta contínua fna), soja planto dreto (preta contínua grossa), soja cultvo convenconal (preta pontlhada). 1 0,5 resposta espectral ,5-1 -1,5 bandas Do conjunto das amostras dsponíves para cada classe foram extraídos dos subconjuntos: um com amostras de trenamento e um segundo com amostras de teste (método holdout). Com a fnaldade de capturar as varações naturas que ocorrem ao longo da área coberta pela magem, as amostras em ambos os subconjuntos foram extraídos alternadamente do conjunto das amostras dsponíves nos dados de verdade terrestre.

13 Andreola, R. e Haertel, V Para tornar os resultados obtdos para as váras classes comparáves entre s, os expermentos empregaram subconjuntos de trenamento e de teste de mesmo tamanho para todas as classes em estudo: 50, 100, 200 e 300 amostras por classe para trenamento e 300 amostras por classe para teste. As amostras de trenamento e teste foram tomadas a ntervalos regulares no conjunto total de amostras para cada classe. Desta forma, as amostras de trenamento em um expermento não necessaramente constam no conjunto das amostras de trenamento do expermento segunte. 3.2 Métodos A metodologa adotada mplementa SVM em uma árvore bnára, do tpo bottom-up, a fm de possbltar a utlzação de SVM em problemas mult-classe. Os resultados produzdos por este classfcador assm proposto foram comparados com aqueles resultantes do classfcador MVG - largamente usado na comundade centífca em reconhecmento de padrões. Para o trenamento do classfcador, em cada nó da árvore, aplca-se o algortmo que pode ser vsto na Fgura 4a. As amostras de trenamento são ncalmente atrbuídas ao nó raz. Em seguda, supondo-se que os dados sejam normalmente dstrbuídos, escolhe-se as duas classes que orgnarão os nós flhos pelo crtéro dstânca de Bhattacharyya: ( Σ 1 1+ Σ2) 1 T Σ1+ Σ2 1 ( 2 (24) B = μ1 μ2) ( μ1 μ2) + ln Σ1 Σ 2 onde μ 1 e μ 2 são os vetores de médas das classes ω 1 e ω 2 respectvamente, e Σ 1 e Σ 2 as matrzes de covarânca. O uso do algortmo SFS (Sequental Forward Selecton) tem por objetvo seleconar, em cada nó, o subconjunto das N bandas com maor poder dscrmnante (SERPICO et al., 2003). Estas serão usadas para o cálculo dos coefcentes no caso do uso do classfcador SVM ou para a estmação dos parâmetros no caso do uso do classfcador MVG cujas acurácas serão comparadas. Utlzando-se as respectvas funções de decsão, classfca-se as amostras de trenamento das demas classes em um dos dos nós flhos. Caso a porcentagem das amostras de trenamento de uma dada classe classfcada em um dos nós flhos seja maor que determnado lmar de verossmlhança (LV), todas as amostras serão atrbuídas a este nó flho. Caso contráro, as amostras de trenamento desta classe são replcadas em ambos os nós flhos. Esse processo será repetdo até que cada nó contenha apenas uma classe (nós termnas). A Fgura 4b lustra o fluxograma do algortmo para teste do classfcador. Entra-se com as amostras de teste no nó raz. Com base nos parâmetros estmados (caso do classfcador MVG) ou nos coefcentes calculados (caso do classfcador

14 222 Classfcação de magens hperespectras empregando suport vector machnes. SVM) na fase de trenamento, em cada nó decde-se em qual nó flho a amostra de teste será classfcada. Este processo é repetdo para cada amostra, ao longo dos város níves na árvore bnára, até que um nó termnal seja atngdo, atrbundo desta forma um rótulo a cada uma das amostras. Fgura 4 (a) Fluxograma do algortmo de trenamento do classfcador. (b) Fluxograma do algortmo de teste do classfcador.

15 Andreola, R. e Haertel, V Para fns de mplementação da metodologa proposta neste estudo, fo desenvolvda uma ferramenta denomnada de Classfcador em Árvore Bnára (CAB). O CAB, mplementado em forma de árvore bnára, possu duas versões, uma para o classfcador MVG e outra para o classfcador SVM. Desenvolvdos em ambente MATLAB 6.1, o CAB-MVG e o CAB-SVM apresentam como resultado a Matrz de Confusão. 4. RESULTADOS E DISCUSSÕES Os expermentos foram desenvolvdos com o objetvo de quantfcar numercamente os resultados de desempenho da metodologa proposta na classfcação de magens dgtas de alta dmensonaldade em sensoramento remoto, utlzando dferentes kernels e parâmetros no classfcador SVM mplementados pela ferramenta CAB-SVM. Fo realzada uma sére de expermentos, tomando-se a dmensonaldade dos dados como varável ndependente e a resultante acuráca na classfcação como varável dependente. O valor da dmensonaldade dos dados, sto é, o número de bandas espectras empregadas, varou entre 20 e 180. Em um prmero conjunto de expermentos as bandas espectras foram seleconadas por meo do algortmo SFS, a um ntervalo de 20 bandas. Em um segundo conjunto de expermentos a seleção destas bandas foram fetas a ntervalos regulares no espectro eletromagnétco (sem o uso do SFS), com o ntuto de verfcar a efcáca do SFS em um classfcador não paramétrco como o SVM. O objetvo dos expermentos é analsar o comportamento da acuráca produzda pelo classfcador SVM em função da dmensonaldade dos dados e dos parâmetros escolhdos. Os resultados assm obtdos são comparados com aqueles obtdos nas mesmas condções, empregando-se um classfcador paramétrco tradconal (MVG), mplementado pela ferramenta CAB-MVG. Notase que o valor mínmo admssível para as amostras de trenamento no caso do CAB- MVG é gual à dmensonaldade dos dados mas um. Um valor nferor resultará em uma matrz de covarânca sngular e, portanto, não utlzável (LANDGREBE, 2003). O número de amostras de trenamento fo escolhdo delberadamente pequeno com relação à dmensonaldade dos dados para desta forma melhor evdencar os problemas que ocorrem em stuações reas, ou seja, o pequeno número de amostras de trenamento normalmente dsponíves. Na realzação dos expermentos foram usadas 80 bandas para o cálculo da dstânca de Bhattacharyya (no caso de 50 amostras de trenamento, todas elas são usadas para o cálculo da dstânca de Bhattacharyya) e LV de 99%. Decdu-se fxar o LV em 99% para que fosse obtda sempre a maor estrutura possível, ou seja, o número máxmo de nós termnas (MORAES, 2005). Segundo o autor, valores mas altos para o LV produzem, uma menor varabldade no valor estmado da acuráca de cada classe ndvdual, em função da dmensão dos dados.

16 224 Classfcação de magens hperespectras empregando suport vector machnes. Outras grandezas são requerdas pela ferramenta CAB-SVM. Os multplcadores de Lagrange (Equação 8) foram calculados empregando a função quadprog.m dsponível em MATLAB, enquanto que o parâmetro de margem C (Equação 12) fo tomado gual a um (1). Nos város expermentos realzados, envolvendo dferentes sub-conjuntos de amostras de trenamento, foram nvestgados dstntos valores para o grau do polnômo (no caso do kernel polnomal) e para gamma (γ), no caso do kernel RBF. As Fguras 5-12 lustram os resultados produzdos pelo classfcador SVM (ferramenta CAB-SVM mplementando os kernels polnomal e RBF) juntamente com aqueles produzdos pelo classfcador mas tradconal MVG (ferramenta CAB-MVG), para 50, 100, 200 e 300 amostras de trenamento. Nas Fguras 5, 7, 9 e 11 estão lustrados o resultados dos expermentos empregando bandas seleconadas va SFS e nas Fguras 6, 8, 10 e 12 os resultados com bandas seleconadas sem SFS. Deve-se observar aqu que os expermentos empregando a ferramenta CAB-SVM evdencaram que a acuráca nos resultados depende dos valores adotados para o grau do polnômo no caso do kernel polnomal e para gamma (γ) no caso do kernel RBF. Para fns de comparação entre os dos classfcadores, estas fguras lustram os melhores resultados obtdos em cada caso. Fgura 5 - Acuráca Méda para os classfcadores MVG e SVM com kernel Polnomal grau 2 e RBF γ 1.5 para 50 amostras de trenamento com SFS. 50 amostras de trenamento com SFS 95 Acuráca Méda (%) MVG POLY 2 RBF Dmensonaldade dos Dados

