são os coeficientes desconhecidos e o termo ε (erro)

Tamanho: px
Começar a partir da página:

Download "são os coeficientes desconhecidos e o termo ε (erro)"

Transcrição

1 Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves de regressão, ou varáves ndependentes,,,..., k,. Cabe lembrar que, no nosso conteto, a varável representa uma característca de qualdade de um processo produtvo e as varáves,,..., k, são os fatores que afetam o processo quando este está em operação. Função de Resposta Quando se afrma que a resposta depende dos fatores, sto quer dzer que este uma relação funconal entre e,,..., k, do tpo: Φ β, β, β, L, β,,, L, ) + ε ( k k onde β, β, β, L, β k são os coefcentes desconhecdos e o termo ε (erro) representa outras fontes de varabldade, que não estão contablzadas em Φ. Assm, ε acumula efetos tas como erros de medda e outras fontes de varabldade nerentes ao processo, às vezes denomnadas ruído de fundo. Geralmente não se conhece essa relação funconal, daí a utlzação de modelos lneares de regressão k β + β + β + L + β k + ε (.) nos quas os p k + parâmetros desconhecdos β, β, β, L, β k são os coefcentes do modelo de regressão lnear. Cabe regstrar que o modelo é dto lnear porque é uma função lnear dos coefcentes. Modelos que aparentemente são mas compleos podem ser representados pelo Modelo (.).

2 7 Por eemplo, consdere um modelo de segunda ordem com duas varáves: β + β + β + β + β + β + ε Se fzermos 3, 4, 5, β 3 β, β 4 β e β5 β, o modelo se torna β + β + β + β + β + β + ε que é um modelo lnear de regressão. Os polnômos do prmero grau nas varáves de regressão são usados em epermentos fatoras em dos níves, completos ( k ) ou fraconados ( k-p ), e polnômos do segundo grau são usados em epermentos fatoras em três níves; completos (3 k ) ou os denomnados Epermentos Compostos Centrados (Central Composte Desgns). Neste capítulo apresentamos métodos de estmação dos coefcentes do modelo lnear e para testar a sgnfcânca dos coefcentes e, por consegunte, ter ndcações de quas fatores têm nfluênca no processo produtvo. Isto geralmente é denomnado ajuste do modelo. Fnalmente, apresentamos métodos para verfcar a adequação do modelo ajustado. Para leturas adconas a este capítulo e demonstrações, recomendamos: Atknson, (985), Atknson e Ran (), Cook e Wesberg (999), Mers e Montgomer () e Mers, Montgomer e Vnng ()... Estmação dos Parâmetros com Mínmos Quadrados O método dos mínmos quadrados, tradconalmente denomnado de mínmos quadrados ordnáro (MQ), é o método clássco de estmação dos parâmetros dos modelos lneares. Suponha que foram realzadas n observações da varável resposta,,, K,. Conjuntamente com cada observação de teremos uma observação, n ou nível, de cada varável de regressão. Seja j a -ésma observação da varável j. Apresentamos os dados na Tabela.. Podemos escrever a equação do Modelo (.) em termos das observações da Tabela.. β + β + β + L + β + ε,, n (.) k k K,

3 8 Tabela. - Dados para o Modelo de Regressão Lnear.... k... k... k n n... nk n Assume-se que os dversos valores do termo do erro, ε, sejam varáves aleatóras não correlaconadas, com méda zero e varânca constante, σ ou seja: ( ) ( ) j j E E j e σ ε ε ε A equação (.) pode ser escrta na forma matrcal ε Xβ + (.3) onde k k nk n n k k n e ε ε ε β β β M M L M M M M L L M ε β X O vetor das observações tem dmensão n, X é uma matrz (n p) e o vetor dos níves das varáves ndependentes β tem dmensão (p k + ). O método dos MQ fornece o valor de β que mnmza a soma dos quadrados dos erros ε. A soma dos quadrados dos erros é ( ) ( ) ( ) β X Xβ β X β X Xβ Xβ β X Xβ Xβ ε ε β + + n S ε Os estmadores de mínmos quadrados devem, portanto, satsfazer a ˆ ˆ + X Xβ X β β S ou X Xβ X ˆ (.4)

4 9 A Equação (.4) é denomnada de equação normal dos mínmos quadrados na forma matrcal. Desde que X X seja postva defnda, podemos resolver a Equação (.4) multplcando ambos os seus membros por ( X ) estmadores de mínmos quadrados de β são e o modelo de regressão ajustado é Na forma escalar, o modelo é ( X X) X X. Portanto, os β ˆ (.5) ˆ Xβˆ. (.6) ˆ ˆ ˆ K ˆ β. ˆ β + β + β + + A dferença entre a observação e o valor ajustado ŷ é o resíduo k k e ˆ. O vetor, de dmensão n, dos resíduos é e ˆ. Nos modelos lneares, o método dos MQ produz estmadores não envesados dos parâmetros β. Portanto, ( β ) β E ˆ (Mers et al., pág. 5). A varânca de βˆ pode ser obtda a partr da matrz de varânca-covarânca: Cov ( βˆ ) E [ βˆ E( βˆ )][ βˆ E( βˆ )] que é uma matrz smétrca cujo -ésmo elemento da dagonal prncpal é a varânca do estmador do coefcente de regressão βˆ e o elemento (j) é covarânca entre βˆ e βˆ j. Pode-se demonstrar (Mers et al., pág. 5) que: ( ˆ ) ( X X) Covβ σ (.7) O estmador de mínmos quadrados de β é um estmador lnear não envesado e de varânca mínma, o que lhe confere o título de melhor estmador lnear não envesado. Pode-se demonstrar (Mers et al., pág. 5) que a estmatva da varânca σ do erro ε é SS ˆ σ E (.8) n p onde SS E é a soma dos quadrados dos resíduos: SS ( ) E n ˆ.

5 3.. Testes de Hpótese em Regressão São testes útes para verfcar quas os parâmetros sgnfcatvos do modelo. Os procedmentos aqu descrtos supõem que os erros ε têm dstrbução normal e são ndependentes com méda zero e varânca constante. Por conseqüênca, as observações têm dstrbução normal e são ndependentes com méda gual a k + j β e varânca gual a σ. β j j Para a prevsão de futuras observações de, devemos usar modelos parcmonosos, ou seja, modelos contendo apenas parâmetros sgnfcatvos. Por consegunte, devemos eecutar testes formas para determnar a sgnfcânca de cada parâmetro. Teste de Sgnfcânca para a Regressão (Mers et al., pág. 7) Este teste verfca se há uma relação lnear entre e as varáves ndependentes,,..., k,. As hpóteses são H : β... β k H : β j para ao menos um j A rejeção de H mplca que pelo menos uma das varáves ndependentes contrbu sgnfcatvamente para o modelo. A hpótese nula pode ser testada por meo de uma análse de varânca (ANOVA). O procedmento de teste começa com o parcelamento da soma total dos quadrados: SS T n n ( ) ( ŷ ) + ( ŷ ) n (.9) onde é a méda artmétca da n observações da resposta, e ajustado pelo modelo. ŷ é o valor A prmera parcela no membro dreto de (.9) mede o montante da varação de devdo à regressão; a segunda parcela é a soma dos quadrados dos resíduos, que mede o montante de varação não eplcada pela regressão. A Equação (.9) pode ser escrta da segunte forma: SS SS + SS. T R E

6 3 Se a hpótese nula H : β... β k for verdadera, pode-se demonstrar que SS R σ tem dstrbução qu-quadrado com k graus de lberdade χ e que k SS E σ tem dstrbução χ nk. Temos anda que SS R e SS E são ndependentes e, sendo os respectvos quadrados médos dados por MS R SS R k e MS E SS E n k, o quocente MS R MS E segue a dstrbução F k, n-k-. A estatístca de teste é então SS k MS F R R. (.) SS E ( n k ) MS E Rejetamos H se F for maor do que F α, k, n-k-. Podemos, alternatvamente, calcular o P-valor, que é a probabldade de F k, n-k- > F. Caso o P-valor seja menor do que α, rejetamos H. O coefcente de determnação múltpla R quocente de SS R e SS T : é defndo como sendo o R SS SS R T SS SS E T, (.) observando que: R. R é a proporção da varabldade eplcada pelo modelo. Qualquer varável adconada ao modelo, seja ela sgnfcatva ou não, provoca um aumento em R. Por consegunte, é possível que haja um modelo com valor de R elevado porém capacdade pobre de prevsão. Devdo a este fato, fo desenvolvdo o R ajustado: ( n p) ( n ) SS E Raju (.) SS Geralmente, o R ajustado não é ncrementado com a nclusão, no modelo, de varáves desnecessáras. Na verdade, se acrescentamos varáves desnecessáras ao modelo, o valor de R ajustado deverá dmnur. Quando R e não sgnfcatvos no modelo. T R aju dferem muto, sso é uma ndcação de que há parâmetros

7 3 Testes para cada Coefcente (Mers et al. (, pág. ) As hpóteses para testar a sgnfcânca do coefcente β j são H : β j H : β j Se H : β j não é rejetada, temos ndcação de que j não deve ser ncluída no modelo. A estatístca de teste para esta hpótese é onde C jj é o elemento da matrz (X X) - que corresponde a regressão t ˆ β j (.3) ˆ σ C A hpótese nula H : β j é rejetada se t > tα, n k. jj βˆ j. O denomnador da Equação (.3) é o erro padrão do coefcente de Eemplo.. βˆ j, ou seja, ( ˆ j ) σˆ C jj ep β (.4) Olvera (999) realzou um epermento para encontrar as condções de operação que mamzam a produção de polssacarídeos. Polssacarídeos são polímeros amplamente empregados nas ndústras almentíca, petrolífera, farmacêutca, cosmétca, têtl, de produtos agrícolas, de tntas, entre váras outras. Os fatores consderados mportantes foram: agtação ( ), epressa em rotações por mnuto (rpm), temperatura ( ), epressa em graus centígrados ( o C), e aeração ( 3 ), epressa em ltros de ar por mnuto (L/mn). A resposta medda fo o rendmento (), epresso em gramas por ltro (g/l), que é a medda da quantdade formada do produto. Os níves de cada fator são apresentados na Tabela.. Os valores entre parênteses são os níves codfcados como (,, -). Tabela. - Nível do Fator (Eemplo.). Nível do Fator Fator Alto Médo Bao Agtação (rpm) 8 () 65 () 5 (-) Temperatura ( o C) 36 () 8 () (-) Aeração (L/mn),5 (), (),5 (-)

8 33 Na Tabela.3 apresentamos os resultados correspondentes aos 6 epermentos realzados. Tabela.3 - Dados Resultantes do Epermento (Eemplo.). Agtação Temperatura Aeração Resposta , - - 3, - -,4-3,3 - -,3-3,3 -,5 3,7 -, 3, - 5,6 6, - 5,7 6, 5,8 5,7 O modelo de segunda ordem a ser ajustado é consttuído por k 9 varáves ndependentes: β + β + β β + β + β β + β + β β + ε O produto j é a varável que representa a nteração do fator com o fator j; e a varável j é o termo quadrado do fator j. Na Tabela.4, fornecda pela planlha Ecel, apresentamos a ANOVA para o modelo de segunda ordem completo. Como o P-valor é nferor a 5%, não rejetamos a hpótese de que a regressão é sgnfcatva, com pelo menos um coefcente sgnfcatvo. Tabela.4 - ANOVA do Epermento (Eemplo.). Fonte de Varação gl SS MS F P-valor Regressão 9 38, 4, ,54 9,7569E-9 Resíduo 6,73,455 Total 5 38,94 3 3

9 34 Na Tabela.5, fornecda pela planlha Ecel, apresentamos os testes de sgnfcânca dos coefcentes para o modelo de segunda ordem completo. Tabela.5 - Testes para os Coefcentes. Coefcentes Erro-padrão t P-valor Interseção 5,755,39 78,94,6E- X,4,3 6,56,6 X,5,3 3,44 3,96E-7 X3,6,3 7,5,3 XX,7,46 4,85,8 XX -3,983,46-76,97 3,4E- X3X3,7,46,45,499 XX,5,39,,89 XX3,E-6,39 4,7E-5, XX3,5,39,5,335 Na Tabela.6, fornecda pela planlha Ecel, apresentamos os testes de sgnfcânca dos coefcentes para o modelo de segunda ordem sem as nterações, 3 e 3. Tabela.6 - Testes para os Coefcentes. Coefcentes Erro-padrão t P-valor Interseção 5,755,36 58,35 8,E-7 X,4,4 5,8,3 X,5,4,74 6,59E-9 X3,6,4 6,64 9,5E-5 XX,7,47 4,3, XX -3,983,47-68,,6E-3 X3X3,7,47,7,584 A sgnfcânca do termo quadrátco 3 mudou para cerca de 5,8%. Optamos por ecluí-la do modelo. Na Tabela.7, fornecda pela planlha Ecel, apresentamos os testes de sgnfcânca dos coefcentes para o modelo de segunda ordem sem as varáves 3,, 3 e 3. Tabela.7 - Testes para os Coefcentes Coefcentes Erro-padrão t P-valor Interseção 5,7386,43 4,3 7,5E-8 X,4,8 4,96,6 X,5,8 7,7 6,97E-9 X3,6,8 5,67, XX,34,5 4,49, XX -3,659,5-6,78 3,53E-4 Todos os termos permanecem sgnfcatvos. O modelo é então ˆ 5,7386 +,4 (.5) +,5 +,6 3 +,4 3, 659

10 35.3. Verfcação da Adequação do Modelo Nesta seção trataremos de verfcar se o modelo ajustado é adequado para descrever os dados. É necessáro verfcar se as suposções fetas não foram voladas, sto é, se os erros ε são normas, ndependentes e com varânca constante. As propredades de melhor estmador lnear não envesado dos estmadores de mínmos quadrados não dependem da suposção de normaldade. Entretanto, se a varânca não for constante, o estmador de mínmos quadrados, apesar de ser não envesado, não terá mínma varânca, e os erros-padrão dos estmadores dos coefcentes serão maores que no caso de varânca constante. Ademas, a volação das consderações de ndependênca e varânca constante pode tornar o modelo nstável, no sentdo que dferentes amostras podem resultar em modelos sgnfcatvamente dferentes, levando a conclusões dferentes. Na Seção 4. mostramos que o modelo lnear para o Eemplo 3. é nstável. Por consegunte, não é prudente contar com o modelo até que a valdade dessas suposções seja verfcada. A volação de qualquer uma dessas suposções, assm como a adequação do modelo, pode ser nvestgada pela nspeção dos resíduos. Ademas, é necessáro dentfcar se há observações atípcas (outlers) ou observações nfluentes. Mas adante, nesta seção, dscutremos a mportânca desses tpos de observações..3. Análse dos Resíduos A nvestgação dos resíduos é uma etapa obrgatóra de qualquer análse de regressão. Se o modelo é adequado, os resíduos devem se apresentar de forma aleatóra, sto é, eles não devem conter nenhum padrão evdente. Desta forma, a verfcação do modelo pode ser realzada pela análse de gráfcos dos resíduos e ŷ Verfcação da Suposção de Normaldade Um procedmento útl para verfcação da consderação de normaldade é o gráfco de probabldade normal dos resíduos. Sua construção começa com a ordenação dos resíduos e,, e, K en na ordem crescente e ( ), e( ),, e( n) K, ou seja,

11 36 e ( ) é o menor resíduo e ( n) e é o maor resíduo. Os resíduos ordenados e ( j ) são então plotados versus a freqüênca cumulatva ( j, 5) n. A ordenada do gráfco é representada pelos valores da freqüênca cumulatva em uma escala de probabldade normal. Vamos lustrar este procedmento com o modelo (.5), construído para o Eemplo.. Na Tabela.8 temos os resíduos ordenados e a freqüênca cumulatva. Tabela.8 - Resíduos Ordenados e Freqüênca Cumulatva. Observação Valor Ajustado Resíduo Resíduos Freq. Cum. ŷ ( e ˆ ) Ordenados ( j, 5) n,,68,93 -,37,33 3, 3,68 -,68 -,68,938 3,4,368,73 -,77, ,3 3,368 -,68 -,77,88 5,3,868,3 -,386,83 6 3,3 3,868,3 -,68,3438 7,5,668 -,68 -,7, ,7 3,668,93 -,68,4688 9,,77 -,77,3,533 3, 3,77 -,77,3,5938 5,6 5,5786,4,4,6563 6, 5,8986,4,64, ,7 5,837 -,37,73, , 6,7 -,7,93, ,8 5,7386,64,93, ,7 5,7386 -,386,4,9688 Para construr o gráfco de probabldade normal dos resíduos plotamos no eo horzontal o resíduo ordenado e no eo vertcal plotamos a freqüênca cumulatva, em uma escala de probabldade normal. Na Fgura. apresentamos este gráfco, fornecdo pelo Desgn Epert. Não observamos pontos muto fora do alnhamento. Por consegunte, não há ndcação de que a consderação de normaldade deva ser rejetada. O software ARC constró este gráfco de outra manera. No eo vertcal são plotados os resíduos ordenados e no eo horzontal, em escala lnear, são plotados os valores da nversa da normal padronzada (quartl normal) da freqüênca cumulatva correspondente. Na Tabela.9 apresentamos estes valores.

12 37 DESIGN-EXPERT Plot Response Normal Plot of Resduals 99 Normal % Probablt Resdual Fgura. Gráfco de Probabldade Normal dos Resíduos Tabela.9 - Resíduo Ordenado e Quartl Normal. Resíduos Freq. Cum. Quartl j, 5 Normal -,37,33 -,867 -,68,938 -,38 -,77,563 -, -,77,88 -,7764 -,386,83 -,579 -,68,3438 -,43 -,7,463 -,37 -,68,4688 -,784,3,533,784,3,5938,37,4,6563,43,64,788,579,73,783,7764,93,8438,,93,963,38,4,9688,867 Ordenados ( ) n Na Fgura. apresentamos o gráfco de probabldade normal dos resíduos com envelope, fornecdo pelo software ARC. O procedmento para construção do envelope será descrto adante.

13 38 Fgura. Gráfco de Probabldade Normal com Envelope Este gráfco também pode ser feto na planlha Ecel (mas aí sem envelope), construndo um gráfco de dspersão com (no caso em eemplo) a prmera e tercera coluna da Tabela.9. Devdo ao caráter subjetvo da análse desses gráfcos, Atknson (985) desenvolveu um procedmento de smulação para a construção de lnhas em volta dos pontos do gráfco. Tas lnhas são denomnadas de envelopes. Atknson afrma que, além do caráter subjetvo da análse destes gráfcos, há o problema da super-normaldade. Eplcando: no caso de os erros não terem dstrbução normal, anda assm, os resíduos, devdo ao fato de serem uma combnação lnear de varáves aleatóras, têm a tendênca de terem uma dstrbução mas próma da normal do que os erros. Portanto, pontos apromadamente alnhados ao longo de uma lnha reta não sgnfcam necessaramente normaldade na dstrbução do erro. A construção de envelopes procura superar estes dos problemas. Wesberg (999), fundamentado em Atknson (985), descreve como o software ARC procede para construr os envelopes. Es o procedmento: Construção de envelopes em ARC.. Traçar o gráfco de probabldade normal dos resíduos versus os quarts da normal.

14 39. Supor que os valores dos parâmetros do modelo são os valores verdaderos, e então gerar um vetor aleatóro da resposta, baseado no modelo. Para modelos lneares normas, a -ésma resposta é smplesmente gual ao -ésmo valor ajustado mas um desvo aleatóro com dstrbução normal padronzada vezes a estmatva do desvo-padrão do erro ˆ σ MS E. 3. Com as respostas aleatóras obtdas em () ajusta-se o mesmo modelo (.e., reestmam-se os coefcentes do modelo) e calculam-se novos resíduos, que são salvos. 4. Repetr () e (3) 9 vezes. Para cada resposta, acrescentar ao gráfco de probabldade, construído em (), os valores mámo e mínmo dos resíduos gerados em (3). Atknson (985) afrma que o propósto deste procedmento não é prover uma regão de acetação ou rejeção como em um teste formal, mas prover uma orentação sobre a forma ou lnha que pode ser esperada deste gráfco. Mas do que o número de pontos fora do envelope, é mportante o afastamento dos pontos em relação ao envelope, com especal atenção para os resíduos com valores mas elevados. Resíduos Padronzados e Resíduos Studentzados O resíduo padronzado é o quocente entre o resíduo e a estmatva do seu desvo padrão. ondeσˆ MS. E d e,, K n (.6) ˆ σ, Esses resíduos têm méda zero e varânca apromadamente gual a um. A maora dos resíduos padronzados deve estar no ntervalo 3 d 3. Qualquer observação cujo resíduo esteja fora deste ntervalo é potencalmente uma observação atípca, e deve ser cudadosamente eamnada, uma vez que pode ser conseqüênca de um erro de medção ou de regstro. Entretanto, pode também corresponder a uma regão especal no espaço da varável ndependente, onde o modelo ajustado representa pobremente o modelo real. Tal regão pode ser de

15 4 grande nteresse caso corresponda a um mámo (ou mínmo) da resposta, caso seja este o objetvo. Ao dvdrmos os resíduos pela estmatva do desvo-padrão, estamos na verdade dvdndo-os pela méda do desvo-padrão. De fato, o desvo-padrão dos resíduos não é constante. Ele é dferente para os dversos valores da varável de resposta. Ele é maor para respostas mas prómas da méda desta varável. Na defnção do resíduo studentzado sto é levado em conta. Vmos que os valores ajustados são calculados pela fórmula A matrz H, de dmensão ˆ Xβˆ ˆ X X X ( ) X ˆ H (.7) n n, é conhecda como matrz chapéu (hat) porque ela põe um chapéu (acento crcunfleo) em. A matrz chapéu é a matrz de projeção dos valores ajustados sobre os valores observados. Suas propredades são mportantes para a análse dos resíduos, como veremos daqu por dante. Os resíduos escrtos sob forma matrcal são dmensão e ˆ H ( I H) (.8) A matrz H é uma matrz smétrca ( H H) e dempotente ( H) HH de n n. Da mesma forma, a matrz (I H) é smétrca e dempotente. A partr da Equação (.8) temos que Logo, e então var Sabe-se que var( ) σ I ( e) var[ ( I H) ] ( I H) var( )( I H) e que a matrz (I H) é smétrca e dempotente. var ( e) ( I H) var σ (.9) ( e ) σ ( ) h onde h é o -ésmo elemento da dagonal da matrz H.

16 4 Os resíduos studentzados são então defndos como sendo onde ˆ σ MS. E r σˆ e ( h ) (.) Temos que, quando o modelo é correto, var ( ) r qualquer que seja a localzação de. Em mutos casos a dferença entre os resíduos padronzados e studentzados será pequena, contendo ambos nformações equvalentes. Entretanto, no método dos mínmos quadrados, pontos com valores elevados de h e e são potencalmente nfluentes no cálculo dos parâmetros do modelo. Por consegunte, para dagnóstco do modelo recomenda-se o uso dos resíduos studentzados Verfcação da Suposção de Independênca A suposção de ndependênca e ( ) resíduos studentzados versus valores ajustados. E e é verfcada através do gráfco dos Fgura.3 Gráfco dos Resíduos Studentzados No gráfco da Fgura.3 os resíduos apresentam-se de forma desestruturada; sto é, eles não contêm nenhum padrão evdente, apresentando-se aleatoramente dstrbuídos. A lnha resultante do amortecmento (lowess) é apromadamente

17 4 horzontal e próma da reta horzontal de ordenada zero, ndcando méda zero para os resíduos. A lnha de amortecmento lowess (locall weghted scaterplot smoother), ou lnha amortecda, no gráfco de dspersão, localmente ponderada, é uma técnca de estatístca não paramétrca, ndcada para vsualzar tendêncas nos dados no gráfco. Cook e Wesberg (999) descrevem na pág. como o software ARC constró esta lnha. Sejam duas varáves e.. Seleconar um parâmetro de amortecmento f, no ntervalo (, ). Geralmente são escolhdos valores entre,4 e,7. Escolhamos, por eemplo f,5.. Seleconar um ponto l e escolhemos os f n pontos mas prómos de l. No Eemplo. temos n 6 e como escolhemos f,5 temos f n Com os f n pontos mas prómos de l, fazer a regressão de sobre, com o método dos mínmos quadrados ponderados, com os pesos determnados de tal modo que os pontos mas prómos de l tenham maores pesos, os quas decrescem até zero, à medda que os pontos se afastam de l. Em ARC é usada uma função trangular para os pesos, que decresce lnearmente desde um valor mámo em l até zero para o ponto mas afastado. 4. Plotar o valor de ŷ l, ajustado na regressão, que corresponde a l. 5. Repetr () a (4) para todos os valores de l e unr os pontos com os valores de ŷ l plotados Verfcação da Suposção de Varânca Constante Cook e Wesberg (999), pág. 346, propuseram um teste para verfcar se a varânca é constante. Para sso defnem o segunte modelo da varânca da resposta var ( ) σ ep( γ ) (.) onde γ é um vetor de parâmetros e a varânca de é constante quando γ.

18 43 Tomando o logartmo de (.) temos que ln [ var( )] ln( σ ) + γ Freqüentemente a varânca é função da méda; e nesse caso, comumente, a varânca aumenta quando a méda aumenta. Podemos então fazer γ λ β λe( ) onde [ var( ) ] ln [ var( ) ] ln( σ ) ln, resultando em + λ β ( σ ) + λe( ) ln é uma função lnear da méda de. A função de varânca é constante quando λ. Para testar se λ, Cook e Wesberg usam um teste que requer a correta determnação de E(). Para realzar o teste, ajusta-se o modelo lnear MQ. ŷ β va Os quadrados dos resíduos e contêm nformação sobre a função de varânca. Procede-se então à regressão de e sobre ŷ, por MQ. Calcula-se a soma dos quadrados devdo a esta regressão SSreg n e n e n. A estatístca de teste é calculada dvdndo-se SSreg pelo fator de escala ( e ) n. ET SSreg ( e n). Os autores asseguram que ET tem dstrbução χ com um grau de lberdade (número de termos da regressão de e sobre ŷ ), caso λ seja gual a zero. Para o Eemplo., consderando a tabela.8, fazemos a regressão de e sobre ŷ na planlha Ecel, obtendo SSreg,6. Em seguda calculamos ( ), 495 e n. Então,, 6 ET, 35,495

19 44 Na dstrbução qu-quadrado com um grau de lberdade, ET,35 corresponde a um P-valor de,857. Então, acetamos a hpótese de que a varânca não aumenta quando a méda aumenta. O gráfco da Fgura.4 vem confrmar a suposção de varânca constante. Nesse gráfco temos o valor absoluto dos resíduos studentzados versus o valor ajustado. A lnha resultante do amortecmento (lowess) não ndca crescmento da varânca com o aumento da méda. Fgura.4 Gráfco Valor Absoluto do Resíduo Versus Valor Ajustado Verfcação de Observações Atípcas (Outlers) Uma observação atípca é aquela que não combna com o modelo obtdo. Essas observações suspetas podem dever-se a erros de medção da resposta, ou de transposção dos dados, ou de condução destes epermentos. Entretanto, as observações atípcas só devem ser descartadas caso se confrme erro de medda ou transcrção; a resposta obtda pode não ser fruto de um erro, mas um valor real e, caso trate-se de um etremo da resposta, pode mesmo dependendo do objetvo corresponder a um bom (senão ao melhor) ponto de operação do processo produtvo. Ademas, observações atípcas pode ser fruto de um modelo nadequado. Uma observação pode ser atípca em um modelo e não a ser em outro.

20 45 O resíduo studentzado (r ) é freqüentemente consderado para um dagnóstco de observações atípcas. Cabe lembrar que, para calcular os resíduos studentzados de cada dado epermental, utlza-se a méda dos quadrados do erro ˆ (MS E ) como estmatva da varânca ( σ ). A MS E fo gerada nternamente e obtda a partr do ajuste do modelo às n observações. Portanto, o resíduo studentzado representa uma escala nterna dos resíduos. Um outro procedmento é consderar a eclusão da -ésma observação e verfcar qual é o efeto na estmatva da resposta. Em partcular, verfcar se o valor observado concorda com o valor ajustado ( ), obtdo quando a -ésma observação é ecluída da regressão, ou seja, faz-se a regressão com a -ésma observação removda. Então, a estmatva de ˆ ˆ σ passa a ser S () : ( n p) MS E e /( h ) S( ) (.) n p S() é usada no lugar da MS E para gerar uma escala eterna dos resíduos studentzados. t e,, K n (.3) S ( h ), ( ) Mers et al. () afrmam que o resíduo t usualmente é denomnado R- Student, enquanto Atknson (985) denomna-o resíduo de supressão (deleton resdual), e Cook e Wesberg (999): outler-t. Já que vamos usar os gráfcos do software ARC, destes últmos, vamos adotar o nome outler-t. Em váras stuações, o valor de outler-t pouco dferrá em relação ao valor do resíduo studentzado. Entretanto, quando o valor S () da -ésma observação dferr sgnfcatvamente da MS E, sso ndcará que essa observação tem uma grande nfluênca na determnação dos coefcentes de regressão do modelo, o que torna a estatístca outler-t mas sensível a observações atípcas do que o resíduo studentzado. Quando a -ésma observação se orgna da mesma dstrbução normal das outras observações, a estatístca t tem uma dstrbução t com n - p - graus de lberdade, o que possblta um procedmento mas formal para a detecção de observações atípcas, va teste de hpóteses.

21 46 Para obter conclusões com relação à estênca ou não de observações atípcas, Mers et al. () ctam a abordagem de Bonferron, que consste em comparar todos os n valores de t a t / n), n p. Entretanto, do ponto de vsta ( α desses autores, essa abordagem não é usualmente necessára, e apenas valores suspetos devem ser testados. O software Desgn-Epert consdera suspeta qualquer observação cujo valor da estatístca outler-t seja superor a 3,5 ou nferor a -3,5. De fato, geralmente, a smples observação do gráfco de outler-t versus os valores ajustados é sufcente para conclusões sobre observações atípcas. Na Fgura.5 temos este gráfco. Já que todos os valores estão no ntervalo (-3,5; 3,5), não há ndcação de observações atípcas. Caso houvesse alguma observação fora deste ntervalo, procederíamos ao teste com a dstrbução t. Atknson (985) sugere utlzar para os resíduos outler-t em um gráfco de probabldade normal com envelope. O software ARC oferece esta opção. Na Fgura.6 apresentamos o gráfco de probabldade t para os resíduos outler-t. Não observamos pontos muto fora do alnhamento. Por consegunte, não temos ndcação de observações atípcas. Fgura.5 Gráfco Resíduo Outler-t Versus Valor Ajustado

22 47 Fgura.6 Gráfco de Probabldade Normal do Resíduo Outler-t Verfcação de Observações Influentes Ocasonalmente algumas observações eercem grande nfluênca na determnação dos coefcentes de regressão do modelo. Tas observações são denomnadas observações nfluentes. Pode haver uma certa confusão entre observações nfluentes e observações atípcas. Para lustrar estes dos tpos de observações vamos consderar o conjunto de dados Ascomb, apresentado na Tabela., fornecdo junto com o software ARC. Tabela. - Dados Ascomb. (a) ,46 6,77,74 7, 7,8 8,84 6,8 5,39 8,5 6,4 5,73 (b) ,58 5,76 7,7 8,84 8,47 7,4 5,5,5 5,56 7,9 6,89 Na Fgura. temos os gráfcos de versus (esquerda) e de versus (dreta). As retas que aparecem nos gráfcos são as retas de regressão por mínmos quadrados. O gráfco da esquerda apresenta uma observação atípca não muto nfluente na determnação dos coefcentes (marcada com um +). O gráfco da dreta apresenta uma observação atípca de grande nfluênca na determnação dos coefcentes (marcada com um ). Por consegunte, uma observação atípca

23 48 pode não ser muto nfluente (gráfco da esquerda) ou muto nfluente (gráfco da dreta). Fgura.7 Gráfcos de Versus e de Versus Portanto, a detecção de observações atípcas deve ser consderada smultaneamente com a detecção das observações que eercem grande nfluênca na determnação dos coefcentes de regressão do modelo. Dstânca de Cook Como fo vsto, a dsposção dos pontos no espaço das varáves de regressão é mportante na determnação das propredades do modelo. Em partcular, as observações remotas podem, potencalmente, eercer o efeto de uma alavanca nas estmatvas dos parâmetros, nos valores prevstos e nas estatístcas utlzadas. A matrz chapéu H X( X' X) X' é útl na dentfcação dessas observações nfluentes. Os valores dos elementos h j da matrz H podem ser nterpretados como a ntensdade da alavancagem eercda pelos valores observados ( ) sobre os valores ajustados ( ŷ ). Portanto, a nspeção dos elementos da matrz H pode revelar pontos potencalmente nfluentes devdo à sua localzação no espaço das varáves ndependentes. A atenção deve ser focada nos elementos h da dagonal da matrz H. Podese demonstrar que n h dagonal da matrz H é p/n. p. Portanto, a magntude méda dos elementos h da

24 49 Assm, uma forma apromada, mas efcaz, de verfcar se a -ésma observação é um ponto de grande alavancagem, é verfcar se o elemento h da dagonal da matrz H é maor que p/n, ou seja, se o valor de h assocado à - ésma observação é duas vezes maor que a méda de todos os h da dagonal da matrz H. Caso seja constatado que um ou mas valores de h são maores que p/n, então podemos conclur que as observações são pontos de grande alavancagem (Mers et al. ). No epermento em questão temos n 6 e p 6. Assm, são consderadas como possíves pontos de alavancagem as observações cujos valores de h sejam superores a p/n,75. Na tabela abao apresentamos os valores de h no Eemplo h,4,4,4,4,4,4,4, h,4,4,3,3,4,4,, Não há valores de h maores que,75. Portanto, não há ndcação de observações que eerçam uma grande alavancagem sobre os parâmetros estmados, valores prevstos e estatístcas empregadas. Já vmos que, com a dagonal da matrz chapéu (H) dentfcamos pontos de potencal nfluênca devdo à sua localzação no espaço das varáves ndependentes. Entretanto, é desejável consderar, na medção da nfluênca, não apenas a localzação desses pontos mas, também, o valor da observação. Cook (977) sugeru a utlzação de uma medda do quadrado da dstânca entre a estmatva dos mínmos quadrados βˆ e uma estmatva obtda eclundo-se ˆ o -ésmo ponto, β ( ). Em geral, a medda desta dstânca, denomnada dstânca de Cook, pode ser epressa como sendo: ( X X) ( βˆ ( ) βˆ)' (ˆ β ( ) βˆ) D,, K, n. (.4) pms E

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO Ana Carolna Campana Nascmento 1, José Ivo Rbero Júnor 1, Mosés Nascmento 1 1. Professor da Unversdade Federal de Vçosa, Avenda Peter Henr

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO À AÁLISE DE DADOS AS MEDIDAS DE GRADEZAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...4

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Análise Fatorial F 1 F 2

Análise Fatorial F 1 F 2 Análse Fatoral Análse Fatoral: A Análse Fatoral tem como prncpal objetvo descrever um conjunto de varáves orgnas através da cração de um número menor de varáves (fatores). Os fatores são varáves hpotétcas

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade

Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade Controle Estatístco de Processos: a questão da autocorrelação, dos erros de mensuração e do montoramento de mas de uma característca de qualdade Docentes: Maysa S. de Magalhães; Lnda Lee Ho; Antono Fernando

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello Aula 03 Erros epermentas Incerteza Aula 03 Prof. Valner Brusamarello Incerteza Combnada Efeto da Incerteza sobre = f ± u, ± u, L, ± u, L ( ) 1 1 Epansão em Sére de Talor: k k L f = f 1,, 3, + ± uk + L,,,

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA RODRIGO LUIZ PEREIRA LARA DESEMPENO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós Graduação

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

Método de Monte Carlo Aplicado às Finanças 1. Introdução 2. O Método de Monte Carlo 3. Inversão da Função de Distribuição 4. Algumas Aplicações 5.

Método de Monte Carlo Aplicado às Finanças 1. Introdução 2. O Método de Monte Carlo 3. Inversão da Função de Distribuição 4. Algumas Aplicações 5. Método de Monte Carlo Aplcado às Fnanças 1. Introdução. O Método de Monte Carlo 3. Inversão da Função de Dstrbução 4. Algumas Aplcações 5. Prncípos Báscos do Método de Monte Carlo 5.1 Introdução 5. Formulação

Leia mais

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA 658 Gaudo & Zandonade Qum. Nova Qum. Nova, Vol. 4, No. 5, 658-671, 001. Dvulgação PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA Anderson Coser Gaudo

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Gráfico de controle de regressão aplicado na monitoração de processos

Gráfico de controle de regressão aplicado na monitoração de processos Jacob, Souza & Perera Gráfco de controle de regressão aplcado na montoração de processos LUCIANE FLORES JACOBI, MSC. Professora do Departamento de Estatístca UFSM. E-mal: lfjacob@ccne.ufsm.br ADRIANO MENDONÇA

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS

CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS Nos capítulos anterores analsaram-se város modelos usados na avalação de manancas, tendo-se defndo os respectvos parâmetros. Nas correspondentes fchas de exercícos

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Método para aplicação de gráficos de controle de regressão no monitoramento de processos

Método para aplicação de gráficos de controle de regressão no monitoramento de processos Produção, v 21, n 1, p 106-117, jan/mar 2011 do: 101590/S0103-65132011005000001 Método para aplcação de gráfcos de controle de regressão no montoramento de processos Danlo Cuzzuol Pedrn a, *, Carla Schwengber

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f.

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f. ROGÉRIO ALVES SANTANA AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grands L.f. Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

III. Consequências de um novo padrão de inserção das mulheres no mercado de trabalho sobre o bem-estar na região metropolitana de São Paulo

III. Consequências de um novo padrão de inserção das mulheres no mercado de trabalho sobre o bem-estar na região metropolitana de São Paulo CEPAL - SERIE Polítcas socales N 60 III. Consequêncas de um novo padrão de nserção das mulheres no mercado de trabalho sobre o bem-estar na regão metropoltana de São Paulo A. Introdução Rcardo Paes de

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE R. L. S. CANEVESI 1, C. L. DIEL 2, K. A. SANTOS 1, C. E. BORBA 1, F. PALÚ 1, E. A. DA SILVA 1 1 Unversdade Estadual

Leia mais

CURRICULUM VITAE - RESUMIDO

CURRICULUM VITAE - RESUMIDO A estatístca tem uma partculardade: pesqusamos para dzer algo sgnfcatvo sobre o unverso que elegemos, porém a pesqusa só será sgnfcatva se conhecermos sufcentemente o unverso para escolhermos adequadamente

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO.

JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO. JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO. RECIFE-PE, 007 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE PESQUISA

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Princípios do Cálculo de Incertezas O Método GUM

Princípios do Cálculo de Incertezas O Método GUM Prncípos do Cálculo de Incertezas O Método GUM João Alves e Sousa Laboratóro Regonal de Engenhara Cvl - LREC Rua Agostnho Perera de Olvera, 9000-64 Funchal, Portugal. E-mal: jasousa@lrec.pt Resumo Em anos

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS PROCEDIMENTO DO SISTEMA DE GESTÃO DA QUALIDADE REVISÃO: 05 ABR/013 SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO REFERÊNCIAS 3 DEFINIÇÕES

Leia mais

Avaliação de imóveis: a importância dos vizinhos

Avaliação de imóveis: a importância dos vizinhos Avalação de móves: a mportânca dos vznhos no caso de Recfe* Rubens Alves Dantas André Matos Magalhães José Ramundo de Olvera Vergolno Resumo Tradconalmente, na avalação de móves, admte-se que as observações

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010 Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon

Leia mais

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1

Como aposentadorias e pensões afetam a educação e o trabalho de jovens do domicílio 1 Como aposentadoras e pensões afetam a educação e o trabalo de jovens do domcílo 1 Rodolfo Hoffmann 2 Resumo A questão central é saber como o valor da parcela do rendmento domclar formada por aposentadoras

Leia mais

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira.

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira. Informação Esta publcação é uma tradução do Gua de Calbração EURAMET Gua para a Estmatva da Incerteza em Medções de Dureza (EURAMET/cg-16/v.01, July 007). Os dretos autoras do documento orgnal pertencem

Leia mais

Variáveis dummy: especificações de modelos com parâmetros variáveis

Variáveis dummy: especificações de modelos com parâmetros variáveis Varáves dummy: especfcações de modelos com parâmetros varáves Fabríco Msso, Lucane Flores Jacob Curso de Cêncas Econômcas/Unversdade Estadual de Mato Grosso do Sul E-mal: fabrcomsso@gmal.com Departamento

Leia mais

MAE5778 - Teoria da Resposta ao Item

MAE5778 - Teoria da Resposta ao Item MAE5778 - Teora da Resposta ao Item Fernando Henrque Ferraz Perera da Rosa Robson Lunard 1 de feverero de 2005 Lsta 2 1. Na Tabela 1 estão apresentados os parâmetros de 6 tens, na escala (0,1). a b c 1

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que DESEMPREGO DE JOVENS NO BRASIL I. Introdução O desemprego é vsto por mutos como um grave problema socal que vem afetando tanto economas desenvolvdas como em desenvolvmento. Podemos dzer que os índces de

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Carlos Sérgio Araújo dos Santos José Antonio Aleixo da Silva Gauss Moutinho Cordeiro Joseilme Fernandes Gouveia Alisson de Oliveira Silva

Carlos Sérgio Araújo dos Santos José Antonio Aleixo da Silva Gauss Moutinho Cordeiro Joseilme Fernandes Gouveia Alisson de Oliveira Silva Modelos Smétrcos Transformados não lneares com aplcação na estmatva volumétrca em Híbrdo de Eucalyptus teretcorns no Pólo Gessero do Ararpe - PE Carlos Sérgo Araújo dos Santos José Antono Alexo da Slva

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS

MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS versão mpressa ISSN 0101-7438 / versão onlne ISSN 1678-5142 MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS Ângelo Márco Olvera Sant Anna* Carla Schwengber ten Caten Programa de Pós-graduação

Leia mais

SALÁRIO DE RESERVA E DURAÇÃO DO DESEMPREGO NO BRASIL: UMA ANÁLISE COM DADOS DA PESQUISA DE PADRÃO DE VIDA DO IBGE

SALÁRIO DE RESERVA E DURAÇÃO DO DESEMPREGO NO BRASIL: UMA ANÁLISE COM DADOS DA PESQUISA DE PADRÃO DE VIDA DO IBGE SALÁRIO DE RESERVA E DURAÇÃO DO DESEMPREGO NO BRASIL: UMA ANÁLISE COM DADOS DA PESQUISA DE PADRÃO DE VIDA DO IBGE Vctor Hugo de Olvera José Ramundo Carvalho Resumo O objetvo do presente estudo é o de analsar

Leia mais

AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA. Túlio Alves Matta

AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA. Túlio Alves Matta AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA Túlo Alves Matta MONOGRAFIA SUBMETIDA À COORDENAÇÃO DE CURSO DE ENGENHARIA DE PRODUÇÃO DA UNIVERSIDADE

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

FERRAMENTA DE AUXÍLIO AO DIAGNÓSTICO MÉDICO DURANTE A GRAVIDEZ

FERRAMENTA DE AUXÍLIO AO DIAGNÓSTICO MÉDICO DURANTE A GRAVIDEZ FERRAMENTA DE AUXÍLIO AO DIAGNÓSTICO MÉDICO DURANTE A GRAVIDEZ M. G. F. Costa, C. F. F. Costa Flho, M. C. Das, A. C. S.Fretas. Unversdade do Amazonas Laboratóro de Processamento Dgtal de Imagens Av. Gal.

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais