Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada"

Transcrição

1 XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos (CEET) RESUMO O presente trabalho tem como objetvo, fazer prevsões e controlar a qualdade do ar numa nterseção controlada por semáforo. Neste estudo, fo utlzada a análse de regressão e gráfcos de controle de regressão. As varáves que partcparam no processo de controle estatístco da qualdade de ar são: os atrasos meddos em segundos e a polução medda em concentrações de monóxdo de carbono (CO). Os resultados alcançados também mostram que um modelo que vola algumas suposções da regressão pode colocar o sstema fora de controle, tendo como conseqüênca conclusões erradas sobre as decsões a tomar no funconamento do semáforo. Palavra chave: Semáforo, Polução, Gráfcos. 1. Introdução É evdente que a prevenção da polução deve ser vsta e entendda como uma das prordades socas. Qualquer processo de controle da polução no meo ambente deve ser consderado mportante, já que contrbu para a melhora da qualdade de vda nas regões atngdas. A programação de um semáforo, que leva em conta o grau de polução, deve ser controlada perodcamente, melhorando com sto, qualdade do ar na nterseção snalzada, já que é onde se regstram os mas altos níves de polução (MATZOROS, 199). O controle da qualdade do ar na nterseção snalzada por semáforo gera dados correlaconados que exgem seu controle smultâneo, como é o caso da varável atraso vecular e a quantdade de poluente que este fenômeno produz, em um determnado ntervalo de tempo. A varável polução, medda em concentrações de monóxdo de carbono (CO), depende dretamente dos atrasos, meddos em segundos, produzdos pelos veículos que cruzam a nterseção (VILLALOBOS, 001). Devdo a este fato, controlar as varáves consderadas no processo de produção de poluentes, na nterseção snalzada, torna-se necessáro para se ter um montoramento mas precso da qualdade de ar da regão atngda. Para tanto, serão utlzados os gráfcos de controle de regressão, com o objetvo de gerar nformações que dão suporte à tomada de decsões sobre as programações do semáforo que opera na nterseção. É precso um controle smultâneo destas varáves correlaconadas, já que mutas vezes o funconamento do semáforo, na nterseção, pode estar sob controle. Isto é, o atraso produzdo pelos veículos que passam pelo cruzamento é mínmo, quando analsado separadamente da quantdade de poluente, mas, na verdade, o sstema podera estar fora de controle em termos de qualdade de ar. Portanto, o objetvo do presente trabalho é fazer prevsões e controlar a quantdade de polução provocada pelo tráfego de veículos motorzados, ocorrda nas nterseções controladas por semáforo. Para tanto, serão construídos modelos que relaconem as varáves envolvdas no processo. Também será mostrado que um modelo ajustado nadequadamente pode colocar o sstema fora de controle. ENEGEP 003 ABEPRO 1

2 XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 O controle da qualdade do ar, usando gráfcos de controle, permte dentfcar varações sgnfcatvas do processo de polução e detectar se estas varações que ocorrem são devdo a causas assnaláves ou causas aleatóras.. Metodologa.1. É mportante destacar que a metodologa, prmeramente, selecona a nterseção que precsa ser controlada. Esta nterseção deve ser snalzada por um semáforo, cuja programação deve ser otmzada, tendo como crtéros de otmzação o atraso e a polução, ver Vllalobos (001). Para avalar o mpacto do monóxdo de carbono sobre as pessoas, como conseqüênca do tráfego na nterseção snalzada, esta não pode estar afastada de resdêncas, centros de trabalho, centros comercas e congestonamentos contínuos, onde as pessoas fcam expostas por mas de 8 horas ao poluente. A nterseção seleconada deve ser uma na qual se verfque concentrações sgnfcatvas de CO... Medção das varáves:..1. luxos veculares - Para medr os fluxos veculares, a nterseção será observada soladamente. Isto é, o controle dos movmentos do tráfego será baseado nas condções exstentes no cruzamento analsado, sendo que não se levarão em conta eventuas nterferêncas exercdas pelos cruzamentos adjacentes. As observações serão fetas em períodos de pco e das típcos da semana. Os horáros de pco devem ser seleconados, dependendo das característcas do tráfego na área.... Concentração de Monóxdo de Carbono (CO) - Os níves de monóxdo de carbono gerados pelo tráfego são observados, no mesmo da da semana, horáros de pco em que foram observados os fluxos veculares e cada observação deve ser feta em ntervalos de 10 mnutos. Antes de tudo, deve ser determnada a posção do receptor, de preferênca antes da lnha de parada (Matzoros, 199). A dstânca entre o snal e o receptor depende do crtéro do pesqusador, quem deve consderar o fluxo vecular. Para fluxos baxos, o receptor deve estar, de preferênca, próxmo ao semáforo...3. Atrasos veculares-para calcular os atrasos veculares fo utlzado o método de Allsop (1981), quem elaborou um programa computaconal denomnado SIGSET. O SIGSET fo elaborado com base da teora, Allsop (1971a e 1971b). Este programa é baseado na fórmula de atraso de Webster (1958), através da segunte expressão. n D = = q j 1 jd j (1) Onde: D: atraso total da nterseção (Seg.), q j : fluxo vecular para a aproxmação j (V eq./seg.), d j : atraso da aproxmação j calculado pela fórmula de Webster (Seg.), n é o número de aproxmações (n 0). ENEGEP 003 ABEPRO

3 XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de Determnar a relação atraso e polução: p=f(d) () Onde: p, polução medda em concentrações de CO (ppm.), d, atraso (seg) Esta relação será utlzada para fazer prevsões e como ferramenta de controle das varáves, consderadas no processo de polução, na nterseção snalzada por semáforo. As varáves atraso e polução consderadas nesta relação são do tpo causa-efeto. A relação atraso e polução será calculada para cada ponto de observação. Como está sendo analsado um cruzamento, recomenda-se calcular uma relação para cada aproxmação, já que o comportamento dos fluxos em cada aproxmação é dferente, o que faz com que os atrasos produzdos por eles também sejam dferentes. Neste estudo, será utlzada a Análse de Regressão. A análse de regressão se nca com a construção de um dagrama de dspersão, através do qual se tem um ndcador ncal da relação atraso e polução. As possíves relações podem ser lneares ou não lneares. Se a relação entre atraso e polução não é lnear, há duas possbldades: tentar ajustar dretamente os dados a uma relação não lnear, ou buscar uma transformação ncal adequada da relação em uma forma aproxmadamente lnear, o que permte aplcar as técncas desenvolvdas para a regressão lnear, facltando, também, o processo de controle da qualdade de ar na regão. Ajustar dretamente os dados a uma relação não lnear é muto complcado, pos quando aplcados os mínmos quadrados, as equações normas de estmação são extremamente dfíces de serem resolvdas, nclusve para casos de equações não lneares smples. Portanto, recomenda-se fazer transformações para uma forma lnear. Os modelos não lneares que podem ser transformados em formas lneares são conhecdos como ntrnsecamente lneares. Os modelos ntrnsecamente lneares são aqueles que podem ser expressos numa forma lnear, por meo de transformações adequadas em ambas varáves, dependente e ndependente (DRAPER & SMITH, 1966). Maores nformações sobres transformações de modelos não lneares poderão ser encontradas em Box e Cox (1964), Box e Tdwell (196) e Montgomery (199). Uma vez feta a transformação de um modelo não lnear em um lnear, é estudada a adequação do modelo para verfcar se as suposções da regressão lnear não foram voladas. Este modelo lnearzado será utlzado no controle estatístco do processo da polução, usando gráfcos de controle de regressão. Como um dos objetvos é fazer prevsões, sto é, pode-se estar nteressado na prevsão da quantdade de monóxdo de carbono emtda pelos veículos motorzados, em um determnado ponto de observação da nterseção snalzada, para uma quantdade de atraso que estes veículos sofrem ao cruzar a nterseção, durante um período de tempo determnado, cuja função de prevsão é: pˆ = αˆ + βˆ d, onde, αˆ e βˆ são os melhores estmadores dos parâmetros. Portanto, a dferença entre o valor observado de polução e o valor prevsto é denomnado erro de prevsão (p - pˆ ), cuja dstrbução é uma dstrbução normal (0, σ ), onde: ENEGEP 003 ABEPRO 3

4 XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 σ = 1 (d d) σ (3) n Sdd Em geral, a expressão para σ não será conhecda e deve ser estmada. Pode-se fazer sto smplesmente substtundo σ por seu estmador S que dará um estmador de σ não tendencoso e assntotcamente efcente, dgamos S defndo assm: S = S 1 (d d) (4) n Sdd Portanto, ( p pˆ )/σ Dstrbu-se N(0, 1) Substtundo σ por S temos, ( p pˆ )/S dstrbu-se t n- S = (p pˆ ) (5) n Portanto, pode-se estabelecer um ntervalo de confança que contenha o valor real p com uma determnada probabldade, seja o nível de probabldade gual (1- α ) onde α é qualquer número de 0 a 1 que se quera escolher. Pode-se então escrever: pˆ ± t S α/, n Na construção dos lmtes de controle dos gráfcos de controle de regressão, o valor de t pode tomar valores múltplos do desvo padrão como 1,, 3,..., exemplo: Lsc = pˆ + 3S Lmc = αˆ + βˆd Lc = pˆ 3S 1 (d d) 1+ + n S dd 1 (d d) 1+ + n S dd (6) Os gráfcos de controle devem ser fetos para verfcar as mudanças sofrdas nas varáves usadas na análse. Informações sobre gráfcos de controle de regressão poderão ser encontradas em Mendel (1969). ENEGEP 003 ABEPRO 4

5 XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de Aplcação Os dados foram coletados em uma nterseção localzada na cdade de loranópols, SC, formada pela Rua Hetor Luz e pela Av. Mauro Ramos. As varáves como: fluxo vecular, concentração de monóxdo de carbono e os atrasos veculares que partcparam neste processo, foram coletadas segundo a metodologa. O semáforo otmzado apresenta as seguntes característcas: está compostos por três estágos, três grupos focas, cujo dmensonamento dos tempos e o atraso médo observado que este produz na aproxmação 1, são apresentados no quadro 1. Dmensonamento do semáforo luxo de Saturação (veq/htv) S1 S S Tempo Perddo (Seg.) 10 Tempo de Cclo (Seg). 8 Tempo de Verde Efetvo (Seg.) G ef1 G ef Porção de Verde Efetvo G ef3 Pve1 Pve Pve3 Tempo de Verde Real (Seg) G 1 G Atraso na aprox 1 (seg) 39,40 G 3 16,41 4,14 1,57 0,0 0,51 0, Quadro 1 Dmensonamento do semáforo e o atraso observado na nterseção seleconada Depos fo estabelecda a relação atraso e polução (modelo 1), utlzando-se análse de regressão, com o objetvo de fazer prevsões e como ferramenta de controle do processo de polução do ar da nterseção analsada. Para tanto, fo construído um dagrama de dspersão. O gráfco obtdo sugere um relaconamento lnear com uma certa curvatura para baxo. O modelo 1 prevê uma polução de 3,9 ppm, mas apresenta falta de lneardade, volação à normaldade dos resíduos aos níves de 5% e 10% de sgnfcânca, ver gráfcos 1a, a, em anexo. Aplcando gráfcos de controle no modelo (1) observa-se um ponto fora de controle no horáro de 14 as 14:10 horas, ver gráfco 3a, em anexo. Para dar solução ao problema de nadequação, o modelo fo aproxmado a uma forma não lnear crescente da forma p= β 0 e β d 1 que é o modelo. Este modelo fo transformado em uma forma aproxmadamente lnear, usando transformação logarítmca, resultando no modelo ln pˆ =ln 0, d. Este modelo não apresentou nenhuma nadequação, ver gráfcos 1b, b, em anexo. Prevê uma polução de 3,6 ppm. No modelo, os gráfcos de controle não acusaram pontos fora de controle, ver gráfco 3b, em anexo. A dferença absoluta entre a polução méda observada durante os horáros de pco e o valor estmado pelo modelo 1 é de 0, ppm e pelo modelo é de 0,1 ppm. ENEGEP 003 ABEPRO 5

6 XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Modelos (1) () Relações pˆ =-0,73+0,641d pˆ =0,01181e 0,145d. ou ln pˆ =-4, d Coefcente de 8,864 0,94 correlação Coefcente de 0,74 0,86 determnação calculado 47,3 94,0 Gráfco de Resíduos Contra Valores Ajustados -Não lneardade -Sem observações extremas -Lneardade -Varânca constante dos erros -Sem observações extremas Teste Darbn-Watson Não autocorrelação dos Não autocorrelação dos erros erros Teste de Normaldade Volação da normaldade a 5% e10%de sgnfcânca Normaldade dos erros Quadro - Resumo dos resultados obtdos da adequação dos modelos de regressão 4. Conclusões Como se pode observar, a metodologa desenvolvda permte fazer prevsões sobre a quantdade de monóxdo de carbono emtda pelos veículos que passam pelo cruzamento snalzado por semáforo. Também permte detectar em que horáros o processo de polução está fora de controle. Para o caso em estudo, exclur um ponto que está fora de controle não é smples, já que cada ponto corresponde a um horáro de funconamento do semáforo. Exclur um ponto que está fora de controle pode trazer séros problemas no trânsto como, por exemplo, engarrafamentos ou descontrole na quantdade de CO emtdo pelos veículos sem controle, devdo à exclusão do horáro (ponto fora de controle). Portanto recomenda-se que sejam fetas mas observações desse horáro para detectar as causas, se são assnaláves podem ser corrgdas. No caso do presente trabalho, fo detectado um só ponto fora de controle o qual ndcava um alto atraso para uma polução baxa. Este ponto não representa preocupação em termos de polução, mas sm em termos de modelo, que será utlzado como modelo de prevsão, já que o ponto fora de controle não acompanha a tendênca do processo. Este fato fo corrgdo, adequando os dados a outro modelo. Isto mplca que um modelo mal ajustado pode determnar pontos fora de controle, tendo como conseqüênca conclusões erradas sobre as decsões a tomar em relação ao funconamento do semáforo. ENEGEP 003 ABEPRO 6

7 XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Referêncas ALLSOP, R.E. (1971a) - Delay-mnmzng Settngs for xed-tme Traffc Sgnals at a Sngle Road Juncton. Journal of the Insttute for Mathematcs and st Applcatons, 8, p ALLSOP, R.E. (1971b) - A Computer Program for Calculatng Traffc Sgnal Settngs. Traffc Engneerng Control, Vol. 13, n., p BOX, G. E. e P.W. TIDWELL. (196) - Transformaton of the Independent Varables. Technometrcs, Vol. 4, n.4 p BOX, G. E. e D. R. COX. (1964) - An Analyss of Transformatons. Journal of the Royal Statstcal Socety, sere B, v. 6, n., p DRAPER, N.R. e H. SMITH. (1966.) - Appled Regresson Analyss. John Wley e Sons, Inc., New York. MANDEL, B.J. (1969) The regresson control chart. Journal of Qualty Technology, Vol. 1, n.1, p MATZOROS A. e D. VAN VLIET. (199) - A model of ar polluton from road traffc, based on the characterstcs of nterrupted flow and juncton control: Part I-Model descrpton. Transportaton Research A, Vol. 6A, n. 4, p MATZOROS, A. e V. DIRCK. (199) - A model of ar polluton from road traffc, based on the characterstcs of nterrupted flow and juncton control Part II: Model results. Transportaton Research A, Vol. 6, n. 4, p MONTGOMERY, D.C. e E. A. PECK. (199) - Introducton to Lnear Rrgresson Analyss, a ed. John Wley e Sons, Inc., New York. WEBSTER,.V. (1958) - Traffc sgnal settngs. Road Research Techncal Paper No. 39. HMSO, London. VILLALOBOS, C. L. (001) - Metodologa para otmzar o cálculo de planos para semáforos consderando o atraso e a polução atmosférca. Tese de doutorado, USC. ENEGEP 003 ABEPRO 7

8 XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 ANEXO - Gráfcos 1,5 1,0 0,5 0,4 0,3 0, Resíduos 0,0-0,5-1,0 Resíduos 0,1 0,0-0,1-1,5 -,0 -, Valores ajustados GRAICO 1A: Resíduos contra valores ajustados -0, -0,3-0,4 0,4 0,8 1, 1,6,0,4,8 Valores ajustados GRAICO 1B: Resíduos contra valores ajustados,5,5 Valor esperdo da normal 1,5 0,5-0,5-1,5 Valor Esperado da normal 1,5 0,5-0,5-1,5 -,5 -,5 -,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5 Resíduos GRAICO A: Normaldade dos resíduos -,5-0,4-0,3-0, -0,1 0,0 0,1 0, 0,3 0,4 Resíduos GRAICO B: Normaldade dos resíduos Concentrações de CO Atraso GRAICO 3A: Gráfcos de controle, modelo 1 Concentrações de CO,6,4,,0 1,8 1,6 1,4 1, 1,0 0,8 0,6 0,4 7 0, Atraso GRAICO 3B: Gráfco de controle, modelo ENEGEP 003 ABEPRO 8

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO Ana Carolna Campana Nascmento 1, José Ivo Rbero Júnor 1, Mosés Nascmento 1 1. Professor da Unversdade Federal de Vçosa, Avenda Peter Henr

Leia mais

Gráfico de controle de regressão aplicado na monitoração de processos

Gráfico de controle de regressão aplicado na monitoração de processos Jacob, Souza & Perera Gráfco de controle de regressão aplcado na montoração de processos LUCIANE FLORES JACOBI, MSC. Professora do Departamento de Estatístca UFSM. E-mal: lfjacob@ccne.ufsm.br ADRIANO MENDONÇA

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

são os coeficientes desconhecidos e o termo ε (erro)

são os coeficientes desconhecidos e o termo ε (erro) Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Método para aplicação de gráficos de controle de regressão no monitoramento de processos

Método para aplicação de gráficos de controle de regressão no monitoramento de processos Produção, v 21, n 1, p 106-117, jan/mar 2011 do: 101590/S0103-65132011005000001 Método para aplcação de gráfcos de controle de regressão no montoramento de processos Danlo Cuzzuol Pedrn a, *, Carla Schwengber

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010 Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon

Leia mais

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade Controle Estatístco de Processos: a questão da autocorrelação, dos erros de mensuração e do montoramento de mas de uma característca de qualdade Docentes: Maysa S. de Magalhães; Lnda Lee Ho; Antono Fernando

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

Análise Fatorial F 1 F 2

Análise Fatorial F 1 F 2 Análse Fatoral Análse Fatoral: A Análse Fatoral tem como prncpal objetvo descrever um conjunto de varáves orgnas através da cração de um número menor de varáves (fatores). Os fatores são varáves hpotétcas

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE)

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE) IPECE ota Técnca GOVERO DO ESTADO DO CEARÁ SECRETARIA DO PLAEJAMETO E GESTÃO (SEPLAG) ISTITUTO DE PESQUISA E ESTRATÉGIA ECOÔMICA DO CEARÁ (IPECE) OTA TÉCICA º 33 METODOLOGIA DE CÁLCULO DA OVA LEI DO ICMS

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012 5 POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 00-0 OPTICAL POLARIMETRY AND MODELING OF POLARS OBSERVED IN OPD/LNA IN THE PERIOD 00-0 Karleyne M. G. Slva Cláuda V. Rodrgues

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO J. W. B. Lopes 1 ; E. A. R. Pnhero 2 ; J. R. de Araújo Neto 3 ; J. C. N. dos Santos 4 RESUMO: Esse estudo fo conduzdo

Leia mais

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira.

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira. Informação Esta publcação é uma tradução do Gua de Calbração EURAMET Gua para a Estmatva da Incerteza em Medções de Dureza (EURAMET/cg-16/v.01, July 007). Os dretos autoras do documento orgnal pertencem

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES Paper CIT02-0026 METODOLOGIA PARA CORRELAÇÃO DE DADOS CINÉTICOS ENTRE AS TÉCNICAS DE

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica.

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica. Análse do Retorno da Edcação na Regão Norte em 2007: Um Estdo à Lz da Regressão Qantílca. 1 Introdcão Almr Rogéro A. de Soza 1 Jâno Macel da Slva 2 Marnalva Cardoso Macel 3 O debate sobre o relaconamento

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,

Leia mais

PRODUTIVIDADE DO CAFÉ EM MINAS GERAIS: UMA ANÁLISE ESPACIAL

PRODUTIVIDADE DO CAFÉ EM MINAS GERAIS: UMA ANÁLISE ESPACIAL PRODUTIVIDADE DO CAFÉ EM MINAS GERAIS: UMA ANÁLISE ESPACIAL EDUARDO SIMÕES DE ALMEIDA; GISLENE DE OLIVEIRA PACHECO; ANA PAULA BENTO PATROCÍNIO; SIMONE MOURA DIAS; FEA/UFJF JUIZ DE FORA - MG - BRASIL edu_smoes@hotmal.com

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS

MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS versão mpressa ISSN 0101-7438 / versão onlne ISSN 1678-5142 MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS Ana Paula

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA 658 Gaudo & Zandonade Qum. Nova Qum. Nova, Vol. 4, No. 5, 658-671, 001. Dvulgação PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA Anderson Coser Gaudo

Leia mais

MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS

MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS versão mpressa ISSN 00-7438 / versão onlne ISSN 678-542 MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS Ana Paula

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

Palavras-chaves: Gráficos de controle, ambiente R, análise estatística multivariada

Palavras-chaves: Gráficos de controle, ambiente R, análise estatística multivariada A ntegração de cadeas produtvas com a abordagem da manufatura sustentável. Ro de Janero, RJ, Brasl, 13 a 16 de outubro de 2008 O DESENVOLVIMENTO DE GRÁFICOS DE CONTROLE MCUSUM E MEWMA EM AMBIENTE R COMO

Leia mais

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação números e funções Gua do professor Software Como comprar sua moto Objetvos da undade 1. Aplcar o conceto de juros compostos; 2. Introduzr o conceto de empréstmo sob juros; 3. Mostrar aplcações de progressão

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA. Túlio Alves Matta

AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA. Túlio Alves Matta AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA Túlo Alves Matta MONOGRAFIA SUBMETIDA À COORDENAÇÃO DE CURSO DE ENGENHARIA DE PRODUÇÃO DA UNIVERSIDADE

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

Avaliação de imóveis: a importância dos vizinhos

Avaliação de imóveis: a importância dos vizinhos Avalação de móves: a mportânca dos vznhos no caso de Recfe* Rubens Alves Dantas André Matos Magalhães José Ramundo de Olvera Vergolno Resumo Tradconalmente, na avalação de móves, admte-se que as observações

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

TITLE: ANALYSIS OF THE ACADEMIC PERFORMANCE OF STUDENTS OF TOURISM COURSE OF A HIGHER EDUCATION INSTITUTION USING MULTIVARIATE TECHNIQUES

TITLE: ANALYSIS OF THE ACADEMIC PERFORMANCE OF STUDENTS OF TOURISM COURSE OF A HIGHER EDUCATION INSTITUTION USING MULTIVARIATE TECHNIQUES TITLE: ANALYSIS OF THE ACADEMIC PERFORMANCE OF STUDENTS OF TOURISM COURSE OF A HIGHER EDUCATION INSTITUTION USING MULTIVARIATE TECHNIQUES Teóflo Camara Mattozo (Unversdade Estadual do Ro Grande do Norte,

Leia mais

CURRICULUM VITAE - RESUMIDO

CURRICULUM VITAE - RESUMIDO A estatístca tem uma partculardade: pesqusamos para dzer algo sgnfcatvo sobre o unverso que elegemos, porém a pesqusa só será sgnfcatva se conhecermos sufcentemente o unverso para escolhermos adequadamente

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro.

Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. Estmatva dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. O. L. L. Moraes 1, H. R. da Rocha 2, M. A. Faus da Slva Das 2, O Cabral 3 1 Departamento

Leia mais