17 Andreola, R. e Haertel, V Fgura 6 - Acuráca Méda para os classfcadores MVG e SVM com kernel Polnomal grau 2 e RBF γ 1.5 para 50 amostras de trenamento sem SFS. 50 amostras de trenamento sem SFS 95 Acuráca Méda (%) MVG POLY 2 RBF Dmensonaldade dos Dados Fgura 7 - Acuráca Méda para os classfcadores MVG e SVM com kernel Polnomal grau 3 e RBF γ 2 para 100 amostras de trenamento com SFS. 100 amostras de trenamento com SFS 95 Acuráca Méda (%) MVG POLY 3 RBF Dmensonaldade dos Dados

18 226 Classfcação de magens hperespectras empregando suport vector machnes. Fgura 8 - Acuráca Méda para os classfcadores MVG e SVM com kernel Polnomal grau 3 e RBF γ 2 para 100 amostras de trenamento sem SFS. 100 amostras de trenamento sem SFS Acuráca Méda (%) Dmensonaldade dos Dados MVG Poly 3 RBF 2 Como se pode perceber pela análse das Fguras 5 à 8, os resultados obtdos para 50 amostras de trenamento são pratcamente guas com e sem o uso de SFS, e para 100 amostras de trenamento, os resultados sem SFS são melhores do que os com uso de SFS nos expermentos realzados com a ferramenta CAB-SVM. O mesmo não acontece para os expermentos realzados com a ferramenta CAB- MVG, onde os resultados se mostram claramente melhores com o uso do SFS, apesar de apresentarem, em ambos os casos, os efetos do fenômeno de Hughes. Em todos os casos as acurácas médas para o classfcador SVM são superores às acurácas médas utlzando o classfcador MVG. Fgura 9 - Acuráca Méda para os classfcadores MVG e SVM com kernel Polnomal grau 3 e RBF γ 0.5 para 200 amostras de trenamento com SFS. 200 amostras de trenamento com SFS Acuráca Méda (%) Dmensonaldade dos Dados MVG POLY 3 RBF 0.5

19 Andreola, R. e Haertel, V Fgura 10 - Acuráca Méda para os classfcadores MVG e SVM com kernel Polnomal grau 3 e RBF γ 0.5 para 200 amostras de trenamento sem SFS. 200 amostras de trenamento sem SFS 95 Acuráca Méda(%) MVG Poly 3 RBF Dmensonaldade dos Dados Fgura 11 - Acuráca Méda para os classfcadores MVG e SVM com kernel Polnomal grau 3 e RBF γ 1.5 para 300 amostras de trenamento com SFS. 300 amostras de trenamento com SFS 95 Acuráca Méda (%) MVG POLY 3 RBF Dmensonaldade dos Dados

20 228 Classfcação de magens hperespectras empregando suport vector machnes. Fgura 12 - Acuráca Méda para os classfcadores MVG e SVM com kernel Polnomal grau 3 e RBF γ 1.5 para 300 amostras de trenamento sem SFS. 300 amostras de trenamento sem SFS 95 Acuráca Méda (%) MVG Poly 3 RBF Dmensonaldade dos Dados Pode-se perceber que, mesmo com o aumento do número de amostras de trenamento de 200 para 300 (Fguras 9 à 12), a acuráca méda não se eleva substancalmente (com o uso da ferramenta CAB-SVM SVM mplementado em forma de árvore bnára); pelo contráro, na maora dos casos a acuráca méda para 300 amostras de trenamento é levemente menor ou gual que aquela para 200. Isso acontece porque o poder máxmo de generalzação do classfcador é atngdo com 200 amostras de trenamento, ou seja, o conjunto de 200 amostras representa bem as característcas de cada classe, e o ncremento para 300 apresenta o rsco de aumento no número de amostras rudosas, para um reduzdo acréscmo de nformação. Comparando-se os resultados lustrados nas Fguras 5 à 12 pode-se perceber que o maor ganho obtdo empregando o método SFS baseado em dstâncas estatístcas ocorre em classfcadores paramétrcos como a MVG. Neste caso, os expermentos mostraram um ganho sgnfcatvo no valor da acuráca méda com o pco passando de 81.3% para 87.9% no expermento empregando 100 amostras de trenamento e de 85.7% para 89.2% com 200 amostras de trenamento. O mesmo não ocorreu nos expermentos empregando o classfcador SVM. Utlzando-se SFS com o crtéro Dstânca de Bhattacharyya para seleção de varáves o ganho para o classfcador SVM mostrou ser mínmo, resultando anda em uma osclação nos valores de acuráca méda estmada para dstntos valores de dmensonaldade dos dados. Os expermentos envolvendo 100 amostras de trenamento (Fgura 7) servem

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

O Método de Redes Neurais com Função de Ativação de Base Radial para Classificação em Data Mining

O Método de Redes Neurais com Função de Ativação de Base Radial para Classificação em Data Mining O Método de Redes Neuras com Função de Atvação de Base Radal para Classfcação em Data Mnng Ana Paula Scott 1, Mersandra Côrtes de Matos 2, Prscyla Walesa T. A. Smões 2 1 Acadêmco do Curso de Cênca da Computação

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Problemas Associados a Cones de Segunda Ordem

Problemas Associados a Cones de Segunda Ordem Problemas Assocados a Cones de Segunda Ordem Dense S. Trevsol, Mara A. D. Ehrhardt, Insttuto de Matemátca, Estatístca e Computação Centífca, IMECC, UNICAMP, 1383-859, Campnas, SP E-mal: ra8477@me.uncamp.br,

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010 Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

RAE-eletrônica ISSN: 1676-5648 rae@fgv.br. Escola de Administração de Empresas de São Paulo. Brasil

RAE-eletrônica ISSN: 1676-5648 rae@fgv.br. Escola de Administração de Empresas de São Paulo. Brasil RAE-eletrônca ISSN: 676-5648 rae@fgv.br Escola de Admnstração de Empresas de São Paulo Brasl Gumarães, Ináco Andrusk; Chaves Neto, Anselmo RECONHECIMENTO DE PADRÕES: METODOLOGIAS ESTATÍSTICAS EM CRÉDITO

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

Geração de poses de faces utilizando Active Appearance Model Tupã Negreiros 1, Marcos R. P. Barretto 2, Jun Okamoto 3

Geração de poses de faces utilizando Active Appearance Model Tupã Negreiros 1, Marcos R. P. Barretto 2, Jun Okamoto 3 Geração de poses de faces utlzando Actve Appearance Model Tupã Negreros 1, Marcos R. P. Barretto 2, Jun Okamoto 3 1, 2, 3 Escola Poltécnca da Unversdade de São Paulo (POLI/USP) Caxa Postal 61548 CEP 05508-900

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Estimativa da fração da vegetação a partir de dados AVHRR/NOAA

Estimativa da fração da vegetação a partir de dados AVHRR/NOAA Estmatva da fração da vegetação a partr de dados AVHRR/NOAA Fabane Regna Cunha Dantas 1, Céla Campos Braga, Soetâna Santos de Olvera 1, Tacana Lma Araújo 1 1 Doutoranda em Meteorologa pela Unversdade Federal

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

FUNÇÃO NO R PARA OBTENÇÃO DO DESENHO D-ÓTIMO EM MODELOS DE MISTURAS COM RESTRIÇÕES

FUNÇÃO NO R PARA OBTENÇÃO DO DESENHO D-ÓTIMO EM MODELOS DE MISTURAS COM RESTRIÇÕES FUNÇÃO NO R PARA OBTENÇÃO DO DESENHO D-ÓTIMO EM MODELOS DE MISTURAS COM RESTRIÇÕES Edmlson Rodrgues Pnto Leandro Alves Perera Faculdade de Matemátca Faculdade de Matemátca Unversdade Federal de Uberlânda

Leia mais

PREVISÃO DO ÍNDICE MERVAL: UMA APLICAÇÃO DE REDES NEURIAS POLINOMIAIS GMDH

PREVISÃO DO ÍNDICE MERVAL: UMA APLICAÇÃO DE REDES NEURIAS POLINOMIAIS GMDH PREVISÃO DO ÍNDICE MERVAL: UMA APLICAÇÃO DE REDES NEURIAS POLINOMIAIS GMDH CAPORAL, Bbana 1 ; CAVALHEIRO, Everton ; CORRÊA, José Carlos 3 ; CUNHA, Carlos 4 Palavras-chave: Econometra; Séres temporas; Co-ntegração;

Leia mais

UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE

UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE UM ALGORITMO EXATO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE Dssertação de mestrado em matemátca aplcada fnancada pelo CNPq IMECC - UNICAMP Pedro Ferraz Vllela Prof.

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE

UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS DE INVESTIMENTO COM RESTRIÇÕES DE CARDINALIDADE Unversdade Estadual de Campnas Insttuto de Matemátca, Estatístca e Computação Centífca Departamento de Matemátca Aplcada DISSERTAÇÃO DE MESTRADO UM NOVO ALGORITMO GENÉTICO PARA A OTIMIZAÇÃO DE CARTEIRAS

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

Software para Furação e Rebitagem de Fuselagem de Aeronaves

Software para Furação e Rebitagem de Fuselagem de Aeronaves Anas do 14 O Encontro de Incação Centífca e Pós-Graduação do ITA XIV ENCITA / 2008 Insttuto Tecnológco de Aeronáutca São José dos Campos SP Brasl Outubro 20 a 23 2008. Software para Furação e Rebtagem

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE R. L. S. CANEVESI 1, C. L. DIEL 2, K. A. SANTOS 1, C. E. BORBA 1, F. PALÚ 1, E. A. DA SILVA 1 1 Unversdade Estadual

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012 5 POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 00-0 OPTICAL POLARIMETRY AND MODELING OF POLARS OBSERVED IN OPD/LNA IN THE PERIOD 00-0 Karleyne M. G. Slva Cláuda V. Rodrgues

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1 Como aposentadoras e pensões afetam a educação e o trabalo de jovens do domcílo 1 Rodolfo Hoffmann 2 Resumo A questão central é saber como o valor da parcela do rendmento domclar formada por aposentadoras

Leia mais

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO J. W. B. Lopes 1 ; E. A. R. Pnhero 2 ; J. R. de Araújo Neto 3 ; J. C. N. dos Santos 4 RESUMO: Esse estudo fo conduzdo

Leia mais

Redes Neuronais (Introdução, perceptrões, e MLP)

Redes Neuronais (Introdução, perceptrões, e MLP) Redes neuronas (Perceptrões e MLP) Redes Neuronas (Introdução, perceptrões, e MLP) Vctor Lobo Orgens de AI e Redes Neuronas Programação Imperata Explcta-se o algortmo Conjunto de nstruções S INÍCIO? N?

Leia mais

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações.

Universidade Estadual de Ponta Grossa/Departamento de Economia/Ponta Grossa, PR. Palavras-chave: CAPM, Otimização de carteiras, ações. A CONSTRUÇÃO DE CARTEIRAS EFICIENTES POR INTERMÉDIO DO CAPM NO MERCADO ACIONÁRIO BRASILEIRO: UM ESTUDO DE CASO PARA O PERÍODO 006-010 Rodrgo Augusto Vera (PROVIC/UEPG), Emerson Martns Hlgemberg (Orentador),

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Francisco das Chagas de Souza

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA. Francisco das Chagas de Souza UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Francsco das Chagas de Souza ALGORITMOS ADAPTATIVOS LMS NORMALIZADOS PROPORCIONAIS: PROPOSTA DE UM NOVO ALGORITMO

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

Fast Multiresolution Image Querying

Fast Multiresolution Image Querying Fast Multresoluton Image Queryng Baseado no artgo proposto por: Charles E. Jacobs Adan Fnkelsten Davd H. Salesn Propõe um método para busca em um banco de dados de magem utlzando uma magem de consulta

Leia mais

2. MATERIAIS E MÉTODOS

2. MATERIAIS E MÉTODOS AVALIAÇÃO DE DESEMPENHO DOS MODELOS DO IPCC-AR4 NO NORDESTE SETENTRIONAL DO BRASIL QUANTO À VARIABILIDADE PLURIANUAL DA PRECIPITAÇÃO NO SÉCULO XX RESUMO--- Os modelos globas do Intergovernmental Panel

Leia mais

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro.

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. Estmatva dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. O. L. L. Moraes 1, H. R. da Rocha 2, M. A. Faus da Slva Das 2, O Cabral 3 1 Departamento

Leia mais

ALGORITMO E PROGRAMAÇÃO

ALGORITMO E PROGRAMAÇÃO ALGORITMO E PROGRAMAÇÃO 1 ALGORITMO É a descrção de um conjunto de ações que, obedecdas, resultam numa sucessão fnta de passos, atngndo um objetvo. 1.1 AÇÃO É um acontecmento que a partr de um estado ncal,

Leia mais

Utilização de Simulated Annealing em Optimização Difusa

Utilização de Simulated Annealing em Optimização Difusa Draft of paper In: Revsta de Investgação Operaconal, 21 (2), Dez (2001) pp 205-231 In Portugue Utlzação de Smulated Annealng em Optmzação Dfusa Mara Leonlde Rocha Varela Unversdade do Mnho Escola de Engenhara,

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Variáveis dummy: especificações de modelos com parâmetros variáveis

Variáveis dummy: especificações de modelos com parâmetros variáveis Varáves dummy: especfcações de modelos com parâmetros varáves Fabríco Msso, Lucane Flores Jacob Curso de Cêncas Econômcas/Unversdade Estadual de Mato Grosso do Sul E-mal: fabrcomsso@gmal.com Departamento

Leia mais

ALGORITMO DE PROGRAMAÇÃO DINÂMICA: FUNDAMENTOS E APLICAÇÕES EM EXTRAÇÃO DE FEIÇÕES

ALGORITMO DE PROGRAMAÇÃO DINÂMICA: FUNDAMENTOS E APLICAÇÕES EM EXTRAÇÃO DE FEIÇÕES ALGORITMO DE PROGRAMAÇÃO DINÂMICA: FUNDAMENTOS E APLICAÇÕES EM EXTRAÇÃO DE FEIÇÕES Alur P. Dal Poz Govane Maa do Vale Unversdade Estadual Paulsta UNESP Departamento de Cartografa alur@prudente.unesp.br

Leia mais

PROGRAMAÇÃO DIÁRIA DE IMAGENS DE UM SATÉLITE DE OBSERVAÇÃO: UMA FORMULAÇÃO REDUZIDA

PROGRAMAÇÃO DIÁRIA DE IMAGENS DE UM SATÉLITE DE OBSERVAÇÃO: UMA FORMULAÇÃO REDUZIDA PROGRAMAÇÃO DIÁRIA DE IMAGENS DE UM SATÉLITE DE OBSERVAÇÃO: UMA FORMULAÇÃO REDUZIDA Glaydston Mattos Rbero 1,2 e Luz Antono Noguera Lorena 2 1 Departamento de Cênca da Computação e Informátca Faculdade

Leia mais

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS PREVISÃO DE PRTIDS DE FUTEBOL USNDO MODELOS DINÂMICOS Oswaldo Gomes de Souza Junor Insttuto de Matemátca Unversdade Federal do Ro de Janero junor@dme.ufrj.br Dan Gamerman Insttuto de Matemátca Unversdade

Leia mais

CAPÍTULO 1 Exercícios Propostos

CAPÍTULO 1 Exercícios Propostos CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz,

Leia mais

Otimização de Custos de Transporte e Tributários em um Problema de Distribuição Nacional de Gás

Otimização de Custos de Transporte e Tributários em um Problema de Distribuição Nacional de Gás A pesqusa Operaconal e os Recursos Renováves 4 a 7 de novembro de 2003, Natal-RN Otmzação de ustos de Transporte e Trbutáros em um Problema de Dstrbução Naconal de Gás Fernanda Hamacher 1, Fernanda Menezes

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Goal Programming como Ferramenta de Gestão

Goal Programming como Ferramenta de Gestão Resumo Goal Programmng como Ferramenta de Gestão Dmtr Pnhero SANTANNA Fláva Zóbol DALMÁCIO Lucene Laurett RANGEL Valcemro NOSSA O objetvo deste artgo é demonstrar como o gestor pode aplcar a técnca do

Leia mais

O Uso do Software Matlab Aplicado à Previsão de Índices da Bolsa de Valores: Um Estudo de Caso no Curso de Engenharia de Produção

O Uso do Software Matlab Aplicado à Previsão de Índices da Bolsa de Valores: Um Estudo de Caso no Curso de Engenharia de Produção O Uso do Software Matlab Aplcado à Prevsão de Índces da Bolsa de Valores: Um Estudo de Caso no Curso de Engenhara de Produção VICENTE, S. A. S. Unversdade Presbterana Mackenze Rua da Consolação, 930 prédo

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

ESTUDO COMPARATIVO DE ALGORITMOS PARA RECONHECIMENTO FACIAL

ESTUDO COMPARATIVO DE ALGORITMOS PARA RECONHECIMENTO FACIAL EUDO COMPARAIVO DE AGORIMO PARA RECONHECIMENO FACIA Astract Crstane Knuta, crstane_knuta@yahoo.com.r Denns Molna, dennsmolna00@yahoo.com.r Erc Govan Dorneles, ercgovan@g.com.r Fao meão Grecch, faogrecch@g.com.r

Leia mais

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE)

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE) IPECE ota Técnca GOVERO DO ESTADO DO CEARÁ SECRETARIA DO PLAEJAMETO E GESTÃO (SEPLAG) ISTITUTO DE PESQUISA E ESTRATÉGIA ECOÔMICA DO CEARÁ (IPECE) OTA TÉCICA º 33 METODOLOGIA DE CÁLCULO DA OVA LEI DO ICMS

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

ISEP - ÍNDICE DE SHARPE ESCOLAR A PARTIR DA PROVA BRASIL: CRIAÇÃO E ESTUDO

ISEP - ÍNDICE DE SHARPE ESCOLAR A PARTIR DA PROVA BRASIL: CRIAÇÃO E ESTUDO ISEP - ÍNDICE DE SHARPE ESCOLAR A PARTIR DA PROVA BRASIL: CRIAÇÃO E ESTUDO Roberta Montello Amaral (UNIFESO) amaralroberta@yahoo.com.br Crado em 1990, o Saeb é um sstema de avalação do MEC que, junto à

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

MONITORAMENTO DE CONDIÇÃO DE ROLAMENTOS ATRAVÉS DA ANÁLISE CONJUNTA TEMPO-FREQUÊNCIA DE SINAIS DE VIBRAÇÃO

MONITORAMENTO DE CONDIÇÃO DE ROLAMENTOS ATRAVÉS DA ANÁLISE CONJUNTA TEMPO-FREQUÊNCIA DE SINAIS DE VIBRAÇÃO MONITORAMENTO DE CONDIÇÃO DE ROLAMENTOS ATRAVÉS DA ANÁLISE CONJUNTA TEMPO-FREQUÊNCIA DE SINAIS DE VIBRAÇÃO Antono Almeda Slva Unversdade Federal da Paraíba, Centro de Cêncas e Tecnologa, Departamento de

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

Avaliação de imóveis: a importância dos vizinhos

Avaliação de imóveis: a importância dos vizinhos Avalação de móves: a mportânca dos vznhos no caso de Recfe* Rubens Alves Dantas André Matos Magalhães José Ramundo de Olvera Vergolno Resumo Tradconalmente, na avalação de móves, admte-se que as observações

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Redes Neurais Artificiais Aplicadas no Monitoramento da Condição de Ferramentas de Corte Utilizando Algoritmo de Extração das Características SFS

Redes Neurais Artificiais Aplicadas no Monitoramento da Condição de Ferramentas de Corte Utilizando Algoritmo de Extração das Características SFS Proceedngs of the IV Brazlan Conference on Neural Networs - IV Congresso Braslero de Redes Neuras pp. 292-297, July 20-22, 999 - ITA, São José dos Campos - SP - Brazl Redes Neuras Artfcas Aplcadas no Montoramento

Leia mais

CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK

CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK Welsson de Araújo SILVA PRODERNA/ITEC/UFPA waslva89@hotmal.com Fernando

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

TRABALHADORES COM DEFICIÊNCIAS EM LINHAS DE PRODUÇÃO: MODELOS, RESULTADOS E DISCUSSÕES 1

TRABALHADORES COM DEFICIÊNCIAS EM LINHAS DE PRODUÇÃO: MODELOS, RESULTADOS E DISCUSSÕES 1 XIV ELAVIO El Fuerte Snaloa Méxco 9-14 de agosto de 2009 TRABALHADORES COM DEFICIÊNCIAS EM LINHAS DE PRODUÇÃO: MODELOS RESULTADOS E DISCUSSÕES 1 Mayron César de O. Morera Lana Mara R. Santos Alysson M.

Leia mais

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2 LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE Rcardo Slva Tavares 1 ; Roberto Scalco 1 Aluno de Incação Centífca da Escola de Engenhara Mauá (EEM/CEUN-IMT); Professor da Escola de Engenhara

Leia mais

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f.

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f. ROGÉRIO ALVES SANTANA AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grands L.f. Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa

Leia mais

Análise Fatorial F 1 F 2

Análise Fatorial F 1 F 2 Análse Fatoral Análse Fatoral: A Análse Fatoral tem como prncpal objetvo descrever um conjunto de varáves orgnas através da cração de um número menor de varáves (fatores). Os fatores são varáves hpotétcas

Leia mais

SUCESU 2005 Tecnologias Inteligência Artificial O estado da arte em métodos para reconhecimento de padrões: Support Vector Machine

SUCESU 2005 Tecnologias Inteligência Artificial O estado da arte em métodos para reconhecimento de padrões: Support Vector Machine SUCESU 005 ecnologas Intelgênca Artfcal O estado da arte em métodos para reconhecmento de padrões: Support Vector Machne Bernardo enna Resende de Carvalho bpenna@gmal.com Resumo A área de reconhecmento

Leia mais

unesp UNIVERSIDADE ESTADUAL PAULISTA

unesp UNIVERSIDADE ESTADUAL PAULISTA UNIVERSIDADE ESTADUAL PAULISTA Faculdade de Cêncas e Tecnologa Programa de Pós-Graduação em Cêncas Cartográfcas Govane Maa do Vale EXTRAÇÃO SEMI-AUTOMÁTICA DO EIXO DE RODOVIA EM IMAGENS DE MÉDIA E ALTA

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO - IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO - IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão.0 XXX.YY 22 a 25 Novembro de 2009 Recfe - PE GRUPO - IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP SISTEMA

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais