Método para aplicação de gráficos de controle de regressão no monitoramento de processos

Tamanho: px
Começar a partir da página:

Download "Método para aplicação de gráficos de controle de regressão no monitoramento de processos"

Transcrição

1 Produção, v 21, n 1, p , jan/mar 2011 do: /S Método para aplcação de gráfcos de controle de regressão no montoramento de processos Danlo Cuzzuol Pedrn a, *, Carla Schwengber ten Caten b a, UFRGS, Brasl b UFRGS, Brasl Resumo Este artgo propõe um método para a aplcação do gráfco de controle de regressão no montoramento de processos ndustras Vsando facltar a aplcação do gráfco, o método é apresentado em duas fases: análse retrospectva (Fase I) e montoramento do processo (Fase II), além de nclur uma modfcação do gráfco de controle de regressão múltpla, permtndo o montoramento dreto da característca de qualdade do processo ao nvés do montoramento dos resíduos padronzados do modelo Também é proposto o gráfco de controle de extrapolação, que verfca se as varáves de controle extrapolam o conjunto de valores utlzado para estmar o modelo de regressão O método fo aplcado em um processo de uma ndústra de borrachas O desempenho do gráfco de controle fo avalado pelo Número Médo de Amostras (NMA) até o snal através do método de Monte Carlo, mostrando a efcênca do gráfco em detectar algumas modfcações nos parâmetros do processo Palavras-chave Gráfco de controle de regressão Modelos de regressão lnear Número médo de amostras 1 Introdução Os gráfcos de controle de Shewhart destacam-se dentre as ferramentas do Controle Estatístco de Processos (CEP) devdo à sua smplcdade operaconal e efetvdade na detecção de problemas no processo, sendo utlzados com sucesso no montoramento do desempenho de mutos processos ndustras Woodall e Montgomery (1999) ressaltam que a utlzação dos gráfcos de controle clásscos supõe que os dados da característca de qualdade do processo sejam ndependentes e dentcamente dstrbuídos (d) De acordo com Azenchtadt, Ingman e Fredler (2008), se essas suposções não forem verdaderas, o desempenho do gráfco de controle pode ser nsatsfatóro, gerando elevado número de alarmes falsos ou perda de efcênca na detecção de causas especas Usualmente, o processo precsa ser controlado pelos operadores através da manpulação de algumas varáves, defndas como varáves de controle no presente trabalho Quando essas varáves de controle são frequentemente alteradas, vola-se a suposção de d, podendo modfcar a méda e o desvo-padrão da característca de qualdade Nesse caso, uma possível solução sera o uso de um gráfco de controle para cada ajuste, mas sso pode ser nvável devdo ao baxo número de amostras dsponíves em cada ajuste das varáves de controle e ao grande número de trocas de gráfcos que sera necessáro Outro problema decorrente dessa stuação acontece quando alguma varável de controle do processo é propostalmente alterada para um valor extremo, fazendo com que a característca de qualdade assuma um valor muto dscrepante Nessas duas stuações, os gráfcos de controle clásscos ndcaram que o processo está fora de controle, embora aparentemente nada de errado tenha ocorrdo com o processo (SHU; TSUNG; TSUI, 2004) Em ambos os casos, segundo Jacob, Souza e Perera (2002) e Shu, Tsung e Tsu (2004), a característca de qualdade de um produto ou processo é mas bem representada pelo seu relaconamento com as varáves de controle Uma *UFRGS, Porto Alegre, RS, Brasl Recebdo 03/09/2009; Aceto 26/05/2010

2 Pedrn D C et al 107 forma de montorar um processo desse tpo é através dos chamados gráfcos de controle baseados em modelos de regressão (LOREDO; JEARKPAPORN; BORROR, 2002) A orgem dessa lnha de pesqusa é atrbuída a Mandel (1969), que propôs o gráfco de controle de regressão Ele controla a varação méda da característca de qualdade, que ocorre em função da alteração do ajuste das varáves de controle do processo, ao nvés de controlar uma méda constante do processo, como é usualmente feto nos gráfcos de controle de Shewhart Woodall e Montgomery (1999) e Woodall (2000) apontam os gráfcos de controle baseados em modelos de regressão como sendo uma das técncas desenvolvdas na teora com grande potencal de aplcação prátca A proposta orgnal de Mandel (1969) somente pode ser aplcada em processos que apresentem uma varável de controle Haworth (1996) estendeu a dea de Mandel (1969) com a proposta do gráfco de controle de regressão múltpla, que consste na estmatva de um modelo de regressão lnear múltpla e no posteror montoramento dos resíduos padronzados Embora tenha apresentado uma modfcação bastante útl, Haworth (1996) não apresenta um método sufcentemente claro para a aplcação do gráfco proposto Dessa forma, o presente artgo tem como objetvo propor um método smples para aplcação do gráfco de controle de regressão no montoramento de processos produtvos com uma ou mas varáves de controle O método proposto está estruturado em duas fases: Fase I (análse retrospectva) e Fase II (montoramento do processo) O método também contempla uma smples modfcação ao gráfco de controle de regressão múltpla, fazendo com que seja possível montorar o valor observado da característca de qualdade, ao nvés do montoramento dos resíduos do modelo de regressão, facltando a nterpretação por parte dos operadores Adconalmente, propõe-se o gráfco de controle de extrapolação, que deve ser utlzado conjuntamente com o gráfco de controle de regressão para verfcar se o ajuste da varável de controle não extrapola o ntervalo de nvestgação utlzado na modelagem da equação de regressão Ao fnal do trabalho são apresentados os resultados do número médo de amostras (NMA) do gráfco de controle de regressão proposto, de forma a caracterzar o desempenho deste quando ocorrem mudanças pré-estabelecdas nos parâmetros 2 Modelos de regressão lnear múltpla De acordo com Montgomery, Vnng e Peck (2001), o modelo de regressão lnear múltpla que relacona a característca de qualdade y às k varáves de controle do processo é representado na Equação 1 y = xβ+ ε (1) onde: y1 y y = 1 yn 1 x11 x1 k x21 x2k X = 1 1 xn 1 xnk β0 = β1 β βk ε0 ε = ε1 εn Na Equação 1, y é o vetor dos valores observados da característca de qualdade, X é a matrz dos valores das n observações das k varáves de controle, β é o vetor de coefcentes de regressão e ε é o vetor dos erros aleatóros O vetor ε é estmado pelo vetor de resíduos e, defndo como a dferença entre os valores observados e os valores estmados pelo modelo ( y ), como mostrado na Equação 2 e= y y (2) Segundo Montgomery, Vnng e Peck (2001) e Neter et al (2005), se o número de observações (n) for maor que o número de varáves de controle, para estmar a equação de regressão e, por consequênca, estmar y, utlza-se o método de Mínmos Quadrados Ordnáros (MQO), que vsa mnmzar as somas quadrátcas dos resíduos e O estmador de MQO de β é apresentado na Equação 3 1 β= ( XX ) Xy (3) De acordo com Montgomery, Vnng e Peck (2001), para utlzar o MQO é necessáro assumr que os resíduos sejam ndependentemente dstrbuídos, com méda gual a 0 e desvo-padrão constante Ressalta-se que, para realzar nferêncas estatístcas para os coefcentes de regressão e estmatvas da característca da qualdade, é necessáro assumr que os resíduos sejam normalmente dstrbuídos Ambas as suposções devem ser verfcadas após a estmação do modelo, para valdação do mesmo A estmatva da varânca dos resíduos do modelo de regressão é dada pelo quadrado médo dos resíduos (QMR): σ 2 ee = = SQR n p n p = QMR (4) onde: p = k + 1 De acordo com Neter et al (2005), a aplcação mas comum dos modelos de regressão é estmar a característca de qualdade y para um vetor x de varáves de controle Exstem duas possbldades: () estmação da resposta méda; e () predção de novas observações ndvduas A dferença entre essas duas aplcações reca no fato de que a estmatva da resposta méda é calculada com base em um vetor x que fo utlzado para estmar o

3 108 Pedrn D C et al modelo de regressão, enquanto a prevsão de novos valores é a estmatva através de um novo vetor x j de varáves de controle Em ambos os casos, a estmatva da característca de qualdade é obtda com o uso da estmatva da Equação 5 e do vetor de varáves de controle x : y = xβ (5) Essas estmatvas apresentam dferentes varabldades, sendo que para a estmatva da resposta méda a varânca é calculada pela Equação 6 var( µ ) = var( xβ) = σ 2 x ( XX ) 1 x (6) y/ x Para a predção de uma nova observação, é necessáro assumr que o modelo de regressão estmado seja váldo para o novo conjunto de dados e que essa observação seja ndependente dos dados utlzados para a estmação do modelo de regressão Segundo Montgomery et al (2001), esta ndependênca faz com que a varânca de uma nova observação seja maor que a estmatva de resposta méda, conforme Equação 7 ( ( ) ) ( ) = + Var y σ x X X x (7) j j j 3 Gráfco de controle de regressão Em lnhas geras, o gráfco de controle de regressão consste no ajuste de um modelo de regressão lnear smples que relacone a característca de qualdade do processo a uma varável de controle e o montoramento dos valores observados, em comparação com valores ajustados pelo modelo (MANDEL, 1969; JACOBI; SOUZA; PEREIRA, 2002) No gráfco de controle de regressão de Mandel (1969), a lnha central e os lmtes de controle serão nclnados em relação ao exo horzontal do gráfco, sendo estmada pela equação de regressão Os lmtes do gráfco de controle de regressão são paralelos à lnha central, sendo posconados desta a L desvos-padrão, que é obtdo pela raz quadrada do QMR LSC = y + L QMR LC = y (9) LIC = y L QMR (8) (10) Na maora dos trabalhos consultados, o valor da constante L é 2 ou 3, conforme a sensbldade e número de alarmes falsos desejados para o gráfco de controle Mandel (1969) adotou dos desvospadrão como crtéro No gráfco de controle de regressão de Mandel (1969), o exo das abscssas dexa de ser o número da amostra, passando a ser o valor das varáves de controle Com sso, perde-se a ordem temporal dos dados, o que dfculta a realzação e nterpretação gráfca dos demas testes de establdade dos gráfcos de controle apresentados em Montgomery (2004) Outra desvantagem da proposta de Mandel é a restrção de ser utlzada apenas em processos com uma varável de controle Como solução a esta restrção, Haworth (1996) propôs o gráfco de controle de regressão múltpla, que utlza os resíduos padronzados na forma Student como varável montorada ao longo do tempo De acordo com Haworth (1996) e Shu, Tsung e Tsu (2004), esses resíduos são obtdos pela Equação 12 z j e j = 1 σ 1+ x X X x j ( ) j (11) A lnha central do gráfco de controle de regressão múltpla é gual a zero, que é a méda dos resíduos de um modelo de regressão Os lmtes de controle são baseados no valor da estatístca t-student, com nível de confança 1- α e n p graus de lberdade LSC =+ t (12) α / 2, n p LC = 0 (13) LIC = t (14) α / 2, n p Uma falha do procedmento apresentado por Haworth (1996) é não apresentar os lmtes de controle para a Fase I de execução do gráfco de controle de regressão múltpla, já que os resíduos na forma Student são obtdos pelo uso do desvopadrão de uma nova observação Loredo, Jearkpaporn e Borror (2002) e Shu, Tsung e Tsu (2004) também propuseram alternatvas que permtem o uso de modelos de regressão lnear múltpla No prmero trabalho, utlza-se a ampltude móvel dos resíduos para estmar o desvo-padrão do gráfco de controle de regressão Shu, Tsung e Tsu (2004) apresentam o gráfco EWMAREG, que consste no montoramento dos resíduos padronzados através de um gráfco de controle de médas móves exponencalmente ponderadas (EWMA) As propostas de Haworth (1996), Loredo, Jearkpaporn e Borror (2002) e Shu, Tsung e Tsu (2004) apresentam a vantagem de manter a ordem temporal dos dados, que não era possível na proposta ncal de Mandel (1969) Exemplos de aplcações

4 Pedrn D C et al 109 do gráfco de controle de regressão podem ser encontrados em Johnson, B, Johnson, C e Seber (1995), Oln (1998), Jacob, Souza e Perera (2002), Omura e Steffe (2003) e Azenchtadt, Ingman e Fredler (2008) Também são encontrados na lteratura dversos procedmentos smlares aos gráfcos de controle de regressão, procedmentos estes que podem ser ncluídos na lnha de pesqusa dos gráfcos de controle baseados em modelos Por exemplo, Zhang (1985) propôs o gráfco de controle para seleção de causas (GCSC), que são aplcados no montoramento de processos compostos por váras atvdades sequencas, também chamados de processos em cascata Wade e Woodall (1993) revsaram o GCSC e propuseram lmtes de controles a partr da prevsão de novas observações, mostrando que estes podem ser mas efcentes que a proposta ncal de Zhang (1985) Hawkns (1991) propôs um procedmento para o montoramento de processos multvarados baseado em varáves ajustadas por regressão Posterormente, Hawkns (1993) adaptou essa técnca para processos em cascata, como uma alternatva ao GCSC Hauck, Runer e Montgomery (1999) utlzaram regressões agrupadas para o caso de processos em cascata multvarados Oln (1998) apresentou o gráfco de controle de regressão não lnear, além de propor o uso de modelos lneares generalzados (MLG) para o montoramento de processos Sknner, Montgomery e Runger (2003) e Jearkpaporn et al (2003) propuseram o uso de gráfcos de controle para resíduos devance dos MLGs no montoramento de contagem de não conformdades com dstrbução Posson e Gama, respectvamente Posterormente, Jearkpaporn et al (2007) estenderam esse método para processos em cascata, de manera smlar ao GCSC Kang e Albn (2000) propuseram um procedmento para o montoramento de perfs lneares, onde é requerdo o ajuste de modelos de regressão lnear smples para cada amostra para verfcar alterações nos parâmetros dos perfs, como os coefcentes de regressão e varabldade do processo Para maores detalhes sobre o montoramento de perfs, Woodall et al (2004) e Woodall (2007) expõem revsões sobre os avanços nessa área Loredo, Jearkpaporn e Borror (2002) e Montgomery (2004) também destacam a aplcação do gráfco de controle de regressão para processos autocorrelaconados, em substtução aos gráfcos de controle baseados em modelos para séres temporas, se os valores das varáves de controle forem conhecdos Segundo esses autores, os resíduos de um modelo de regressão usualmente não apresentam autocorrelação, mesmo que a característca de qualdade ou as varáves de controle sejam autocorrelaconadas Montgomery (2004) também cta a possbldade de adaptação do gráfco de controle de regressão para o montoramento de processos que apresentam tendêncas, que podem ser causadas, por exemplo, pelo desgaste de ferramentas 4 Método proposto Para Woodall e Montgomery (1999) e Vnng (2009), um método de mplantação de gráfcos de controle pode ser dvddo em duas fases: () Fase I, chamada de análse retrospectva, que é utlzada quando os parâmetros do processo são desconhecdos e devem ser estmados com base em uma amostra provenente do processo a ser montorado; () Fase II, ou montoramento do processo, que é utlzada quando os parâmetros do processo são prevamente conhecdos, ou foram estmados na Fase I De acordo com Faltn et al (1997), a Fase II requer a suposção de que os dados da característca de qualdade montorados e os dados utlzados na estmação dos lmtes de controle da Fase I sgam a mesma dstrbução de probabldade Essa dvsão em duas fases é bastante útl na aplcação dos gráfcos de controle, especalmente nos procedmentos mas complexos desenvolvdos no meo acadêmco, já que apresenta ao letor todos os procedmentos, desde a estmação de parâmetros até a dentfcação de causas especas Segundo Faltn et al (1997), a maora dos trabalhos encontrados na lteratura sobre gráfcos de controle falha justamente em não separar essas duas fases em sua metodologa, o que dfculta a dssemnação e aplcação dessas novas técncas no meo ndustral Isso também fo verfcado nos trabalhos sobre gráfco de controle de regressão consultados durante o levantamento bblográfco para o presente artgo Como será apresentado posterormente, os lmtes de controle do gráfco de controle de regressão para as Fases I e II são dferentes, logo a apresentação do presente método em duas fases vsa auxlar a aplcação correta dos lmtes em cada fase O método proposto contempla uma modfcação relatvamente smples que permtrá o montoramento dreto das observações referentes a uma característca de qualdade dependente de uma ou mas varáves de controle do processo, ao nvés do montoramento dos resíduos da regressão A modfcação proposta no presente trabalho é

5 110 Pedrn D C et al smlar à modfcação do gráfco de controle EWMA apresentada por Montgomery e Mastrangelo (1991) e será apresentada no Apêndce 1 Montgomery e Mastrangelo (1991) e Montgomery (2004) ressaltam que alguns operáros têm dfculdades em nterpretar os gráfcos de controle baseados em resíduos, já que estes nem sempre são consderados pelos operáros como sendo uma referênca dreta do processo Esses autores recomendam a utlzação de procedmentos que montorem dretamente as característcas de qualdade, em substtução ao montoramento de resíduos, já que este tpo de modfcação também combna nformações sobre a dnâmca do processo e o controle estatístco em um únco gráfco Antes da descrção do método proposto é necessáro apresentar as três suposções necessáras à aplcação deste: () a característca de qualdade do processo deve ser uma varável contínua e sua relação com as varáves de controle deve ser ajustável por um modelo de regressão lnear; () os resíduos da regressão devem ser normal e ndependentemente dstrbuídos, com méda zero e desvo-padrão constante; e () segundo Faltn et al (1997), assume-se que os dados utlzados para o ajuste da regressão na Fase I do método e os dados montorados na Fase II devem ter o mesmo comportamento 41 Fase I análse retrospectva As etapas de execução desta fase são: () coleta de dados; () ajuste do modelo de regressão lnear smples ou múltpla; e () análse de establdade da Fase I, que é a detecção de causas especas 411 Coleta de dados Para a Fase I do método proposto é necessáro coletar uma amostra sgnfcatva do processo, que permta estmar todos os coefcentes de regressão, além de dsponblzar o maor número possível de graus de lberdade para a estmatva do termo de erro do modelo, aumentando a confabldade dos resultados Os dados coletados devem conter o valor da característca de qualdade montorada e os valores das varáves de controle do processo referentes ao ajuste do processo no momento de coleta Os dados utlzados no ajuste do modelo de regressão podem ser hstórcos ou orundos de uma coleta através de um planejamento expermental 412 Estmação do modelo de regressão De posse dos dados, utlza-se o MQO para estmar o modelo de regressão lnear que relacone a característca de qualdade do processo às varáves de controle Após a estmatva do modelo de regressão, realzam-se ses passos para a acetação do modelo: () teste de sgnfcânca do modelo de regressão; () uso do fator de nflação da varânca (FIV) para a verfcação da presença de multcolneardade no modelo; () teste dos coefcentes ndvduas de regressão, de forma a verfcar a sgnfcânca da relação entre cada uma das varáves de controle e a característca de qualdade; (v) uso da dstânca de Cook para análse de pontos nfluentes na estmatva do modelo; (v) análse das suposções de que os resíduos são normalmente dstrbuídos com méda zero e desvo-padrão aproxmadamente constante; e (v) uso da estatístca de Durbn-Watson para verfcar a hpótese de que os resíduos são ndependentes Ressalta-se que os passos (v) e (v) vsam valdar o modelo de regressão e as nferêncas estatístcas realzadas Para maores detalhes sobre esses passos, sugere-se Montgomery, Vnng e Peck (2001) e Neter et al (2005) 413 Análse de establdade da Fase I Ressalta-se que para o gráfco de controle de regressão, o valor de referênca para a característca de qualdade, dado o ajuste das varáves de controle do processo, é obtdo pelo valor prevsto pelo modelo de regressão Para a Fase I do método proposto, utlzam-se os lmtes de controle do gráfco de regressão apresentados anterormente, adotando-se L = 3 Dessa forma, os lmtes de controle da Fase I são: 2 LSC = y + 3 σ = y + 3 QMR (15) LC = y (16) 2 LIC = y 3 σ = y 3 QMR (17) Esses lmtes de controle são semelhantes aos adotados por Mandel (1969), porém nesse caso as amostras são plotadas no gráfco em ordem temporal, ao nvés de serem plotadas de acordo com o valor da varável de controle, permtndo a adoção de todos os oto testes de establdade descrtos por Montgomery (2004) Assm, os lmtes de controle e a lnha central serão lnhas móves, varando de acordo com o valor prevsto pelo modelo de regressão Em relação ao gráfco de controle de regressão múltpla de Haworth (1996), montora-se o valor observado da característca de qualdade, ao nvés do montoramento dos resíduos padronzados Para o método proposto, será consderado apenas o teste de um ponto excedendo os lmtes de controle Se forem detectadas causas especas, a equação de regressão e os lmtes de controle deverão

6 Pedrn D C et al 111 ser calculados novamente, desconsderando-se os pontos fora de controle Caso não exstam novos pontos fora de controle, procede-se para a Fase II do método proposto Esse procedmento é smlar à análse de outlers encontrada na maora dos textos sobre modelos de regressão, que é usualmente empregada após a estmatva de um modelo 42 Fase II montoramento do processo Para essa fase, assume-se que o modelo de regressão estmado na Fase I do método proposto está correto e que os dados do processo a ser montorado apresentem o mesmo comportamento dos dados utlzados na Fase I Assm, é possível usar a equação de regressão e o desvo-padrão do modelo para calcular o valor prevsto da característca de qualdade As etapas de execução da Fase II são: coleta de dados e montoramento do processo propramente dto 421 Coleta de dados Para a Fase II do método proposto é necessára a coleta de amostras ndvduas do processo, obtdas em ntervalos regulares de tempo Ressalta-se que os dados coletados devem conter o valor da característca de qualdade montorada e respectvos valores das varáves de controle do processo 422 Montoramento do processo propramente dto Prmeramente, é necessáro montorar as varáves de controle da amostra coletada, com a fnaldade de verfcar se as amostras extrapolam a regão orgnal defnda pelo conjunto de varáves de controle utlzadas para estmar o modelo de regressão Essa verfcação é necessára, já que, de acordo com Montgomery, Vnng e Peck (2001) e Neter et al (2005), o modelo de regressão é uma boa aproxmação para a relação entre a característca de qualdade e as varáves de controle dentro do ntervalo de nvestgação, mas pode ser uma estmatva muto pobre para valores das varáves de controle fora desse ntervalo, prejudcando o desempenho do gráfco de controle de regressão múltpla Para essa verfcação, adaptou-se grafcamente o procedmento descrto por Montgomery, Vnng e Peck (2001), dando orgem ao gráfco de controle de extrapolação Nele, a varável a ser montorada é o h jj, apresentada na Equação 19 ( ) 1 (18) h = x XX x jj j j onde: x j é o vetor das varáves de controle da j-ésma nova observação O gráfco de controle de extrapolação apresenta a partculardade de possur apenas o LSC, que é o valor máxmo dos elementos h utlzados para estmar o modelo de regressão: LSC = ( ) max (19) h A escolha desse lmte de controle é orunda do procedmento descrto por Montgomery, Vnng e Peck (2001), já que o valor máxmo de h dos dados utlzados para estmar o modelo de regressão delmta a regão composta por todos os vetores x Assm, um ponto que exceda o LSC está fora dessa regão, ocorrendo, necessaramente, a extrapolação do modelo de regressão Especfcamente para o gráfco de controle de extrapolação, um ponto fora de controle pode ndcar: () erro de ajuste do processo por parte dos operadores; () erro de coleta de dados; ou () alteração nos parâmetros de ajuste do processo, ndcando a necessdade de reníco da Fase I do método proposto Caso não exstam pontos fora de controle no gráfco de controle de extrapolação, prossegue-se para o montoramento da característca de qualdade Para esse montoramento, propõe-se uma modfcação ao gráfco de controle de regressão múltpla, proposto por Haworth (1996) Esta modfcação é apresentada no Apêndce 1 Os lmtes de controle e a lnha central dessa modfcação são dados pelas Equações 20, 21 e 22 ( ) LSC = y + 3 QMR 1 + h (20) LC j j j jj = y (21) j ( ) LIC = y 3 QMR 1 + h (22) j j jj O elemento h jj é utlzado como um fator de correção do desvo-padrão da predção de uma nova observação, já que mede o dstancamento do vetor de varáves de controle em relação ao vetor composto pelo valor médo de cada varável de controle Esse fator de correção é o mesmo utlzado para a estmatva de um ntervalo de confança para a prevsão de uma nova observação Caso uma amostra exceda os lmtes de controle, o processo será consderado como estando fora de controle estatístco e, dessa forma, as causas especas que alteraram o estado do processo deverão ser nvestgadas Através da experênca prátca dos autores, as prncpas causas de pontos fora de controle no gráfco de controle de regressão múltpla podem ser: () ação sgnfcatva de um fator não controlável no processo; () exstênca de uma varável de controle sgnfcatva que não fo ncluída no modelo; () alteração no valor de

7 112 Pedrn D C et al algum coefcente de regressão; e (v) alterações no desvo-padrão dos resíduos Para este trabalho, não serão descrtas as nvestgações necessáras para a descoberta e solução das causas especas que agram no processo A ndcação, por parte do gráfco de controle de regressão, de mutos pontos fora de controle, pode ser snal de uma alteração sstemátca na relação entre a característca de qualdade e as varáves de controle do processo, volando-se a suposção (v) do método proposto Nesse caso, é necessáro realzar a Fase I do método proposto novamente, a fm de revsar o modelo de regressão lnear múltpla estmado 5 Aplcação do método proposto O método proposto fo aplcado em um processo de extrusão de bandas de rodagem de uma ndústra multnaconal de borrachas A característca de qualdade a ser montorada no processo estudado é o tempo de establzação, meddo a partr do momento em que o processo começa a operar após setup de um novo ajuste das varáves de controle até o momento em que o processo se establza Essa característca de qualdade é uma varável contínua, que está dretamente relaconada à perda de matéra-prma, já que enquanto o processo está desestablzado o produto produzdo apresenta baxa qualdade, sendo posterormente descartado As varáves de controle desse processo são: temperatura na fera ( ); nível de plastfcação (x 2 ); parâmetro de carregamento (x 3 ); fator de enchmento (x 4 ); temperatura da hélce (x 5 ); temperatura no exo Y (x 6 ) e tempo de setup (x 7 ) t-ndvduas e que o teste F da tabela Anova teve valor p aproxmadamente gual 0 Na sequênca, utlza-se o gráfco de controle de regressão da Fase I para verfcação de establdade dos dados utlzados para estmar o modelo de regressão lnear Conforme pode ser observado na Fgura 1, não há nenhum ponto fora de controle e o processo pode ser consderado como estando sob controle estatístco Dessa forma, os parâmetros do modelo de regressão apresentado na Equação 23 podem ser utlzados para montorar o processo de extrusão de bandas de rodagem 52 Aplcação da Fase II Para a aplcação da Fase II do método proposto, foram montoradas 122 amostras provenentes do processo estudado Após a coleta dos dados, verfca-se se alguma das amostras coletadas extrapola a regão formada pelos dados utlzados para estmar o modelo de regressão na Fase I O gráfco de controle de extrapolação é apresentado na Fgura 2 Analsando a Fgura 2, observa-se que a amostra 41 apresentou um valor de h jj superor ao LSC e, portanto, é consderada como sendo uma amostra que extrapola a regão formada pelos dados utlzados para estmar o modelo de regressão 51 Aplcação da Fase I Os dados utlzados para a Fase I foram obtdos através de um expermento realzado na empresa Nele, utlzou-se um projeto fatoral fraconado em quatro partes com as varáves de controle ajustadas em dos níves (2 7-2 ), resultando em 32 ensaos O modelo de regressão, estmado pelo método de MQO, é apresentado na Equação 23: y = 227, , x 16, 9x + 129, x + 11, 4xx + 14, 4xx , xx , x 3 x (23) Esse modelo apresenta um coefcente de determnação de aproxmadamente 76,8% e um coefcente de determnação ajustado de 76,1% Ressalta-se que todas as varáves de controle nserdas no modelo foram apontadas como estatstcamente sgnfcatvas nos testes Fgura 1 Gráfco de controle de regressão múltpla da Fase I Fgura 2 Gráfco de controle de extrapolação

8 Pedrn D C et al 113 Assm, conforme o método proposto, essa amostra será desconsderada do gráfco de controle de regressão da Fase II Após a exclusão da amostra 41, restam 121 amostras que serão montoradas pelo gráfco de controle de regressão proposto Adotando o valor do QMR de 488,9, apresentado na Tabela 1, do modelo estmado, os lmtes de controle do método proposto são: LSC = y + 66, 3 1+ h j j jj LIC = y 66, 3 1+ h j j jj (24) (25) Na Fgura 3 apresenta-se o gráfco de controle de regressão para o montoramento do processo de lnhas de extrusão de bandas de rodagem Como é possível observar na Fgura 3, o gráfco de controle de regressão múltpla da Fase II proposto ndcou duas amostras como estando fora de controle 6 Estudos de smulação Nesta seção são apresentados os resultados do NMA do método proposto, obtdos através da smulação de Monte Carlo Os resultados são comparados com a adoção dos lmtes de controle de Mandel (1969), Haworth (1996) e uma tercera alternatva, em que adotam-se os lmtes de controle da Fase I como lmtes da Fase II, dentfcado como gráfco 3σ É mportante destacar que o estudo realzado concentra-se no cálculo do NMA da Fase II destes gráfcos Para sso, utlza-se a Equação 26 como modelo-base a ser smulado: y = 3+ 2x + x 4x x ε (26) onde: ~ N(0, 1), x 2 ~ N(2, 1) e ε ~ N(0, 2) Na smulação da Fase I, geram-se 50 valores para as varáves de controle e característca de qualdade, obedecendo à relação descrta pela Equação 26, e estma-se o modelo de regressão com essas amostras Os parâmetros do modelo são utlzados para a obtenção dos lmtes de controle da Fase I e, se exstrem pontos dscrepantes, o modelo de regressão é estmado novamente, com a retrada desses pontos fora de controle Destaca-se que essa retrada de valores dscrepantes é realzada apenas uma vez para evtar um supercontrole do gráfco, conforme sugerdo por Montgomery (2004) Para smulação da Fase II, geram-se amostras segundo o modelo-base para a estmatva do NMA sob controle (NMA 0 ) ou geram-se amostras com alterações nos parâmetros do modelo, para a estmatva do NMA fora de controle (NMA f ) As amostras são geradas até que ocorra a prmera amostra fora dos lmtes de controle do gráfco estudado Anota-se o número dessa amostra (NA) e renca-se a smulação a partr da Fase I novamente O NMA para cada stuação fo estmado pela méda dos NA Foram realzadas alterações nos seguntes parâmetros do modelo-base: coefcentes do modelo de regressão (, e ), desvo-padrão dos resíduos (σ e ) e da varável de controle A smulação fo realzada no programa estatístco R e o número de repetções adotado para cada alteração fo de 10000, número este que, segundo Kang e Albn (2000), acarreta um erro de menos de 2%, permtndo boas conclusões acerca do resultado Na análse do NMA, dos aspectos devem ser consderados: () o NMA 0 deve ser um valor grande, já que representa o número de amostras até a ocorrênca de alarmes falsos; e () o NMA f deve ser um valor pequeno, pos é um ndcador da efcênca com que o gráfco de controle detecta as alterações no processo (MONTGOMERY, 2004) Na Tabela 1 apresenta-se o NMA dos gráfcos estudados para alterações no coefcente de ntercepto ( ), em múltplos do desvo-padrão dos resíduos (σ e ) Segundo Shu, Tsung e Tsu (2004), essas alterações geram perturbações na méda dos resíduos Nota-se que o gráfco de controle de Mandel (1969) apresenta o melhor desempenho na detecção dessas alterações, mas apresenta a desvantagem de ter um baxo NMA 0, sgnfcando que ocorrerão cerca de 5% de alarmes falsos Tabela 1 Valores do NMA para alterações no coefcente de ntercepto de Gráfco NMA 0 NMA f + 0,5σ e + 1,0σ e + 1,5σ e + 2,0σ e + 2,5σ e + 3,0σ e Mandel 20,06 13,31 6,22 3,30 2,03 1,47 1,20 Gráfco 3σ 393,61 187,05 51,93 17,49 6,79 3,46 2,09 Proposta 653,56 300,63 75,82 22,56 8,65 4,05 2,38 Haworth 1259,94 564,16 127,00 35,42 11,96 5,29 2,87

9 114 Pedrn D C et al Na análse dos outros gráfcos, observa-se que o gráfco de controle de regressão proposto, o gráfco de controle de Haworth (1996) e o gráfco de controle 3σ possuem baxas taxas de alarmes falsos O desempenho do gráfco de controle 3σ é superor ao dos outros dos, sobretudo para alterações nferores a 2σ e Para alterações superores a 2σ e, o gráfco de controle proposto e o gráfco 3σ apresentam desempenho smlar Na Tabela 2 são apresentados os resultados da smulação para alterações no coefcente de nclnação, também em undades de σ e Como a varável de controle possu méda 0, ressalta-se que as alterações em causarão alterações apenas na varabldade dos resíduos (SHU; TSUNG; TSUI, 2004) O gráfco de Mandel (1969) apresenta um desempenho notoramente superor aos demas gráfcos quando o processo está fora de controle, mas deve-se lembrar novamente que esse gráfco possu um elevado número de alarmes falsos Para alterações de 1,5 a 3σ e, o gráfco de controle proposto e o gráfco 3σ apresentam desempenho bastante smlar e superor ao gráfco de controle de Haworth (1996) A tercera smulação estudada foram as alterações no coefcente de nclnação, em múltplos de que σ e, cujos resultados são apresentados na Tabela 3 É mportante destacar que quando altera-se essa alterações tanto na méda quanto no desvo-padrão dos resíduos, já que a varável de controle x 2 possu méda dferente de zero, equvalendo-se a uma alteração conjunta em e Para esta stuação, todos os quatro gráfcos de controle estudados apresentam desempenhos semelhantes para alterações maores ou guas a 1,5σ e em O NMA dos gráfcos estudados, para alterações multplcatvas no desvo-padrão dos resíduos, é apresentado na Tabela 4 O desempenho do gráfco de controle de Mandel (1969) é superor aos demas gráfcos de controle para todas as smulações de processo fora de controle O gráfco de controle de regressão proposto e o gráfco 3σ apresentam desempenhos muto próxmos, prncpalmente para alterações do desvo-padrão dos resíduos superores a 1,8 Na últma stuação smulada, apresentada na Tabela 5, alterou-se o valor da varável de controle É mportante destacar que os gráfcos de controle de regressão não devem ser sensíves a este tpo de alteração, já que as alterações acarretam mudanças de mesma proporção tanto no valor prevsto quando real da característca de qualdade Fgura 3 Gráfco de controle de regressão múltpla da Fase II Tabela 2 Valores do NMA para alterações no coefcente de nclnação de Gráfco NMA 0 NMA f + 0,5σ e + 1,0σ e + 1,5σ e + 2,0σ e + 2,5σ e + 3,0σ e Mandel 20,06 13,21 6,48 3,80 2,69 2,21 1,88 Gráfco 3 394,82 160,16 33,66 11,04 5,80 3,81 2,92 Proposta 653,56 293,63 56,26 11,21 5,97 3,97 3,03 Haworth 1259,94 512,66 88,11 19,53 8,24 4,79 3,47

10 Pedrn D C et al 115 Tabela 3 Valores do NMA para alterações no coefcente de nclnação de Gráfco NMA 0 NMA f + 0,5σ e + 1,0σ e + 1,5σ e + 2,0σ e + 2,5σ e + 3,0σ e Mandel 20,06 5,36 2,00 1,41 1,22 1,15 1,11 Gráfco 3 394,82 31,74 4,43 1,99 1,49 1,29 1,21 Proposta 653,56 145,23 17,85 2,13 1,52 1,31 1,22 Haworth 1259,94 243,63 24,74 2,32 1,59 1,35 1,24 Tabela 4 Valores do NMA para alterações no desvo-padrão σ e Gráfco NMA 0 NMA f 1,0σ 1,2σ 1,4σ 1,6σ 1,8σ 2,0σ 2,2σ 2,4σ 2,6σ 2,8σ 3,0σ Mandel 20,06 9,76 6,27 5,57 3,69 3,08 2,66 2,44 2,25 2,07 1,94 Gráfco 3 394,82 83,90 31,58 16,08 10,53 7,40 5,70 4,66 3,99 3,49 3,17 Proposta 653,56 114,19 40,46 19,86 12,09 8,40 6,38 5,15 4,31 3,72 3,31 Haworth 1259,94 188,88 57,82 26,46 15,02 10,14 7,50 5,86 4,89 4,15 3,64 Tabela 5 Valores do NMA para alterações no coefcente de nclnação de Gráfco NMA 0 + 0,5σ x + 1,0σ x + 1,5σ x + 2,0σ x + 2,5σ x + 3,0σ x Mandel 20,06 19,26 18,52 16,71 15,40 14,62 12,95 Gráfco 3 394,82 370,90 345,10 283,29 266,18 224,04 185,99 Proposta 653,56 685,49 703,58 817,19 952, , ,19 Haworth 1259, , , , , , ,68 Como é possível observar na Tabela 5, o gráfco de controle de Mandel (1969) possu elevada sensbldade a essas varações, gerando grande taxa de alarmes falsos O gráfco 3σ apresentou um resultado satsfatóro, mas que fo porando à medda que aumenta-se o valor da méda de Os gráfcos de controle de regressão proposto no presente trabalho e o de Haworth (1996) apresentaram um desempenho superor, já que foram bastante nsensíves a essas modfcações Esse desempenho superor está assocado ao afastamento de h jj do centróde da elpse delmtada pelos valores das varáves de controle utlzadas na Fase I, que alargaram os lmtes de controle De forma geral, quando comparado aos outros três gráfcos estudados, o gráfco de controle de regressão proposto apresentou bom desempenho em todas as alterações smuladas, sobretudo para alterações superores a 1,5σ e nos coefcentes de regressão e 2,2 do desvo-padrão dos resíduos O gráfco de controle de Mandel (1969) apresentou boa sensbldade às alterações smuladas, só que esse desempenho é prejudcado pela elevada taxa de alarmes falsos desse gráfco de controle, o que, em uma stuação real, gerara mutas ntervenções desnecessáras, desestmulando o uso do gráfco por parte tos operadores 7 Conclusões Para o uso dos gráfcos de controle tradconas é necessáro supor que as varáves montoradas sejam ndependentes e dentcamente dstrbuídas Quando ocorrem frequentes ajustes nas varáves de controle, a dstrbução da característca de qualdade do processo pode ser alterada sgnfcatvamente, fazendo com que os gráfcos de controle clásscos sejam nefcentes Nessa stuação, se exstr uma relação lnear entre a característca de qualdade e as varáves de controle, é possível utlzar o gráfco de controle de regressão O presente artgo teve como objetvo prncpal propor um método para a aplcação dos gráfcos de controle de regressão em um sstema produtvo, que fo elaborado a partr de outros métodos encontrados na lteratura Dessa forma, fo proposto um método dvddo em duas fases nter-relaconadas: análse retrospectva (Fase I) e montoramento do processo propramente dto (Fase II) A Fase I do método proposto nclu as etapas de coleta de dados, estmação do modelo de regressão lnear e verfcação da establdade do processo no período em que a amostra fo coletada Se o processo for consderado como estando sob controle estatístco, e assumndo que o modelo

11 116 Pedrn D C et al de regressão estmado na Fase I do processo esteja correto, prossegue-se à Fase II do método proposto, que consste na coleta de amostras ndvduas do processo, verfcação da extrapolação da regão orgnal dos dados e montoramento da característca de qualdade A prncpal justfcatva para o método proposto é facltar a aplcação dos gráfcos de controle de regressão Segundo esse prncípo, propôs-se também uma modfcação no gráfco de controle de regressão múltpla, adaptando-se os lmtes de controle desse gráfco, de forma a permtr o montoramento dreto da característca de qualdade do processo, facltando a nterpretação do processo por parte dos operáros Durante a aplcação do método proposto, surgu a necessdade de crar um procedmento que faclte a verfcação da extrapolação do ntervalo de nvestgação das varáves de controle Nesse caso, adaptou-se grafcamente um procedmento encontrado na lteratura para a verfcação se o conjunto das varáves de controle extrapola a regão orgnal de dados Essa adaptação deu orgem ao gráfco de controle de extrapolação, que pode ser consderado também uma mportante contrbução deste trabalho O método proposto fo aplcado e valdado em um processo de extrusão de bandas de rodagem de uma ndústra de borrachas Nessa aplcação, explctaram-se as etapas que compõem as fases do método proposto, de forma a ressaltar a facldade que a sstematzação do método proposto pode proporconar Durante a aplcação, o gráfco de controle de extrapolação ndcou um ponto fora de controle e o gráfco de controle de regressão apontou dos pontos como dscrepantes O gráfco de controle de regressão proposto apresentou bom desempenho nas smulações estudadas, quando comparado aos demas gráfcos de controle, já que apresentou alto NMA 0, que reflete baxa ocorrênca de alarmes falsos, e boa sensbldade às alterações nos coefcentes de regressão e do desvo-padrão, especalmente para as stuações em que ocorrem alterações superores a 1,5 desvos-padrão nesses parâmetros Para trabalhos futuros, sugere-se a proposta de um método para a aplcação do gráfco de controle de regressão não lnear, semelhante ao método proposto no presente artgo Referêncas AIZENCHTADT, E; INGMAN, D; FRIEDLER, E Qualty control of wastewater treatment: a new approach European Journal of Operatons Research, v 189, p , 2008 FALTIN, F W et al Consderatons n the montorng of the autocorrelated and ndependent data Journal of Qualty Technology, v 29, n 2, p , 1997 HAUCK, D J; RUNER, G C; MONTGOMERY, D C Multvarate statstcal process montorng and dagnoss wth grouped regresson-adjusted varables Comuncatons n Statstcs Smulaton and Computaton, v 28, n 2, p , 1999 HAWKINS, D M Multvarate qualty control based on reegresson-adjusted varables Technometrcs, v 33, n 1, p 61-75, 1991 HAWKINS, D M Regresson adjustment for varables n multvarate qualty control Journal of Qualty Technology, v 25, n 3, p , 1993 HAWORTH, D A Regresson control chart to manage software mantenance Journal of Software Mantenance, v 8, n 1, p 35-48, 1996 JACOBI, L F; SOUZA, A M; PEREIRA, J E S Gráfco de controle de regressão aplcado na montoração de processos Revsta Produção, v 12, n 1, p 46-59, 2002 JEARKPAPORN, D et al Process montorng for correlated gamma-dstrbuted data usng generalzed-lnear-modelbased control charts Qualty and Relablty Engneerng Internatonal, v 19, n 6, p , 2003 JEARKPAPORN, D et al Process montorng for mean shfts for multple stage processes Internatonal Journal of Producton Research, v 45, n 3, p , 2007 JOHNSON, B; JOHNSON, C; SEIBER, J The use of regresson equatons for qualty control n a pestcde physcal property database Envronmental Management, v 19, n 1, p , 1995 KANG, L; ALBIN, S On-lne montorng when the process yelds lnear profles Journal of Qualty Technology, v 32, n 4, p , 2000 LOREDO, E N; JEARKPAPORN, D; BORROR, C M Modelbased control chart for autoregressve and correlated data Qualty and Relablty Engneerng Internatonal, v 18, n 6, p , 2002 MANDEL, B J The regresson control chart Journal of Qualty Technology, v 1, n 1, p 1-9, 1969 MONTGOMERY, D C Introdução ao Controle Estatístco da Qualdade 4 ed Ro de Janero: Edtora LTC, p MONTGOMERY, D C; MASTRANGELO, C M Some statstcal process control methods for autocorrelated data Journal of Qualty Technology, v 23, n 3, p , 1991 MONTGOMERY, D C; VINING, G G; PECK, E A Introducton to Lnear Regresson Analyss 3 ed New York: John Wley & Sons, p NETER, J et al Appled Lnear Statstcal Models 5 ed New York: Mc Graw-Hll/Irwn, p OLIN, B D Regresson control charts revsted: methodology and cases studes In: ANNUAL FALL TECHNICAL CONFERENCE - AFTC, 42, 1998, New York Proceedngs New York: Amercan Socety for Qualty, p OMURA, A P; STEFFE, J H Mxer vscometry to characterze flud foods wth large partculates Journal of Food Process Engneerng, v 26, n 3, p , 2003 SHU, L; TSUNG, F; TSUI, K L Run-length perfomance of regresson control charts wth estmated parameters Journal of Qualty Technology, v 36, n 3, p , 2004 SKINNER, K R; MONTGOMERY, D C; RUNGER, G C Process montorng for multple count data usng generalzed lnear model-based control charts Internatonal Journal of Producton Research, v 41, n 6, p , 2003 VINING, G Techncal Advce: Phase I and phase II control charts Qualty Engneerng, v 21, n 4, p , 2009 WADE, M R; WOODAL, W H A revew and analyss of causeselectng control charts Journal of Qualty Technology, v 25, n 3, p , 1993

12 Pedrn D C et al 117 WOODALL, W H Controversons and contradctons n statstcal process control Journal of Qualty Technology, v 32, n 4, p , 2000 WOODALL, W H Current research on profle montorng Revsta Produção, v 17, n 3, p , 2007 WOODALL, W H et al Usng control charts to montor process and product qualty profles Journal of Qualty Technology, v 36, n 3, p , 2004 WOODALL, W H; MONTGOMERY, DC Research ssues and deas n statstcal process control Journal of Qualty Technology, v 31, n 4, p , 1999 ZHANG, Z X Cause-selectng control charts a new type of qualty control charts The QR Journal, v 12, p , 1985 Agradecmentos Gostaríamos de agradecer aos edtores e revsores anônmos pelas valosas sugestões e à CAPES pelo apoo fnancero na execução deste trabalho Também agradecemos a Ângelo Sant ana, Ivan Allaman, Rodrgo Coster e Walmes Zevan pelas dcas sobre programação em R Abstract Method for applyng regresson control charts to process montorng Ths work proposes a method for the applcaton of regresson control charts n the montorng of manufacturng processes The proposed method s presented n two phases: retrospectve analyss (Phase I) and process montorng (Phase II) It ncludes a smple modfcaton of the multple regresson control chart, allowng the montorng of the values of qualty characterstcs of the process, nstead of montorng the regresson standardzed resduals It also proposes an extrapolaton control chart, whch verfes whether the control varables extrapolate the set of data used n regresson model estmaton The proposed method was successfully appled n a rubber manufacturng process The Average Run Length (ARL) dstrbuton was estmated usng the Monte Carlo method, provng the effcency of the proposed chart n detectng some alteratons n process parameters Keywords Regresson control chart Lnear regresson models Average run length Apêndce 1 Modfcação no Gráfco de Controle de Regressão Prmeramente, para o gráfco de controle proposto por Haworth (1996), adota-se L = 3 ao nvés de utlzar t α/2,n-p Assm, os lmtes de controle e lnha central são: LIC j = 3 LC = 0 LSC j = +3 A varável montorada pelo gráfco de controle são os resíduos na forma Student: Varávelmontorada = σ e j 1+ h jj A segur, multplcam-se os resíduos padronzados, os lmtes de controle e a lnha central pelo desvo padrão da prevsão de uma nova observação Os novos lmtes de controle e a lnha central passam a ser: LIC = 3 σ 1+ h LC = 0 LSC =+ 3σ 1+ h j jj j jj Após essa modfcação ncal, a varável a ser montorada passa a ser o resíduo do modelo (e j ): σ e j hjj 1+ σ A segur, soma-se o valor prevsto pelo modelo à varável montorada aos lmtes de controle e à lnha central Dessa forma, temos: LICj = y 3σ 1+ hjj LC = y LSCj = y + 3σ 1+ h jj A varável montorada passa a ser o valor observado da característca de qualdade, já que: Varável montorada = e + y = y y + y = y ( ) j j j j j j

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO Ana Carolna Campana Nascmento 1, José Ivo Rbero Júnor 1, Mosés Nascmento 1 1. Professor da Unversdade Federal de Vçosa, Avenda Peter Henr

Leia mais

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

PROPOSTA DE MÉTODO PARA MONITORAMENTO DE PROCESSOS ATRAVÉS DE UM GRÁFICO DE CONTROLE PARA RESÍDUOS DE MODELOS DE REGRESSÃO

PROPOSTA DE MÉTODO PARA MONITORAMENTO DE PROCESSOS ATRAVÉS DE UM GRÁFICO DE CONTROLE PARA RESÍDUOS DE MODELOS DE REGRESSÃO XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Maturidade e desafios da Engenharia de Produção: competitividade das empresas, condições de trabalho, meio ambiente. São Carlos, SP, Brasil, 12 a15 de outubro

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade Controle Estatístco de Processos: a questão da autocorrelação, dos erros de mensuração e do montoramento de mas de uma característca de qualdade Docentes: Maysa S. de Magalhães; Lnda Lee Ho; Antono Fernando

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO J. W. B. Lopes 1 ; E. A. R. Pnhero 2 ; J. R. de Araújo Neto 3 ; J. C. N. dos Santos 4 RESUMO: Esse estudo fo conduzdo

Leia mais

MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS

MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS versão mpressa ISSN 0101-7438 / versão onlne ISSN 1678-5142 MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS Ângelo Márco Olvera Sant Anna* Carla Schwengber ten Caten Programa de Pós-graduação

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Princípios do Cálculo de Incertezas O Método GUM

Princípios do Cálculo de Incertezas O Método GUM Prncípos do Cálculo de Incertezas O Método GUM João Alves e Sousa Laboratóro Regonal de Engenhara Cvl - LREC Rua Agostnho Perera de Olvera, 9000-64 Funchal, Portugal. E-mal: jasousa@lrec.pt Resumo Em anos

Leia mais

Palavras-chaves: Gráficos de controle, ambiente R, análise estatística multivariada

Palavras-chaves: Gráficos de controle, ambiente R, análise estatística multivariada A ntegração de cadeas produtvas com a abordagem da manufatura sustentável. Ro de Janero, RJ, Brasl, 13 a 16 de outubro de 2008 O DESENVOLVIMENTO DE GRÁFICOS DE CONTROLE MCUSUM E MEWMA EM AMBIENTE R COMO

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica.

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica. Análse do Retorno da Edcação na Regão Norte em 2007: Um Estdo à Lz da Regressão Qantílca. 1 Introdcão Almr Rogéro A. de Soza 1 Jâno Macel da Slva 2 Marnalva Cardoso Macel 3 O debate sobre o relaconamento

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Variáveis dummy: especificações de modelos com parâmetros variáveis

Variáveis dummy: especificações de modelos com parâmetros variáveis Varáves dummy: especfcações de modelos com parâmetros varáves Fabríco Msso, Lucane Flores Jacob Curso de Cêncas Econômcas/Unversdade Estadual de Mato Grosso do Sul E-mal: fabrcomsso@gmal.com Departamento

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA 658 Gaudo & Zandonade Qum. Nova Qum. Nova, Vol. 4, No. 5, 658-671, 001. Dvulgação PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA Anderson Coser Gaudo

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

são os coeficientes desconhecidos e o termo ε (erro)

são os coeficientes desconhecidos e o termo ε (erro) Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves

Leia mais

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA RODRIGO LUIZ PEREIRA LARA DESEMPENO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós Graduação

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

Gráfico de controle de regressão aplicado na monitoração de processos

Gráfico de controle de regressão aplicado na monitoração de processos Jacob, Souza & Perera Gráfco de controle de regressão aplcado na montoração de processos LUCIANE FLORES JACOBI, MSC. Professora do Departamento de Estatístca UFSM. E-mal: lfjacob@ccne.ufsm.br ADRIANO MENDONÇA

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca

Leia mais

GRÁFICOS DE CONTROLE PARA MÉDIA E DESVIO-PADRÃO COM TAMANHO DE AMOSTRA VARIÁVEL: UMA APLICAÇÃO EM UMA INDÚSTRIA DO SETOR METALÚRGICO

GRÁFICOS DE CONTROLE PARA MÉDIA E DESVIO-PADRÃO COM TAMANHO DE AMOSTRA VARIÁVEL: UMA APLICAÇÃO EM UMA INDÚSTRIA DO SETOR METALÚRGICO ! "#$ " %'&)(*&)+,.- /0.*&4365879&4/:.+58;.*=?5.@A*3B;.- C)D 5.,.5FE)5.G.+ &4- (IHJ&?,.+ /?=)5.KA:.+5MLN&OHJ5F&4E)*EOHJ&)(IHJ/)G.- D - ;./);.& Foz do Iguaçu, PR, Brasl, 09 a de outubro de 007 GRÁFICOS

Leia mais

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f.

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f. ROGÉRIO ALVES SANTANA AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grands L.f. Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

Análise Fatorial F 1 F 2

Análise Fatorial F 1 F 2 Análse Fatoral Análse Fatoral: A Análse Fatoral tem como prncpal objetvo descrever um conjunto de varáves orgnas através da cração de um número menor de varáves (fatores). Os fatores são varáves hpotétcas

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

Gráficos de controle multivariados: um estudo de caso no setor metalomecânico

Gráficos de controle multivariados: um estudo de caso no setor metalomecânico P&D em Engenhara de Produção, Itajubá, v. 10, n. 2, p. 143-156, 2012 Gráfcos de controle multvarados: um estudo de caso no setor metalomecânco Multvarate control charts: case study n the metallurgy mechancal

Leia mais

Carlos Sérgio Araújo dos Santos José Antonio Aleixo da Silva Gauss Moutinho Cordeiro Joseilme Fernandes Gouveia Alisson de Oliveira Silva

Carlos Sérgio Araújo dos Santos José Antonio Aleixo da Silva Gauss Moutinho Cordeiro Joseilme Fernandes Gouveia Alisson de Oliveira Silva Modelos Smétrcos Transformados não lneares com aplcação na estmatva volumétrca em Híbrdo de Eucalyptus teretcorns no Pólo Gessero do Ararpe - PE Carlos Sérgo Araújo dos Santos José Antono Alexo da Slva

Leia mais

O método de Equação Integral com Quadratura Gaussiana para otimizar os parâmetros do gráfico de controle multivariado de Somas Acumuladas

O método de Equação Integral com Quadratura Gaussiana para otimizar os parâmetros do gráfico de controle multivariado de Somas Acumuladas Unversdade Federal de Santa Catarna Centro Tecnológco Programa de Pós-Graduação em Engenhara de Produção O método de Equação Integral com Quadratura Gaussana para otmzar os parâmetros do gráfco de controle

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE R. L. S. CANEVESI 1, C. L. DIEL 2, K. A. SANTOS 1, C. E. BORBA 1, F. PALÚ 1, E. A. DA SILVA 1 1 Unversdade Estadual

Leia mais

Análise multivariada do risco sistemático dos principais mercados de ações da América Latina: um enfoque Bayesiano

Análise multivariada do risco sistemático dos principais mercados de ações da América Latina: um enfoque Bayesiano XXVI ENEGEP - Fortaleza, CE, Brasl, 9 a 11 de Outubro de 006 Análse multvarada do rsco sstemátco dos prncpas mercados de ações da Amérca Latna: um enfoque Bayesano André Asss de Salles (UFRJ) asalles@nd.ufrj.br

Leia mais

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES Paper CIT02-0026 METODOLOGIA PARA CORRELAÇÃO DE DADOS CINÉTICOS ENTRE AS TÉCNICAS DE

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS

MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS versão mpressa ISSN 00-7438 / versão onlne ISSN 678-542 MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS Ana Paula

Leia mais

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010 Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon

Leia mais

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,

Leia mais

Modelo Multi-Estado de Markov em Cartões de Crédito. Daniel Evangelista Régis Rinaldo Artes

Modelo Multi-Estado de Markov em Cartões de Crédito. Daniel Evangelista Régis Rinaldo Artes Modelo Mult-Estado de Markov em Cartões de Crédto Danel Evangelsta Régs Rnaldo Artes Insper Workng Paper WPE: 137/2008 Copyrght Insper. Todos os dretos reservados. É probda a reprodução parcal ou ntegral

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira.

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira. Informação Esta publcação é uma tradução do Gua de Calbração EURAMET Gua para a Estmatva da Incerteza em Medções de Dureza (EURAMET/cg-16/v.01, July 007). Os dretos autoras do documento orgnal pertencem

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

III. Consequências de um novo padrão de inserção das mulheres no mercado de trabalho sobre o bem-estar na região metropolitana de São Paulo

III. Consequências de um novo padrão de inserção das mulheres no mercado de trabalho sobre o bem-estar na região metropolitana de São Paulo CEPAL - SERIE Polítcas socales N 60 III. Consequêncas de um novo padrão de nserção das mulheres no mercado de trabalho sobre o bem-estar na regão metropoltana de São Paulo A. Introdução Rcardo Paes de

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS*

O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS* O COMPORTAMENTO DOS BANCOS DOMÉSTICOS E NÃO DOMÉSTICOS NA CONCESSÃO DE CRÉDITO À HABITAÇÃO: UMA ANÁLISE COM BASE EM DADOS MICROECONÓMICOS* Sóna Costa** Luísa Farnha** 173 Artgos Resumo As nsttuções fnanceras

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

FUNÇÃO NO R PARA OBTENÇÃO DO DESENHO D-ÓTIMO EM MODELOS DE MISTURAS COM RESTRIÇÕES

FUNÇÃO NO R PARA OBTENÇÃO DO DESENHO D-ÓTIMO EM MODELOS DE MISTURAS COM RESTRIÇÕES FUNÇÃO NO R PARA OBTENÇÃO DO DESENHO D-ÓTIMO EM MODELOS DE MISTURAS COM RESTRIÇÕES Edmlson Rodrgues Pnto Leandro Alves Perera Faculdade de Matemátca Faculdade de Matemátca Unversdade Federal de Uberlânda

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012

POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012 5 POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 00-0 OPTICAL POLARIMETRY AND MODELING OF POLARS OBSERVED IN OPD/LNA IN THE PERIOD 00-0 Karleyne M. G. Slva Cláuda V. Rodrgues

Leia mais

ÍNDICE NOTA INTRODUTÓRIA

ÍNDICE NOTA INTRODUTÓRIA OGC00 05-0-06 ÍDICE. Introdução. Âmbto e defnções 3. Avalação da ncerteza de medção de estmatvas das grandezas de entrada 4. Cálculo da ncerteza-padrão da estmatva da grandeza 5 de saída 5. Incerteza de

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais