Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade

Tamanho: px
Começar a partir da página:

Download "Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade"

Transcrição

1 Controle Estatístco de Processos: a questão da autocorrelação, dos erros de mensuração e do montoramento de mas de uma característca de qualdade Docentes: Maysa S. de Magalhães; Lnda Lee Ho; Antono Fernando B. Costa. João Pessoa, a 5 de Setembro 8

2 Prefáco O montoramento de um processo é feto com base nas nformações de uma, ou de mas de uma característca de qualdade, que são seleconadas de acordo com as especfcações do produto. Por exemplo, saqunhos de lete devem conter entre 985 ml e 5 ml; um saqunho de lete com menos de 985 ml gera multa a empresa, e com mas de 5 ml tem rsco de estourar durante o manuseo e transporte. Neste caso, a característca de qualdade de nteresse é a quantdade de lete dentro do saqunho e a mssão do montoramento é manter as varações de dentro de níves que não comprometam as especfcações. A varável é também chamada de varável de montoramento. Pos bem, para obter os valores de, defronta-se prmero com a questão da precsão do sstema de medção e, em seguda, com a questão da correlação entre e +, onde o sub índce () é o número do tem, de acordo com a seqüênca de produção. As notas deste mn-curso são consttuídas de cnco seções, a prmera parte destas notas é uma revsão das propredades dos gráfcos de Shewhart; a segunda parte é dedcada ao estudo dos gráfcos de Shewhart, mas especfcamente do gráfco de, na presença de erros de mensuração e da autocorrelação entre valores de. A tercera e quarta seções são dedcadas ao montoramento de processos multvarados; são dstntas uma da outra, por tratarem de varáves contínuas e dscretas, respectvamente e por fm comentáros fnas são fetas na últma seção. Este mn-curso trata, portanto, de pesqusas recentes na área de Controle Estatístco de Processos, que abordam a questão da autocorrelação dos dados, do erro de mensuração e do montoramento smultâneo de váras característcas de qualdade. Maysa Sacramento de Magalhães; Lnda Lee Ho; Antono Fernando Branco Costa. Setembro 8 João Pessoa, a 5 de Setembro 8

3 Conteúdo SEÇÃO UM:... 5 REVISÃO DAS PROPRIEDADES DOS GRÁFICOS DE SHEWHART INTRODUÇÃO ALARME FALSO NO GRÁFICO DE PODER DO GRÁFICO DE... REFERÊNCIA... SEÇÃO DOIS... 3 ERRO DE MENSURAÇÃO E DADOS AUTOCORRELACIONADOS INTRODUÇÃO ERRO DE MENSURAÇÃO DADOS AUTO CORRELACIONADOS ERRO DE MENSURAÇÃO COM DADOS AUTOCORRELACIONADOS... 5 REFERÊNCIAS... 7 SEÇÃO TRÊS:... 8 PROCESSOS MULTIVARIADOS - VARIÁVEIS CONTÍNUAS INTRODUÇÃO O VETOR DE MÉDIAS E A MATRIZ DE COVARIÂNCIAS AMOSTRAIS GRÁFICOS DE CONTROLE PARA O MONITORAMENTO DO VETOR DE MÉDIAS GRÁFICOS DE CONTROLE PARA O MONITORAMENTO DA MATRIZ DE COVARIÂNCIAS João Pessoa, a 5 de Setembro 8 3

4 REFERÊNCIAS SEÇÃO QUATRO PROCESSOS MULTIVARIADOS-VARIÁVEIS DISCRETAS INTRODUÇÃO DISTRIBUIÇÃO POISSON BIVARIADA UMA BREVE REVISÃO GRÁFICOS DE CONTROLE PARA OBSERVAÇÕES INDIVIDUAIS DE UM PROCESSO DE POISSON BIVARIADO EEMPLO NUMÉRICO CONSIDERAÇÕES FINAIS REFERÊNCIAS APÊNDICE SEÇÃO CINCO: COMENTÁRIOS FINAIS João Pessoa, a 5 de Setembro 8 4

5 Seção UM: Revsão das propredades dos gráfcos de Shewhart. Introdução Antes de se pensar em controlar um processo é precso prmero estudar o comportamento da característca de qualdade a ser montorada; para sto é precso que o sstema de medção seja confável. Erros de mensuração bem como a correlação em sére entre valores da varável, que compõem os subgrupos raconas, comprometem o desempenho dos gráfcos de controle. Para lustrar o efeto do erro de mensuração e da autocorrelação das observações no desempenho dos gráfcos de controle, seja o gráfco de. Nesta seção é feta uma revsão das propredades dos gráfcos de para dados ndependentes e sem erros de mensuração. A próxma seção estende os resultados, ncorporando os erros de mensuração e a autocorrelação. Quando o gráfco de está em uso, montorando um processo, amostras de tamanho n são retradas a cada h horas, e o valor calculado da estatístca para cada amostra é plotado no gráfco de controle. Este dspostvo estatístco pode ser vsto como uma seqüênca de testes de hpóteses, onde, a cada h horas, testamos sempre as mesmas hpóteses: H : Processo em controle H : Processo fora de controle Outras maneras de descrever as hpóteses H e H são: H : Processo ajustado H : Processo desajustado João Pessoa, a 5 de Setembro 8 5

6 ou H : Processo centrado no valor-alvo ou ou, anda, H : Processo não centrado no valor-alvo H : Processo lvre de causas especas H : Processo sob a nfluênca de causas especas H : µ = µ H : µ µ onde µ é o valor-alvo ou o valor médo em controle da varável aleatóra. A hpótese H é aceta como verdadera todas as vezes que o valor de car dentro dos lmtes de controle. Já a hpótese H é aceta como verdadera sempre que o valor de car fora dos lmtes de controle. Se o processo estver em controle ( H verdadera), α representa o rsco (probabldade) de erroneamente se consderar o processo fora de controle ( alarme falso ). Se o processo estver fora de controle ( H verdadera), β representa o rsco (probabldade) de erroneamente se consderar o processo em controle ( não-detecção ). A conseqüênca de ordem prátca assocada ao erro do tpo I (alarme falso) é ntervr no processo na hora errada, quando o mesmo está sento de causas especas (o que em s já acarreta um custo de nterrupção do processo, de mão de obra além de um rsco de desajustar um processo que estava ajustado); e a conseqüênca de ordem prátca assocada ao erro do tpo II (não detecção) é não ntervr no processo na hora certa, quanto o mesmo está sob a nfluênca de causas especas. João Pessoa, a 5 de Setembro 8 6

7 Dado que o processo é consderado em controle ( H verdadera ) quando ca dentro dos lmtes do gráfco e fora de controle ( H falsa ) quando está fora dos lmtes do gráfco, as probabldades de alarme falso (α ) e de não-detecção ( β ) são dadas por: onde LIC e α Pr[ > LSC ou < LIC µ = µ ] = β = Pr[ LIC < < LSC µ µ ] LSC são respectvamente os lmtes nferor e superor de controle do gráfco de controle. O poder do gráfco de controle, Pd, é defndo como sendo a probabldade de detecção (Pd=-β). Assume-se que as causas especas não alteram o desvo padrão da varável aleatóra.. - Alarme Falso no Gráfco de Quando a hpótese H é a hpótese verdadera (processo sento de causas especas) o deal é que todos os pontos caam dentro dos lmtes de controle do gráfco. Contudo, por tratar-se de um teste estatístco, exste o rsco α de um deles car fora dos lmtes. Quando sto acontece, tem-se alarme falso: um snal ndevdo de que o processo está sob a nfluênca de alguma causa especal, portanto demandando ajustes. Devdo a esse snal, nterfere-se no processo na hora errada, ou seja, quando o mesmo se encontra no mas perfeto estado de controle (com a dstrbução da característca de qualdade estável e ajustada no alvo, µ = µ ). A Fgura retrata a ocorrênca de um alarme falso. Nessa fgura, a hpótese H é verdadera, pos a méda µ da varável aleatóra é gual ao valor-alvo µ. Para se calcular o rsco α probabldade de alarme falso é necessáro conhecer a dstrbução da varável aleatóra. Na verdade, graças ao Teorema do Lmte Central, para João Pessoa, a 5 de Setembro 8 7

8 uma grande varedade de dstrbuções de, a dstrbução de tenderá, com boa precsão, a uma dstrbução normal, mesmo para amostras pequenas. Defnndo a varável aleatóra Z como: Z = µ esta terá dstrbução normal com méda µ = e desvo padrão =. Quando o processo está em controle, µ = µ =. n e Z Z ~ N( µ ; ) ~ N( µ ; / n) LSC = µ + 3 / n Alarme falso LM = µ LIC = µ 3 / n Mnutos Fgura : Gráfco de ocorrênca de um alarme falso (Extraída da Fgura 3.7 do lvro de Costa, Epprecht e Carpnett, 5) João Pessoa, a 5 de Setembro 8 8

9 Tradconalmente, os lmtes de controle do gráfco de são estabelecdos usando os valores em controle dos parâmetros do processo, µ e a ±3 desvos padrão amostras da lnha méda (LM= µ ), ou seja, em µ ± 3 ; ver Fgura. Se o processo estver em n controle, a probabldade de um ponto car fora dos lmtes de controle assm localzados é gual a α = Pr[ > LSC ] + Pr[ < LIC ] = = Pr Z > LSC µ + Pr Z < LIC µ Substtundo LSC por µ + 3, LIC por µ 3, e (já que está supondo o processo em controle) µ por µ e por =, chega-se, após smplfcações n medatas, a α = Pr[ Z > 3] Para z=3, o rsco α é gual a,7. Então, durante o período em que o processo permanece estável e ajustado, portanto sob controle, essa é a probabldade de o valor de car na regão de ação do gráfco (acma do LSC ou então, abaxo do LIC ); ou seja, é a probabldade que cada amostra tem de gerar um alarme falso. A dstrbução do número de amostras, L, que antecedem um alarme falso (nclundo a amostra que gera o alarme falso) segue uma dstrbução geométrca de parâmetro p=α cuja função de probabldade é dada por Pr[ L = d] = p( p) d, d=,, 3, João Pessoa, a 5 de Setembro 8 9

10 Por exemplo, na Fgura temos L=7. A méda da dstrbução geométrca é gual a /p, portanto o número médo de amostras (NMA) até um alarme falso é gual a / α. Em outras palavras, com lmtes de 3 desvos padrão, tem em méda um alarme falso a cada (/,7) = 37,4 pontos plotados. Caso o usuáro consdere esta freqüênca de alarmes falsos nacetável, uma alternatva consste em alargar os lmtes de controle, por exemplo, aumentar k de 3, para 3, (k é o fator de abertura dos lmtes de controle, ou seja, LIC = µ k e n LSC = µ + k ). Com k=3,, o rsco de alarme falso dmnu para,9 e o NMA aumenta n para 56,7. O rsco α é função apenas do fator de abertura dos lmtes de controle, k. α = Pr[ Z > k]. Poder do Gráfco de Quando a hpótese H é a hpótese verdadera (processo sob a nfluênca de causas especas), o deal sera que o prmero ponto plotado já caísse fora dos lmtes de controle (snalzando o estado de falta de controle). Contudo, sto nem sempre ocorre, em especal se o deslocamento sofrdo pela méda do processo for pequeno. É usual expressar este deslocamento em undades guas ao desvo padrão da varável, de forma que o novo valor da méda, µ, pode ser escrto como µ = µ + δ, portanto µ µ =. δ De um modo geral, se δ, 5, então rapdamente um valor de cará fora dos lmtes de controle. Caso contráro, exstrá uma certa nérca. Por exemplo, na Fgura, o snal só João Pessoa, a 5 de Setembro 8

11 ocorre quando o 5º valor de é plotado. Nessa fgura, a hpótese H é verdadera porque a méda µ da varável é dferente de µ ; na verdade, ela é gual a µ + δ por:. A probabldade de um valor de car acma do Lmte Superor de Controle é dada Pr[ > LSC] = Pr[ Z > Z ], LSC onde Z LSC ( LSC µ ) [ µ + k ( µ + δ )] = = = k δ n, e a probabldade de um valor de car abaxo do Lmte Inferor de Controle (LIC) é dada por: Pr[ < LIC] = Pr[ Z < Z ], LIC onde Z LIC ( LIC µ ) = = [ µ k ( µ + δ )] = k δ n. Como Pr[Z>z]=Pr[Z<-z], (e portanto Pr[Z>LSC]=Pr[Z<-LSC]), tem-se Pd = Pr[ Z < k + δ n] + Pr[ Z < k δ n]. A dstrbução do número de amostras, M, que antecede um alarme verdadero (nclundo a amostra que gerou o snal, ou seja, a amostra cujo valor não pertence ao ntervalo delmtado pelos lmtes de controle) segue uma dstrbução geométrca de parâmetro p=(pd), cuja função de probabldade é dada por Pr[ M = m] = p( p) m, m=,, 3, João Pessoa, a 5 de Setembro 8

12 N( µ ; ) ~ N( µ + δ; / ~ n ) LSC = µ + 3 / n Alarme verdadero LM = µ δ = µ µ + δ LIC = µ 3 / n Mnutos Fgura : Gráfco de ocorrênca de um alarme verdadero (Extraída da Fgura 3. do lvro de Costa, Epprecht e Carpnett, 5) Por exemplo, na Fgura, temos M=5. A méda da dstrbução geométrca de parâmetro p é gual a /p, portanto o número médo de amostras (NMA) que antecedem um alarme verdadero é gual a /(Pd). Referênca COSTA, A.F.B.; EPPRECHT E.K.; CARPINETTI, L.C.R. Controle Estatístco de Qualdade.. ed. São Paulo: Edtora Atlas, p. João Pessoa, a 5 de Setembro 8

13 Seção DOIS Erro de mensuração e dados autocorrelaconados. Introdução Os gráfcos de controle foram ntroduzdos por Shewhart que, em um prmero momento, supôs um sstema de medção sento de erros e uma varável de montoramento gerando observações ndependentes. Nesta seção, os efetos do erro de mensuração e/ou da autocorrelação no desempenho do gráfco de controle serão nvestgados.. Erro de Mensuração É mportante salentar que estudos de Repetbldade e Reprodutbldade devem anteceder até mesmo as nvestgações prelmnares do comportamento da varável de montoramento. Nesta seção, alguns comentáros sobre o efeto do erro de mensuração no desempenho do gráfco de controle serão fetos. Para tanto, consdere uma amostra de tamanho n em que cada tem é meddo m vezes formando o segunte conjunto de observações: + e + e... n + e n + e + e... n + e n e m + e m... n + e nm João Pessoa, a 5 de Setembro 8 3

14 Devdo ao erro de medção, o valor exato,, da característca de qualdade é acompanhado de um erro e j. Deste modo, a característca de qualdade de um mesmo tem pode ter m dferentes valores: + e, + e,.., + em. A méda amostral é dada por m( = nm n m n ) + e j j= = Sejam o desvo padrão do processo e m o desvo padrão do erro de mensuração. Se as observações de não forem autocorrelaconadas e os erros de mensuração e j forem ndependentes de, então: ( ) = + m n m Neste caso, os lmtes de controle do gráfco da méda são dados por LC = µ ± k + m m n / Para ~ N( µ ; ) e e N(; ) o poder de detecção é dado por: ~ m P = Φ( k Cδ n) + Φ( k + Cδ n) d onde C = m + ( m = m m / ) m + C e Φ(.) denota a função acumulada de dstrbução normal padrão. João Pessoa, a 5 de Setembro 8 4

15 A constante C assume valores entre e. Quando C=, não se tem erro de mensuração. O gráfco de controle perde poder de detecção à medda que C dmnu. Na Tabela, estão valores de C para m= e 4 e C = = ;,;,3;,5 e,. Quando m=, cada m tem é meddo uma únca vez, e quando C =, não exste erro de mensuração. C Tabela. Valores de C C m= m=4,,995,9988,3,9578,9889,5,8944,97,,77,8944 O erro de mensuração pode ser mnmzado pela repetção da medda de um mesmo tem (m>). Por exemplo, quando o erro de mensuração corresponde a 3% da varabldade m do processo ( =,3), tem-se para m= um valor de C=,9578 e para m=4 um valor de C=,9889, sto é, medndo um mesmo tem quatro vezes o valor de C fca mas próxmo da undade, que é quando o erro de mensuração dexa de exstr. O gráfco da Fgura 3 lustra o efeto do erro de mensuração no desempenho do gráfco da méda. Por exemplo, quando a causa especal desloca a méda de um desvo padrão, sem o erro de mensuração o NMA= 6,3; já supondo que a varabldade do nstrumento de medda seja m da mesma ordem da varabldade do processo ( =,), o NMA aumenta assustadoramente, NMA=7,7. Este aumento é mnmzado quando o mesmo tem é meddo váras vezes. De acordo com a Fgura 4, se um mesmo tem é meddo quatro vezes (m=4), o NMA se reduz de 7,7 para 8,9. João Pessoa, a 5 de Setembro 8 5

16 Nos estudos de Repetbldade e Reprodutbldade, um nstrumento de medda é consderado aproprado quando a sua varabldade não exceder de 3% da varabldade do processo ( C <,3). Nestes casos, o efeto do erro de mensuração no desempenho do gráfco é pequeno (sto é percebdo nas Fguras 3 e 4, pela proxmdade das lnhas correspondentes a C = e C =,3). NMA C= C=,3 C=, Escala logarítmca,5,75,5,5,75 δ Fgura 3. Efeto do erro de mensuração no NMA, m=, n=4. João Pessoa, a 5 de Setembro 8 6

17 NMA C= C=,3 C=, Escala logarítmca,5,75,5,5,75 δ Fgura 4. Efeto do erro de mensuração no NMA, m=4, n=4.. Dados Auto correlaconados Para se utlzar um gráfco de controle convenconal (de Shewhart) é necessáro que as observações da característca de qualdade de nteresse sejam ndependentes e normalmente dstrbuídas. Satsfetas estas condções, então é possível fazer uso destes dspostvos estatístcos para tomar decsões sobre o estado do processo: se em controle ou se fora de controle. Se a hpótese de normaldade for lgera ou moderadamente volada, anda assm os gráfcos convenconas funconam razoavelmente bem; entretanto, quando os valores da característca de qualdade possuem alguma nterdependênca, ou autocorrelação, mesmo que João Pessoa, a 5 de Setembro 8 7

18 em grau relatvamente pequeno, o rsco α probabldade de uma observação car fora dos lmtes do gráfco, com o processo em controle aumenta, e compromete a credbldade deste dspostvo pela ocorrênca de um número elevado de alarmes falsos. De fato, Shewhart, ao crar os gráfcos de controle, estava destnando-os à ndústra de partes dscretas, com quase ou nenhum grau de automação. Em tas processos, a condção de ndependênca das observações geralmente era satsfeta. Hoje em da, porém, processos contínuos e por batelada são extremamente freqüentes, prncpalmente (embora não exclusvamente) na ndústra químca e na ndústra metalúrgca. Tas processos raramente produzem observações ndependentes, de modo que não podem ser montorados pelos gráfcos de controle convenconas. Esse problema não se restrnge a processos contínuos e por batelada: processos dscretos altamente automatzados, freqüentes hoje em da, também costumam produzr dados autocorrelaconados. É, portanto mportante antes de ncar o montoramento de um processo, dentfcar se ele produz observações ndependentes ou se é autocorrelaconado, pos um gráfco de controle nadequado, que produza alarmes falsos em excesso, acabará sendo descartado, ou por, mantdo apenas para cumprr alguma exgênca formal; os alarmes são smplesmente gnorados pelo pessoal envolvdo com o processo. O exemplo a segur fo extraído do lvro de Costa, Epprecht e Carpnett (5). A coluna da Tabela regstra os valores de 5 medções sucessvas (espaçadas de 3 mnutos) da temperatura de um banho químco, cujo valor-alvo é 5 C. A prmera medda fo efetuada às 8:h, a segunda, às 8:3h, e assm por dante. Para melhor vsualzação, a Fgura 5 apresenta o gráfco da temperatura do banho químco em função do tempo. As demas colunas da Tabela foram construídas deslocando as observações da o coluna: o º elemento da ª coluna é o º elemento da ª coluna, o º elemento da 3ª coluna é o º elemento da ª coluna, que por sua vez é o 3º elemento da ª coluna, e assm por dante. João Pessoa, a 5 de Setembro 8 8

19 Tabela. Sére de Meddas da Temperatura de um Banho Químco. x x + x + x +3 x +4 x +5 x +6 x +7 37,59 34,4 33,66 37,4 3,54 33,7 35, 3,36 34,4 33,66 37,4 3,54 33,7 35, 3,36 9, 3 33,66 37,4 3,54 33,7 35, 3,36 9, 3, ,4 3,54 33,7 35, 3,36 9, 3,97 7, 5 3,54 33,7 35, 3,36 9, 3,97 7, 9,4 6 33,7 35, 3,36 9, 3,97 7, 9,4 7, , 3,36 9, 3,97 7, 9,4 7,65 6, ,5 9,59 8,78 6,59 6,9 5,98 5, 9,9 4 9,59 8,78 6,59 6,9 5,98 5, 9,9 9, ,78 6,59 6,9 5,98 5, 9,9 9,95 3, ,59 6,9 5,98 5, 9,9 9,95 3, ,9 5,98 5, 9,9 9,95 3, ,98 5, 9,9 9,95 3, , 9,9 9,95 3, ,9 9,95 3, ,95 3,64 5 3,64 Temperatura Número da Medda Fgura 5. Sére de Meddas da Temperatura do Banho Químco. A Tabela 3 apresenta os coefcentes de autocorrelação amostral r k para a defasagem k=,,... Observe que exste uma correlação postva muto alta entre os valores das colunas João Pessoa, a 5 de Setembro 8 9

20 e + ( r =,893). Este nível de correlação é alto, o sufcente para comprometer o desempenho do gráfco de controle de Shewhart; uma alta autocorrelação postva provoca freqüentes alarmes falsos. Tabela 3. Coefcentes de autocorrelação amostral k r k k r k,893 7,465,793 M M 3,74 5,7 4,638 6,94 5,588 M M 6,57 M M Costa, Epprecht e Carpnett (5) apresentam maneras de se controlar processos quando os valores da varável de montoramento são autocorrelaconados. Nenhuma delas, contudo, é estabelecda com base em uma expressão matemátca da forma como as observações se relaconam como, por exemplo, a que segue: µ = φ( µ ) + e, =,,.., = µ, e e N( ) ~, e A expressão acma representa o modelo autoregressvo de prmera ordem AR (). Em mutos processos ndustras os valores da característca de qualdade, meddas no tempo, se ajustam a um modelo AR (). Nesta seção, nvestga-se como é o desempenho do gráfco de controle de médas quando os valores de não são ndependentes, mas descrtos por um modelo AR (). Para o modelo AR(), a varânca do processo e do erro tem a segunte relação: = e /( φ ). Aqu, assume-se que o ntervalo entre retrada de amostras é sufcentemente espaçado para garantr que os valores de de uma amostra são ndependentes dos valores de da amostra anteror. Para exemplfcar consdere o caso em que n=3: João Pessoa, a 5 de Setembro 8

21 = µ + e = µ + φ( µ + e ) = µ + φ( µ + e 3 ) 3 Segue que 3 + 4φ + φ 9 ( ) = = 3C A Tabela 4 apresenta as expressões de nc para n=, 3, 4, 5, 6. A constante C assume valores entre e. Para φ= as observações de tornam-se ndependentes e C =. Tabela 4. Expressões de nc n nc + φ φ + φ 4 + 6φ + 4φ + φ 5 + 8φ + 6φ + 4φ + φ 6 + φ + 8φ + 6φ + 4φ + φ Os lmtes de controle do gráfco da méda são dados por e o poder de detecção por: LC = µ ± k C n P d = Φ( k C δ n) + Φ( k + Cδ n ) João Pessoa, a 5 de Setembro 8

22 O gráfco de controle perde poder de detecção à medda que C dmnu. Na Tabela 5 estão os valores de C para n=4, 5 e φ=;,;,5;,7. Tabela 5. Valores de C. φ C n=4 n=5,,8658,8579,5,6963,674,7,679,56995 O gráfco da Fgura 6 lustra o efeto da autocorrelação no desempenho do gráfco da méda. Por exemplo, quando a causa especal desloca a méda de um desvo padrão e as observações são ndependentes, o NMA= 6,3. Supondo agora que as observações de são descrtas por um modelo autoregressvo de prmera ordem AR () com φ=,5, o NMA aumenta assustadoramente, NMA=8,5. Uma manera de se reduzr o efeto da autocorrelação no desempenho do gráfco de controle consste em se espaçar as observações. Por exemplo, ao nvés de formar a amostra com quatro tens produzdos na seqüênca, seleconam-se sete tens, e forma-se a amostra com o prmero, o tercero, o qunto, e o sétmo tens. Suponha, por exemplo, que a cada mea hora uma amostra é extraída do processo, então o prmero tem produzdo na mea hora rá fazer parte da amostra, o segundo não, o tercero sm, o quarto não, o qunto sm, o sexto não e o sétmo sm. Esta forma de composção da amostra será denomnada de composção C. Com sto tem-se um novo valor para a autocorrelação φ = φ. Caso sejam seleconados dez tens, e a amostra seja consttuída pelo prmero, quarto, sétmo e décmo tens, o novo valor da autocorrelação será φ = φ. Esta forma de composção da amostra será denomnada de C 3 C João Pessoa, a 5 de Setembro 8

23 composção C. A composção amostral C é a usual em que os tens da amostra são tens que foram produzdos um após o outro, na seqüênca, portanto a autocorrelação é dada por φ. NMA φ= φ =, φ =,5 φ=,7 Escala logarítmca,5,75,5,5,75 δ Fgura 6. Efeto da autocorrelação no NMA, n=4. O gráfco da Fgura 7 lustra a melhora no desempenho do gráfco de controle quando a composção C é substtuída pelas composções C ou C. O NMA se reduz de 8,5 para, e 8,4 respectvamente. João Pessoa, a 5 de Setembro 8 3

24 Dados ndependentes, sem correlação composção C, correlação=,5 Composção C, correlação=,5 NMA Composção C, correlação=,5 Escala logarítmca,5,75,5,5,75 δ Fgura 7. Efeto da composção da amostra no NMA, n=4. Artgos recentes de Costa e Claro (8); Claro, Costa e Machado (7) tratam do montoramento de processos autocorrelaconados. João Pessoa, a 5 de Setembro 8 4

25 .3. Erro de mensuração com dados autocorrelaconados Para lustrar o efeto da autocorrelação, combnado com o erro de mensuração, no desempenho do gráfco de, consdere novamente o modelo autoregressvo de prmera ordem AR(). µ = φ( µ ) + e, =,,..; = µ, e e N( ). ~, e Neste caso, como já vsto, a varânca de é dada por: ( ) = nc Na Tabela 4 estão as expressões de nc para n=, 3, 4, 5, 6. Com a adção do erro de mensuração a expressão da varânca de passa a ser C ( ) = = n + C m nc 3 com C =. Portanto m P d = Φ k C δ n) + Φ( k + C δ ). ( 3 3 n A constante C 3 assume valores entre e. Quando C 3 =, não se tem erro de mensuração e as observações de são ndependentes. O gráfco de controle perde poder de detecção à medda que C 3 dmnu. Na Tabela 6 estão os valores de C 3 para m=, n=4, φ=,;,5 e,7 e C =,3;,5 e,. E o gráfco da Fgura 8 lustra o efeto no desempenho do gráfco de controle da méda da autocorrelação combnada com o erro de mensuração. Por exemplo, quando a causa especal João Pessoa, a 5 de Setembro 8 5

26 desloca a méda de um desvo padrão, sem o erro de mensuração e observações ndependentes o NMA= 6,3; por outro lado quando a varabldade do nstrumento de medda é equvalente a 3% da varabldade do processo ( C =,3), o NMA para dados autocorrelaconados (φ=,5) e sem replcações (m=) aumenta assustadoramente, NMA=9,7. Tabela 6. Valores de C 3. φ C,3,5,,,835,79,653,5,686,6576,574,7,5975,58,59 NMA C= C=,3 C=, Escala logarítmca,5,75,5,5,75 δ Fgura 8. Efeto da autocorrelação e do erro de mensuração no NMA. (n=4, m= e φ=,5) João Pessoa, a 5 de Setembro 8 6

27 Referêncas CLARO, F. A. E.; COSTA, A.F.B.; MACHADO, M. A. G. Gráfcos de controle de EWMA e para montoramento de processos autocorrelaconados. Produção, v. 7, p , 7. COSTA, A. F. B.; CLARO, F. A. E. Double samplng control chart for a frst-order autoregressve and movng average process model. The Internatonal Journal of Advanced Manufacturng Technology, n press, 8. COSTA, A.F.B.; EPPRECHT E.K.; CARPINETTI, L.C.R. Controle Estatístco de Qualdade.. ed. São Paulo: Edtora Atlas, p. João Pessoa, a 5 de Setembro 8 7

28 Seção TRÊS: Processos multvarados - Varáves contínuas 3. Introdução Até agora foram dscutdos os gráfcos de controle unvarados. Porém, o aumento da complexdade e dos níves de automação dos processos ndustras e a crescente dsponbldade de suporte computaconal, têm aumentado o nteresse pelo montoramento smultâneo de váras característcas de qualdade, também chamadas de varáves do processo. Pouco a pouco as novas estratégas de montoramento para processos unvarados estão sendo estenddas ao montoramento de processos multvarados. Antes de dscutr as estratégas de montoramento para processos multvarados, algumas notações e defnções de vetores aleatóros, matrzes de covarânca e de correlação utlzados no controle estatístco de processos multvarados serão apresentados. 3. O vetor de médas e a matrz de covarâncas amostras Seja um vetor contendo p componentes, onde cada componente é uma varável aleatóra, sto é, é uma varável aleatóra onde =,,..., p. Então, é chamado de vetor aleatóro e é denotado por: = M p João Pessoa, a 5 de Setembro 8 8

29 O vetor transposto de vetor aleatóro é denotado por = [ 3... p ]. O vetor µ = E( ) é chamado de vetor de médas do vetor = [ 3... p ], sendo E( ) E( ) µ µ µ = E( ) = = µ p E( p ) onde µ = E ) denota a méda, ou esperança, da varável aleatóra, =,,..., p. ( A varânca do -ésmo componente do vetor é denotada por Var( ) = =. O desvo-padrão é denotado por ou e fornece a nformação sobre a dspersão dos valores das varáves em relação a µ, sto é, ndca se os valores de estão próxmos ou dstantes da méda µ. Assm, valores grandes de ndcam uma maor dspersão de valores de em relação à méda µ. A covarânca entre os valores da -ésma e j-ésma varáves do vetor é defnda por: Cov, ) = = E[( µ )( µ )] ( j j j j A covarânca serve para medr o grau de relaconamento lnear entre duas varáves aleatóras. De acordo com a expressão acma, quando os valores de acma (abaxo) da méda µ tendem a estar assocados aos valores de j acma (abaxo) da méda µ j, a covarânca jtende a ser postva. Portanto, à medda que a varável cresce (decresce) numercamente, a varável j também cresce (decresce) lnearmente. Quando os valores de acma da méda µ tendem a estar assocados com valores de j abaxo da méda µ j, ou vce-versa, a covarânca j tende a ser negatva. Neste caso, à medda que a varável cresce (decresce) numercamente, a varável j decresce (cresce) lnearmente. Embora a covarânca tenha nformação sobre o relaconamento lnear entre duas varáves, é dfícl julgar se a relação é João Pessoa, a 5 de Setembro 8 9

30 forte ou não, observando-se apenas os seus valores numércos uma vez que não se tem um valor de referênca mínmo ou máxmo para comparação dos valores j. Assm, uma medda mas útl na prátca é a correlação. (Mngot, 5). É prátca comum apresentar os valores de j em uma matrz chamada matrz de covarâncas. A matrz de varâncas e covarâncas do vetor aleatóro é denotada por: L p p Cov( ) L = Σ p x p =. M M O M p p L pp 8 A título de lustração, a matrz Σx = 5 representa a matrz de covarâncas de um vetor aleatóro = [ ], tal que = = 8; = = 5; = = -. O coefcente de correlação entre a -ésma e j-ésma varáves do vetor é defndo por: j j ρ j = = jj j onde ρ, =,,..., p. A correlação é uma medda mas adequada para avalar o j grau de relaconamento lnear entre duas varáves quanttatvas do que a covarânca, pos seus valores estão sempre entre - e. Assm quanto mas próxmo de, maor é o relaconamento lnear postvo entre as varáves e j e quanto mas próxmo de -, maor o relaconamento lnear negatvo entre as varáves. Uma correlação próxma de zero é uma ndcação numérca de um não-relaconamento lnear entre as varáves em questão. Quando se têm mutas varáves, o procedmento mas comum é apresentar os valores de ρ j em uma matrz chamada de matrz de correlação. João Pessoa, a 5 de Setembro 8 3

31 3. Gráfcos de controle para o montoramento do vetor de médas Desde que fo crado, o gráfco de controle baseado na estatístca T para o montoramento de processos multvarados (Hotellng, 947) passou a ser o dspostvo estatístco mas usual no montoramento do vetor de médas de duas ou mas característcas de qualdade. O gráfco de controle T é utlzado no montoramento smultâneo de p varáves de nteresse. Quando o vetor das médas e a matrz de covarâncas, µ e Σ, de um processo p- varado dstrbuído normalmente são conhecdos, a estatístca amostra é dada por: T ( µ ) Σ ( µ ) = n, T de Hotellng para a -ésma onde n é o tamanho da -ésma amostra e é o vetor das médas amostras dos p parâmetros para a amostra. Quando o processo está sob controle, T segue uma dstrbução de ququadrado com p graus de lberdade. Uma dfculdade encontrada ao se ldar com qualquer gráfco de controle multvarado é a nterpretação prátca de um snal de fora de controle. Especfcamente, não se sabe ao certo qual das p varáves (ou qual subconjunto delas) é responsável pelo snal. A prátca padrão consste em ter gráfcos de unvarados para as varáves,, 3,..., p. Durante o período fora de controle, a causa especal gera alterações de magntude d nos parâmetros do processo, sendo d = ( µ µ ) ( µ ) µ, onde µ é o vetor de médas das p característcas de qualdade após a ocorrênca da causa especal. Após a ocorrênca da causa especal, T tem dstrbução de qu-quadrado não-central com parâmetro de não-centraldade λ, sendo n o tamanho da amostra, sto é, T χ p ( λd ) d = nd ~. João Pessoa, a 5 de Setembro 8 3

32 O gráfco de Hotellng fo proposto com o ntuto de se reduzr o número de gráfcos de controle. Por exemplo, se cnco característcas de qualdade precsam ser montoradas, há duas opções, ou utlzar cnco gráfcos de controle de, um para cada característca, ou apenas um gráfco de Hotellng. A questão que não se pode esquecer é o desempenho do gráfco ou do conjunto de gráfcos de controle em snalzar alterações no processo. A título de lustração, na Tabela 7, são comparados os valores do NMA do gráfco de Hotellng com os valores do NMA que se obtém com o uso conjunto de dos gráfcos de (notação s), para o caso bvarado. O que se observa da Tabela 7 é que quando as varáves não são ndependentes e a causa especal altera a méda de ambas varáves, os dos gráfcos de, em uso conjunto, snalzam com maor rapdez. Detalhes deste estudo estão em Machado e Costa (8). Tabela 7. Valores de NMA para o gráfco de Hotellng e para os gráfcos s ρ,,3,5,7 δ s T s T s T s T LSC 3,3,597 3,,597 3,5,597,996,597 LIC -3,3 - -3, - -3,5 - -,996 - δ,,,,,,,,,,,,5 7,4 5,6 7,4,5 7,5 99,7 5,8 78,,, 4,6 4,9 4,6 38, 4,5 3,6 4,3 9,,,5 5, 5,8 5, 3,9 5,,5 4,5 5,94,5,5 83, 76,9 84, 9,7 85,4 99,7 87, 6,7,5, 36,4 33, 36,9 4, 37,5 4,9 37,8 38,7,5,5 4,4 3,6 4,5 5,8 4,6 5, 4,5,4,, 3,44 8,5 4, 5,8 4,93 3,6 5,96 35,5,,5,89 9,36,3 3,,65 5, 3, 5,73,5,5 8,9 5,76 8,5 8,53 8,9,5 9,4,58 João Pessoa, a 5 de Setembro 8 3

33 Artgos recentes de Costa e Machado (7 e 8) consderam a estatístca de Hotellng como a estatístca de montoramento do vetor de médas Gráfcos de controle para o montoramento da matrz de covarâncas Assm como é mportante montorar o vetor de médas de um processo, é também mportante montorar a sua matrz de covarâncas. O prmero gráfco de controle utlzado no montoramento da matrz de covarâncas Σ se baseou na estatístca obtda do teste da razão de máxma verossmlhança generalzada (Alt, 985): A = pn + pnln n nln S Σ + tr ( Σ S) onde s s L s p s s s L p S = M M L M s p s p L s pp é a matrz de covarâncas, sendo s a varânca amostral da - ésma varável e s j a covarânca amostral entre a -ésma e a j-ésma varáves. S é o determnante da matrz S e tr(s) é o traço da matrz S (a soma dos elementos da dagonal). Quando o processo está sob controle, sto éσ= Σ, A é assntotcamente dstrbuído como uma qu-quadrado com p ( p + ) graus de lberdade. Para o caso bvarado, Alt (985) propôs o uso da varânca amostral generalzada S para controlar a matrz de covarâncas Σ. Quando o processo está sob controle, com n 4 graus de lberdade (Alt, 985). s s S = é a matrz de covarâncas amostral. s s n ( ) Σ S tem dstrbução de qu-quadrado João Pessoa, a 5 de Setembro 8 33

34 Estudos recentes têm mostrado que é possível trabalhar com estatístcas de montoramento mas smples que a da varânca amostral generalzada S. Por exemplo, a estatístca VMA que é dada smplesmente pelo maor valor das varâncas amostras padronzadas. No caso de duas característcas de qualdade e, VMA= max{ S, S } onde S n x j j = = e n S n x j j = =, n x j ( j µ ) = e x j ( j µ ) =. Com o processo em controle, a matrz de covarâncas é dada por Σ =, sendo e as varâncas de e e =, as covarâncas entre e, sendo ρ = a correlação entre matrz de covarâncas, resultando na matrz e. Exstem duas maneras de uma causa especal alterar a Σ a = a a a a a a a. A prmera possbldade (caso I) supõe que a causa especal afeta somente a varânca da varável aleatóra, sto é, a = γ e a =, ou somente a varânca da varável aleatóra, neste caso a = γ e a. A segunda possbldade (caso II) supõe que a causa especal altera tanto a = varânca de quanto a de, sto é, a = a = γ, sendo γ > a magntude da perturbação. Em ambos os casos, a correlação ρ = entre e não é afetada pela causa especal. Se = =, então ρ = =. Quando o gráfco de VMA está em uso, amostras de tamanho n são retradas do processo em ntervalos de tempo regulares. As duas característcas de qualdade e das n undades da amostra são meddas e a estatístca VMA é calculada. Se a estatístca VMA for maor do que o lmte de controle LC, o gráfco snalza um desajuste do processo. Após a ocorrênca do snal, o usuáro pode medatamente examnar as varâncas amostras de e João Pessoa, a 5 de Setembro 8 34

35 para descobrr quas varáves foram afetadas pela causa especal, ou seja, aquelas cujas varâncas amostras são maores que LC. O lmte de controle LC do gráfco de VMA pode ser obtdo pela expressão (a segur) do poder do gráfco de VMA, bastando fazer a = a e p = α. d = pd = nlc a Pr χ n, tρ ρ < a nlc ( ) n ρ Γ( n ) t e ( n t ) dt A Fgura 9 apresenta o gráfco de VMA. VMA LC Número da amostra () Fgura 9. Gráfco de controle de VMA. A título de lustração, na Tabela 8 comparam-se os valores do NMA dos gráfcos de VMA e de S para o caso em que ρ =,5. O que se pode conclur desta tabela é que o gráfco de VMA é sempre mas ágl na snalzação da causa especal. Este resultado se mantém para outros valores de ρ. João Pessoa, a 5 de Setembro 8 35

36 Tabela 8. Valores do NMA dos gráfcos de VMA e de S (p=, ρ =,5) n 4 5 S VMA S VMA caso I caso II caso I caso II γ LC 6,34 4,94 4,94 5,375 3,668 3,668,,,,,,,, 46,8 36,6 43, 4,4 3,5 39,7,,5 9,4 7, 4,6 86,8,4,3 89, 63,9 8,9 8,5 58,3 78,,4 73,3 45,7 66, 64, 4,7 6,4,5 6,4 33,9 54, 5,9 9,6 49,6, 3,,6 5,4 4, 9,6,3 3, 3,6 4,9,7, 3,38 9,9 5, 6,37,95 4,77 4,58,67 3,98 Artgos recentes de Costa e Machado (8a e 8b), Machado e Costa (8a) e Machado, De Magalhães e Costa (8) consderam a estatístca de VMA como a estatístca de montoramento da matrz de covarâncas. Referêncas ALT, F. B. Multvarate control charts. Encyclopeda of Statstcal Scences. Kotz, S., Johnson, N. L., Eds.; Wley, 985. HOTELLING, H. Multvarate qualty control, llustrated by the ar testng of sample bombsghts. Technques of Statstcal Analyss, p. -84, New York, McGraw Hll, 947. COSTA, A. F. B.; MACHADO, M. A. G. Synthetc control chart wth two-stage samplng for montorng bvarate processes. Pesqusa Operaconal, v. 7, p. 7-3, 7. João Pessoa, a 5 de Setembro 8 36

37 COSTA, A. F. B.; MACHADO, M. A. G. Bvarate control charts wth double samplng. Journal of Appled Statstcs, aceto, 8. COSTA, A. F. B.; MACHADO, M. A. G. A new chart for montorng the covarance matrx of bvarate processes. Communcatons n Statstcs Smulaton and Computaton, aceto, 8a. COSTA, A. F. B.; MACHADO, M. A. G. A new chart based on the sample varances for montorng the covarance matrx of multvarate processes. Internatonal Journal of Advanced Manufacturng Technology, aceto, 8b. MACHADO, M. A. G; COSTA, A. F. B. The use of prncpal components and smultaneous unvarate charts to control multvarate processes. Pesqusa Operaconal, v. 8, p , 8. MACHADO, M. A. G; COSTA, A. F. B. The double samplng and the EWMA charts based on the sample varances. Internatonal Journal of Producton Economcs, v. 4, p , 8a. MACHADO, M. A. G.; De MAGALHÃES, M.S; COSTA, A. F. B. Gráfco de controle de VMA para o montoramento da matrz de covarâncas, Revsta Produção, v. 8, p. -39, 8. MINGOTI, S. A. Análse de dados através de métodos de estatístca multvarada: uma abordagem aplcada.. ed. Belo Horzonte: Edtora UFMG, p. João Pessoa, a 5 de Setembro 8 37

38 Seção QUATRO Processos multvarados-varáves dscretas 4 - Introdução Na seção 3 foram apresentados alguns gráfcos de controle consderando processos multvarados cujas varáves de processos eram varáves contínuas. Dando prossegumento aos processos multvarados, nesta seção serão abordados gráfcos de controle para o caso de varáves dscretas (será consderado apenas o caso bvarado). Montorar o número de defetos ou o de não conformdades ao nvés da fração de não conformdade é preferível em mutos processos de produção como os de placas de crcuto mpresso, de tecdo ou papel. Neste caso, geralmente assume-se que o número de defetos obedece a uma dstrbução Posson e em controle de qualdade os gráfcos de controles c ou u têm sdo usados para fm. Para assegurar a qualdade dos produtos, em mutas stuações prátcas mas de um tpo de defeto é montorado na mesma undade nspeconada. Por exemplo, dos tpos de defetos podem ser observados na mesma placa de crcuto mpresso se o processo de solda não estver bem calbrado: defetos por excesso de solda e defetos de superfíce. É comum sugerr que sejam utlzados dos gráfcos de controle (gráfcos de controle c ou u), um para cada tpo de controle. Esta pode ser uma boa solução para eventos ndependentes, contudo, se os defetos forem postvamente correlaconados (conforme o número de defetos por excesso de solda aumenta, o mesmo pode ser observado no número de defetos de superfíce também), dos gráfcos de controle (separados) podem não levar em consderação esta possbldade. Portanto, o processo descrto é um caso de controle multvarado de processo. E esta é uma das seções do controle estatístco de processo que tem apresentado um João Pessoa, a 5 de Setembro 8 38

39 dos mas rápdos desenvolvmentos. No entanto a maora dos trabalhos é voltada para varáves contínuas (e normalmente dstrbuídas). Poucas contrbuções relatvas ao controle de qualdade para varáves dscretas como as dstrbuções bnomal e Posson multvaradas podem ser encontradas na lteratura. Patel (973) apresentou um esquema para montorar processos bnomas e Posson multvarados como uma extensão da proposta do Hotellng e recentemente Sknner, Montgomery & Runger (3) consderaram um modelo lnear generalzado para montorar dados de contagens multvaradas. Portanto exste uma carênca de gráfcos de controle para este tpo de dstrbuções multvaradas. Antes de dscutr as estratégas de montoramento para este tpo de processo, a dstrbução de Posson bvarada e suas propredades serão apresentadas. 4. Dstrbução Posson bvarada uma breve revsão A dstrbução Posson bvarada fo prmeramente apresentada por Holgate (964) como uma soma de três varáves aleatóras ndependentes com dstrbução Posson. Sejam Y, Y e Y3 varáves aleatóras ndependentes de parâmetros (a-d); (b-d) e d respectvamente. Deste modo o vetor = Y + Y3 ; = Y + Y3 ; segue uma dstrbução bvarada Posson cuja função de probabldade é dada por mn( x, x ) x x λ λ λ3 P( = x, = x ) = exp[ ( λ + λ + λ3 )] = ( x )!( x )!! () onde λ = a d ; λ = b d e λ 3 = d. Manpulando a expressão (), ela pode ser escrta como x x mn(, ) λ λ x x x x λ ( 3 P = x, = x ) = exp[ ( λ + λ + λ3 )]! x! x! = ( λλ () As expressões de recorrênca em (3) João Pessoa, a 5 de Setembro 8 39

40 λ λ xp ( x, x ) = P( x, x ) + 3P( x, x ) xp( x, x) = λp( x, x ) + λ3p( x, x ) (3) facltam o cálculo dos valores das probabldades em (). Alguns parâmetros mportantes como méda, varânca, covarânca e correlação estão dadas em (4) λ λ E( ) = Var( ) = + 3 E( ) = Var( ) = λ + λ3 Cov(, ) = λ3 λ 3.5 Corr(, ) = λ3[ λ3 + mn( λ, λ)] ( λ + λ3 )( λ + λ3 ) (4) Note que a correlação assume somente valores postvos. A dstrbução de probabldade condconal de é expressa como mn(, ) x x x x x λ ( 3 λ λ P = x = x) = exp( λ )! = λ3 + λ λ3 + λ ( x )! (5) Pode-se notar que a expressão (5) é uma convolução de duas varáves ndependentes: λ uma varável Posson com parâmetro λ e uma bnomal de parâmetros 3 x,. A méda e λ3 + λ a varânca da dstrbução condconal são respectvamente Se λ 3 λ E( 3 ) = λ + x λ3 + λ Var( 3 ) = λ + x ( λ3 + λ ) λ λ λ λ +, λ3 + λ,e 3 ρ, então ( λ + λ )( λ + λ ) 3 3 João Pessoa, a 5 de Setembro 8 4

41 Z Z = ( λ + λ3 ) ( λ + λ3 ), ( λ + λ3 ) ( λ + λ3 ) (, ) ( Z ) segue uma dstrbução normal bvarada padrão e assntotcamente ρz Z + Z ρ é uma varável aleatóra com uma dstrbução qu-quadrado com dos graus de lberdade. De acordo com Rayner & Best (995), esta aproxmação não fornece bons resultados no caso de alta correlação. Outros modelos de contagem Posson bvarada usando probabldades condconas foram ntroduzdos por Berkhout & Plug (4). Os parâmetros da dstrbução Posson bvarada podem ser estmados por dferentes métodos como os mas conhecdos: Métodos dos Momentos e da Máxma Verossmlhança. Alguns métodos foram especfcamente desenvolvdos para estmar o parâmetro da covarânca como o Método do double-zero proporton e even pont (maores detalhes ver, Kocherlakota & Kocherlakota (99)). O uso do algortmo EM para estmação de máxma verossmlhança dos parâmetros da dstrbução Posson multvarada está descrto em Karls (3). E recentemente Karls & Ntzoufras (5) ncluíram uma função denomnada bvpos no pacote estatístco R para estmar os parâmetros de modelos de regressão Posson bvarada pelo método da máxma verossmlhança. Para maores detalhes sobre dstrbução Posson bvarada ver Johnson; Kotz & Balakrshnan (997); Kocherlakota & Kocherlakota (99). Outras dstrbuções nteressantes podem ser dervadas a partr da dstrbução Posson bvarada. Por exemplo: a dstrbução de DF=-, a dstrbução de SM=+ e a dstrbução de M=Max(, ). A função de probabldade de DF=- pode ser obtda calculando j y j ( + ) = e j= j= y j j y P( DF = y) = P( = j, = j y) λ λ λ λ!( )! (6) Note que (6) não depende do parâmetro da covarânca. Méda e varânca são respectvamente João Pessoa, a 5 de Setembro 8 4

42 λ λ E( DF) = Var( DF) = λ + λ A função de dstrbução de SM=+ é dada por y P( SM = y) = P( = j, = y j) j= ( ) y j y j mn( j, y j) λ λ j y j λ 3 exp[ ( λ λ λ3 )]! j= j! ( y j)! = ( λλ. = + + (7) Sua méda e varânca são respectvamente E( SM ) = λ + λ + λ 3 Var( SM ) = λ + λ + 4λ 3 E a função da dstrbução de M=Max(,) é gual a y P( M = y) = P( = y, = y) + P( = j, = y) + P( = y, = j) = j= y j y y j j y y e[ ( λ + λ + λ3 )] λ λ + λ λ j y λ 3 ( λ λ ) y λ 3 =! +! y! j= j! = λλ y! = λλ (8) As expressões de E(M) e Var(M) são um tanto complcadas e foram dexadas no Apêndce. Para qualquer uma das três varáves aleatóras dervadas da dstrbução Posson bvarada, valem os seguntes resultados E( Y ) = f ( λ, λ, λ ) 3 Var( Y ) = g( λ, λ, λ ) 3 (9) Y=M, SM ou DF. Assm as estmatvas de (9) são dsponíves substtundo os parâmetros pelas suas estmatvas (como os estmadores de máxma verossmlhança, por exemplo) João Pessoa, a 5 de Setembro 8 4

43 Eˆ( Y ) = f ( ˆ λ, ˆ λ, ˆ λ ) 3 Var ˆ ( Y ) = g( ˆ λ, ˆ λ, ˆ λ ) 3 () ( ) E assntotcamente Y ~ N E( Y ); Var Y, n é o tamanho da amostra. n 4. Gráfcos de controle para observações ndvduas de um processo de Posson bvarado Nesta seção, os gráfcos de controle para observações ndvduas de um processo de Posson bvarado serão ntroduzdos. Especfcamente gráfcos de controle baseados nas smples estatístcas descrtvas: SM = + M = max(, ); ; DF = ; e dos gráfcos (separados) de controle (um para e o outro para que doravante serão referdos como C) serão consderados. Fxado um nível do erro tpo I (α), os lmtes dos gráfcos de controle foram determnados tal que P( C < c) = α ou P ( c < ) L C < c = U α onde C é uma estatístca montorada (no caso: SM, M, DF ou e ), c é o lmte de controle para gráfcos de controle unlateras (especfcamente para os gráfcos de controle SM; M; e ) e c L e c U são respectvamente os lmtes de controle nferor e superor para o gráfco de controle blateral (no caso DF). Tabela apresenta para doze combnações de valores dos parâmetros λ, λ e λ3, as médas (sob controle) de e, a respectva correlação e os lmtes de controle para os gráfcos SM, M, DF e C (para um fxado valor do erro tpo I <.7). Devdo à natureza da João Pessoa, a 5 de Setembro 8 43

44 varável em questão (varáves dscretas), os lmtes de controle foram ajustados ou determnados de modo a ter NMA o mas próxmo possível do nível escolhdo ( (.7) 37.4 ) para poder comparar os desempenhos dos dferentes gráfcos de controle. Para exemplfcar consdere o caso (λ= λ= λ3=). Se utlzasse estatístca SM, um snal de que o processo está fora de controle será dado se + > ; caso fosse utlzado M, um snal sera se Max (, ) > 7 e caso empregasse DF, um snal sera com (-) <-5 ou ( -) > 4. E caso utlzasse dos gráfcos separados, um snal sera dado se > 7 e/ou >7. Na Tabela, os casos smétrcos sto é, quando E() = E() estão marcados com s e os assmétrcos por a. Lmte de controle que forneceu o maor valor NMA está em negrto. Os prmeros oto casos seguem o planejamento de um expermento fatoral; os quatros últmos casos foram ncluídos para analsar casos quando E()-E() >. Um total de sessenta e quatro mudanças nos dversos parâmetros (dada pelas combnações de kλ; kλ, kλ3; com k=,, 4 ) fo consderado para comparar os desempenhos dos gráfcos de controle. Tabela Descrção dos parâmetros e lmtes de controle João Pessoa, a 5 de Setembro 8 44

45 Os valores de NMA s dos gráfcos de controle SM, M, DF e C cujos parâmetros são λ=λ=λ3= e (λ=λ3= e λ=) quando o processo está sob controle estão respectvamente, nas Tabelas e 3. O prmero é um caso smétrco uma vez que E() = E() com coefcente de correlação ρ=.5 e o segundo é um caso assmétrco com E() = e E() =3 e um coefcente de correlação de ρ=.4. Tabelas semelhantes para outros conjuntos de parâmetros foram construídas, porém elas não serão reproduzdas aqu. O menor valor de NMA para cada caso de mudança nos parâmetros está em negrto. Adconalmente nas duas tabelas, os valores de NMA s dos gráfcos de controle C (denotados por C*) foram calculados assumndo (erroneamente) que as varáves e fossem ndependentes (ver as últmas colunas das Tabelas e 3). Por exemplo, na Tabela, quando λ quadruplca (λ=4) e os demas parâmetros permanecem nalterados (λ=λ3=), o menor valor de NMA é 4.8 (qunta lnha da Tabela ) e o gráfco de controle DF é o mas rápdo para detectar este tpo de dstúrbo. Nos casos onde o gráfco de controle DF é a melhor opção (ver Tabela da segunda a sexta lnha), observa-se que o valor de λ3permaneceu nalterado. As próxmas lnhas da Tabela estão os casos de dstúrbos (de dferentes tamanhos em todos os parâmetros) que os gráfcos de controle M e C detectam mas rapdamente (com gual desempenho). Valores médos dos parâmetros (λ, λ e λ3, quando processo fora do controle) destes casos foram calculados para descrever o perfl, obtendo-se respectvamente.6;.8;. que corresponde aos seguntes valores esperados E() =4.7; E() =4.9 e ρ=.43 (estes valores estão no segundo bloco de colunas da Tabela 4). Note que este valor médo de correlação é menor que o valor quando o processo está sob controle. E fnalmente os dstúrbos (para dferentes tamanhos em todos os parâmetros) que o gráfco de controle SM detecta rapdamente. Os valores médos de λ, λ e λ3 são respectvamente.5;.5 e 3. fornecendo E() = 5.6; E() =5.6 e ρ=.56 (maor que o valor quando o processo está sob controle). João Pessoa, a 5 de Setembro 8 45

46 Tabela Valores de NMA dos gráfcos de controle (caso : λ=λ=λ3=) João Pessoa, a 5 de Setembro 8 46

47 João Pessoa, a 5 de Setembro 8 47

48 Tabela 4 O melhor gráfco de controle Letura smlar pode ser feta com os resultados da Tabela 3. Por exemplo, quando λ permanece nalterado (λ=), mas se λ trplca (λ=6) e λ3 duplca (λ3=), os gráfcos de controle M e C são mas rápdos para detectar este tpo de dstúrbo com o menor NMA gual João Pessoa, a 5 de Setembro 8 48

49 a Valores médos de λ, λ e λ3 (fora de controle), quando os gráfcos de controle M e C são as melhores opções, são respectvamente.36; 7.7 e.64 que resultam valores de E() =4.; E()=9.9 e ρ=.4. Note que a correlação (fora de controle) é gual ao seu valor se o processo estvesse sob controle, mas grandes mudanças foram observados em λ e conseqüentemente grandes mudanças no valor de E(). Para dentfcar um aproprado gráfco de controle para detectar rapdamente algum tpo de dstúrbo específco, Tabela 4 fo construída. Os valores dos parâmetros sob controle de processo estão colocados no prmero de bloco de colunas. Os valores dos prncpas parâmetros quando o processo está fora de controle estão no segundo bloco de colunas e no últmo bloco de colunas um mosaco fo construído para dentfcar qual gráfco de controle é mas adequado para detectar mas rapdamente algum dstúrbo específco. As entradas deste últmo bloco de colunas são as razões entre os valores dos parâmetros fora de controle e sob controle λ λ denotados como =,, 3, 4 e =,, 3. Analsando a Tabela 4, algumas observações podem ser fetas: Note que o gráfco de controle DF aparece como a melhor opção apenas na coluna λ 3 λ = e na maora das vezes quando 3 λ = ou λ João Pessoa, a 5 de Setembro 8 λ λ =. Em outras palavras, o parâmetro da covarânca permaneceu nalterado e dstúrbos somente em uma das médas ou E() ou E(), tendo como conseqüênca uma dmnução da correlação, conforme pode-se observar os valores médos dos parâmetros relatvos ao gráfco DF no segundo bloco de colunas. Os gráfcos M e C (doravante denomnados como gráfcos M) são as melhores opções quando os valores sob controle de λ e λ são guas (os casos smétrcos,, 7 e 8). Observam-se causas especas provocando grandes ou moderados aumentos smultaneamente em λ e λ3 mantendo-se λnalterado; ou smetrcamente, aumentos grandes ou moderados smultâneos em λ e λ3 mantendo λ nalterado. Nestes casos 49

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Palavras-chaves: Gráficos de controle, ambiente R, análise estatística multivariada

Palavras-chaves: Gráficos de controle, ambiente R, análise estatística multivariada A ntegração de cadeas produtvas com a abordagem da manufatura sustentável. Ro de Janero, RJ, Brasl, 13 a 16 de outubro de 2008 O DESENVOLVIMENTO DE GRÁFICOS DE CONTROLE MCUSUM E MEWMA EM AMBIENTE R COMO

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Princípios do Cálculo de Incertezas O Método GUM

Princípios do Cálculo de Incertezas O Método GUM Prncípos do Cálculo de Incertezas O Método GUM João Alves e Sousa Laboratóro Regonal de Engenhara Cvl - LREC Rua Agostnho Perera de Olvera, 9000-64 Funchal, Portugal. E-mal: jasousa@lrec.pt Resumo Em anos

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA

RODRIGO LUIZ PEREIRA LARA DESEMPENHO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA RODRIGO LUIZ PEREIRA LARA DESEMPENO DO GRÁFICO DE CONTROLE CUSUM TABULAR PARA O MONITORAMENTO DA MÉDIA Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós Graduação

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

são os coeficientes desconhecidos e o termo ε (erro)

são os coeficientes desconhecidos e o termo ε (erro) Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira.

Informação. Nota: Tradução feita por Cláudio Afonso Kock e Sérgio Pinheiro de Oliveira. Informação Esta publcação é uma tradução do Gua de Calbração EURAMET Gua para a Estmatva da Incerteza em Medções de Dureza (EURAMET/cg-16/v.01, July 007). Os dretos autoras do documento orgnal pertencem

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

ÍNDICE NOTA INTRODUTÓRIA

ÍNDICE NOTA INTRODUTÓRIA OGC00 05-0-06 ÍDICE. Introdução. Âmbto e defnções 3. Avalação da ncerteza de medção de estmatvas das grandezas de entrada 4. Cálculo da ncerteza-padrão da estmatva da grandeza 5 de saída 5. Incerteza de

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

Análise Fatorial F 1 F 2

Análise Fatorial F 1 F 2 Análse Fatoral Análse Fatoral: A Análse Fatoral tem como prncpal objetvo descrever um conjunto de varáves orgnas através da cração de um número menor de varáves (fatores). Os fatores são varáves hpotétcas

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Método para aplicação de gráficos de controle de regressão no monitoramento de processos

Método para aplicação de gráficos de controle de regressão no monitoramento de processos Produção, v 21, n 1, p 106-117, jan/mar 2011 do: 101590/S0103-65132011005000001 Método para aplcação de gráfcos de controle de regressão no montoramento de processos Danlo Cuzzuol Pedrn a, *, Carla Schwengber

Leia mais

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello Aula 03 Erros epermentas Incerteza Aula 03 Prof. Valner Brusamarello Incerteza Combnada Efeto da Incerteza sobre = f ± u, ± u, L, ± u, L ( ) 1 1 Epansão em Sére de Talor: k k L f = f 1,, 3, + ± uk + L,,,

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

O método de Equação Integral com Quadratura Gaussiana para otimizar os parâmetros do gráfico de controle multivariado de Somas Acumuladas

O método de Equação Integral com Quadratura Gaussiana para otimizar os parâmetros do gráfico de controle multivariado de Somas Acumuladas Unversdade Federal de Santa Catarna Centro Tecnológco Programa de Pós-Graduação em Engenhara de Produção O método de Equação Integral com Quadratura Gaussana para otmzar os parâmetros do gráfco de controle

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Hansard OnLine. Guia Unit Fund Centre

Hansard OnLine. Guia Unit Fund Centre Hansard OnLne Gua Unt Fund Centre Índce Págna Introdução ao Unt Fund Centre (UFC) 3 Usando fltros do fundo 4-5 Trabalhando com os resultados do fltro 6 Trabalhando com os resultados do fltro Preços 7 Trabalhando

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

MAE5778 - Teoria da Resposta ao Item

MAE5778 - Teoria da Resposta ao Item MAE5778 - Teora da Resposta ao Item Fernando Henrque Ferraz Perera da Rosa Robson Lunard 1 de feverero de 2005 Lsta 2 1. Na Tabela 1 estão apresentados os parâmetros de 6 tens, na escala (0,1). a b c 1

Leia mais

Gráficos de controle multivariados: um estudo de caso no setor metalomecânico

Gráficos de controle multivariados: um estudo de caso no setor metalomecânico P&D em Engenhara de Produção, Itajubá, v. 10, n. 2, p. 143-156, 2012 Gráfcos de controle multvarados: um estudo de caso no setor metalomecânco Multvarate control charts: case study n the metallurgy mechancal

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA 658 Gaudo & Zandonade Qum. Nova Qum. Nova, Vol. 4, No. 5, 658-671, 001. Dvulgação PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA Anderson Coser Gaudo

Leia mais

Fast Multiresolution Image Querying

Fast Multiresolution Image Querying Fast Multresoluton Image Queryng Baseado no artgo proposto por: Charles E. Jacobs Adan Fnkelsten Davd H. Salesn Propõe um método para busca em um banco de dados de magem utlzando uma magem de consulta

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que DESEMPREGO DE JOVENS NO BRASIL I. Introdução O desemprego é vsto por mutos como um grave problema socal que vem afetando tanto economas desenvolvdas como em desenvolvmento. Podemos dzer que os índces de

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO ESPECIALIZAÇÃO EM MERCADO DE CAPITAIS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO ESPECIALIZAÇÃO EM MERCADO DE CAPITAIS UNIVESIDADE FEDEAL DO IO GANDE DO SUL ESCOLA DE ADMINISTAÇÃO OGAMA DE ÓS-GADUAÇÃO EM ADMINISTAÇÃO ESECIALIZAÇÃO EM MECADO DE CAITAIS MODENA TEOIA DE CATEIAS: DESENVOLVIMENTO E ANÁLISE DE UM MODELO DE SELEÇÃO

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO Ana Carolna Campana Nascmento 1, José Ivo Rbero Júnor 1, Mosés Nascmento 1 1. Professor da Unversdade Federal de Vçosa, Avenda Peter Henr

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS PROCEDIMENTO DO SISTEMA DE GESTÃO DA QUALIDADE REVISÃO: 05 ABR/013 SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO REFERÊNCIAS 3 DEFINIÇÕES

Leia mais

JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO.

JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO. JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO. RECIFE-PE, 007 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE PESQUISA

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais