CálculoDiferencialem R n Limites

Tamanho: px
Começar a partir da página:

Download "CálculoDiferencialem R n Limites"

Transcrição

1 ROSÁRIO LAUREANO 1 CálculoDiferencialem R n Limites [Elaborado por Rosário Laureano] [2012/13] Esteficheirocontém: 1. Tópicosdeteoria-ites(p. 1) 2. Exercícios resolvidos(p. 5) 1 Tópicosdeteoria-ites DistânciaEuclidiana Considere em R n, com n 1, a distância Euclidiana definida por ou seja, d[(x 1,...,x n ),(a 1,...,a n )] R n= (x 1,...,x n ) (a 1,...,a n ), d[(x 1,...,x n ),(a 1,...,a n )] R n= (x 1 a 1 ) 2 + +(x n a n ) 2 R + 0. EmR(emquen=1)estadistânciapodetraduzir-sepelomódulodadiferença entre os pontos, d(x,a) R = (x a) 2 = x a. Bolaabertadecentroem(a 1,...,a n )eraioε Seja(a 1,...,a n )um ponto de R n e ε um número real positivo. A bola aberta de centro em (a 1,...,a n )eraioε,quesedenotaporb ε (a 1,...,a n )oub((a 1,...,a n ),ε), é o conjunto de todos os pontos (x 1,...,x n ) R n cuja distânciaao ponto (a 1,...,a n )éinferioraε,ouseja, B ε (a 1,...,a n )={(x 1,...,x n ) R n d[(x 1,...,x n ),(a 1,...,a n )] R n<ε}. Quandon=1abolaabertaéosegmentodereta]a ε,a+ε[,enquanto paran=2éointeriordocírculodecentro(a 1,a 2 )eraioε,poisobtemos (x a 1 ) 2 +(y a 2 ) 2 <ε 2.

2 ROSÁRIO LAUREANO 2 Quandon=3abolaabertaéointeriordaesferadecentro(a 1,a 2,a 3 )eraio ε, pois (x a 1 ) 2 +(y a 2 ) 2 +(z a 3 ) 2 <ε 2. Pontodeacumulaçãodeumconjunto Seja D R n. Um ponto (a 1,...,a n ) R n éumponto de acumulaçãodedseemqualquerbola abertab ε (a 1,...,a n )decentro(a 1,...,a n )existepelomenosumpontode Ddistintode(a 1,...,a n ),ouseja, ε>0, (x 1,...,x n ) D\{(a 1,...,a n )} tal que (x 1,...,x n ) B ε (a 1,...,a n ). OconjuntodetodosospontosdeacumulaçãodoconjuntoDdesigna-sepor derivadodededenota-sepord. Umpontoquenãoédeacumulaçãode D diz-se um ponto isolado. Assim, um ponto (a 1,...,a n ) R n é de acumulação do conjunto D se em qualquer sua"vizinhança" existe pelo menos um outro ponto(diferente dele) que pertence a D. Na verdade, tal implica que em qualquer vizinhança de(a 1,...,a n )existeminfinitospontosded,ouseja, ε>0, B ε (a 1,...,a n ) Déumconjuntoinfinito. Limitedeumafunçãonumponto Sejam f : D f R 2 R uma funçãorealdeduasvariáveisreaise(a,b)umpontodeacumulaçãoded f. Diz-sequel Réoite def noponto(a,b)seesóseparatodoδ>0 existeumε=ε(δ)>0(dependentedoδtomado)talqued(f(x,y),l)<δ sempre que d((x,y),(a,b)) < ε e (x,y) D f \{(a,b)}, ou seja, δ > 0, ε=ε(δ)>0talque d((x,y),(a,b)) R 2<ε (x,y) D f \{(a,b)} = d(f(x,y),l) R <δ. ConsiderandoadistânciaEuclidiana,temosl= (x,y) (a,b) f(x,y)see sóse δ>0, ε=ε(δ)>0talque (x a) 2 +(y b) 2 <ε (x,y) D f \{(a,b)} = f(x,y) l <δ. (1) Aaproximaçãoaumponto(a,b)doplanopodeserfeitaatravésdequalquercurvanoplanoquepassenesseponto(a,b). Estascurvassãoemnúmero

3 ROSÁRIO LAUREANO 3 ínfinito, contrariamente ao que acontece na reta real (apenas aproximação pela esquerda e/ou pela direita). Como tal, quando ocorrem indeterminações no cálculo de um ite (x,y) (a,b) f(x,y), há que considerar os ites relativos que correspondem a restrições da função f a certas curvas contidas no domínio D f. Entre estes, é comum considerar os ites sucessivos(ou iterados), os ites direcionais e os ites segundo parábolas. Limites sucessivos(ou iterados) Os ites sucessivos(ou iterados) são [ ] [ ] f(x,y) e f(x,y), x a y b y b x a cada um constituído por uma sequência de dois ites numa só variável. Limites direcionais(ou segundo retas) Correspondem à aproximação atravésderetasnão-verticaisdedeclivemquepassemnoponto(a,b). Éentãodadopeloitenumasóvariável(x): (x,y) (a,b) y=m(x a)+b f(x,y)= x a f(x,m(x a)+b). Limites segundo parábolas Correspondem à aproximação através de parábolasdeeixoverticalquetêmoponto(a,b)comovértice. Éentãodado pelo ite numa só variável(x):, (x,y) (a,b) y=k(x a) 2 +b f(x,y)= x a f ( x,k(x a) 2 +b ). Também podem corresponder à aproximação através de parábolas de eixo horizontalquetêmoponto(a,b)comovértice. Éentãodadopeloitenuma só variável(y): (x,y) (a,b) x=k(y a) 2 +b f(x,y)= x a f ( k(y a) 2 +b,y ),

4 ROSÁRIO LAUREANO 4 Seacurvaéqualqueroutraquepassenoponto(a,b)temosoutroite relativo. Após o cálculo de ites relativos, duas situações podem surgir: S1. Existem pelo menos dois deles com valores diferentes, permitindo concluirainexistênciadeitenoponto(a,b),ou S2. Todos os ites são iguais, indicando o possível"candidato" a ite l, o valor comum desses ites. Naverdade,adefiniçãodeite(1)exigequeexistametenhamomesmo valor todos os ites da função f restringida a qualquer uma dessas curvas possíveis (pelo que em S1 se conclui imediatamente que não há ite de f no ponto (a,b)). Por outro lado, como é impossível calcular todos esses itesrelativos(poissãoemnúmeroinfinito),sóousodadefiniçãodeite (1) permite concluir a sua existência, sendo usado o"candidato" l fornecido pelovalorcomum(peloqueems2éaindanecessárioousodadefiniçãode ite(1)). No uso da definição de ite(1)) são fundamentais as seguintes desigualdades com módulos x = x 2 y = y 2 x±y x + y 2 x 3 y 3 ( ) 3/2, e as seguintes igualdades com módulos x y = x y x y = x y,paray 0. Operaçõescomites Sejamf :D f R 2 R,g:D g R 2 Re (a,b) R 2 umpontodeacumulaçãodosdomíniosd f ed g. Seexistiremos ites (x,y) (a,b) f(x,y)e (x,y) (a,b) g(x,y)então: existeoitedasomaedadiferençadefunções (f±g)(x,y)= f(x,y)± g(x,y); (x,y) (a,b) (x,y) (a,b) (x,y) (a,b)

5 ROSÁRIO LAUREANO 5 existeoitedoprodutodefunções (f g)(x,y)= f(x,y) g(x,y); (x,y) (a,b) (x,y) (a,b) (x,y) (a,b) existeoitedoprodutodeumafunçãoporumaconstantek R (k f)(x,y)=k f(x,y); (x,y) (a,b) (x,y) (a,b) existeoitedoquocientedefunções f (x,y) (a,b) g (x,y)= (x,y) (a,b)f(x,y) (x,y) (a,b) g(x,y) sempreque (x,y) (a,b) g(x,y) 0eg(x,y) 0paratodoo(x,y) D g. NOTA:Nocasodeumafunçãovetorial,éfeitooestudodoitedecada uma das suas funções componentes no ponto em estudo. 2 Exercícios resolvidos Exercício Estudeaexistênciadeitenoponto(0,0)dafunçãofdefinida por xy f(x,y)= ( ). RESOLUÇÃO:Notemosque(0,0) / D f =R 2 \{(0,0)}mas(0,0)éponto de acumulação do domínio da função D f. Como tal, podemos averiguar a existênciadeitenesteponto. Asubstituiçãodexpor0eypor0conduz àindeterminação 0 0. Procedemosentãoaoestudodositesrelativos: Limites iterados ou sucessivos: ( xy x 0 y 0 ( ) ) = x 0 0 x 2 x 2 = x 0 0=0

6 ROSÁRIO LAUREANO 6 (portanto,casoexistaoitepedido,eleteráovalor0)etambéménuloo ite xy y 0 x 0( ) 0 = y 0 y 2 y =0=0. 2 y 0 Aproximação ao ponto (0, 0) por retas(ites direcionais): x 0,y=mx xy ( ) = x 0 = x 0 = xmx (x 2 +m 2 x 2 ) x 2 +m 2 x 2 m (1+m 2 ) x 2 +m 2 x 2 m (1+m 2 ) 0 + = para m 0. Obtemos + 0 se m > 0 e 0 se m < 0, logo concluímos que não existe o ite em estudo. Notemosqueousodadefiniçãocombasenovalor0,obtidoapartirdo primeiro ite iterado, mostra evidentemente que esse valor 0 não corresponde ao valor do ite pedido. De facto, temos xy f(x,y) 0 = ( ) 0 = xy ( ) = = x y ( ) 1 x2 +y 2 x2 +y 2 ( ) eaaplicaçãodahipótese <εapenaspermiteconcluirque 1 x2 +y 2 > 1 ε. Como tal, a sequência de igualdades e majorações(desigualdades < ou ) é "quebrada" não sendo possível obter f(x,y) 0 <δ.

7 ROSÁRIO LAUREANO 7 conforme o necessário para existir o ite. Exercício Estude a função f(x,y)= sin(x2 +y 2 ) quantoàexistênciadeitenospontos(a,b)ondetalsejapossível. RESOLUÇÃO: Odomínio de f é D f = R 2 \{(0,0)}. Afunção f tem iteemqualquerponto(a,b) (0,0)dadopelonúmeroreal sin( ) f(x,y)= = sin(a2 +b 2 ) R. (x,y) (a,b) (x,y) (a,b) a 2 +b 2 Éaindapossívelestudaraexistênciadeitenoponto(a,b)=(0,0)visto queesteéumpontodeacumulaçãododomíniodafunção,d f =R 2 \{(0,0)} (emboranãopertençaaessedomínio). Afunçãof temiteiguala1no ponto(0,0), sin( ) f(x,y)= =1 (x,y) (0,0) (x,y) (0,0) atendendoaoitedereferência A 0 (sina)/a=1. Concluímosassim queafunçãof temiteemtodosospontosdoplanor 2. Exercício Estude a existência de ite no ponto (0,0) da função f definida por x 4 y 3 se(x,y) (0,0) f(x,y)= x 4 +y 8. 0 se(x,y)=(0,0) RESOLUÇÃO:Notemosque (0,0) é pontodeacumulação ded f. pois D f =R 2. Asubstituiçãodexpor0ey por0conduzàindeterminação 0 0. Procedemos então ao estudo dos ites relativos. Limites iterados ou sucessivos: x 4 y 3 0 = x 0 y 0x 4 +y 8 x 0 x =0=0 4 x 0

8 ROSÁRIO LAUREANO 8 (casoexistaoitepedido,eleteráovalor0)etambéménulooite x 4 y 3 0 = y 0 x 0x 4 +y 8 y 0 y =0=0. 8 x 0 Aproximação ao ponto (0, 0) por retas(ites direcionais): x 4 y 3 x 4 m 3 x 3 0 x 7 m 3 = = x 0,y=mxx 4 +y 8 x 0 x 4 +m 8 x 8 0 x 0 x 4 (1+m 8 x 4 ) x 3 m 3 = x 0 1+m 8 x = 0 m3 4 1+m 8 0 = 0 1 =0, paratodoom. Aproximaçãoaoponto(0,0)porparàbolasverticais y=kx 2,comk 0: x 4 y 3 x 4 k 3 x 6 0 x 10 k 3 = = x 0,y=kx 2 x 4 +y 8 x 0 x 4 +k 8 x 16 0 x 0 x 4 (1+k 8 x 12 ) x 6 k 3 0 k3 = = x 0 1+k 8 x12 1+k 8 0 = 0 1 =0. Dado que todos os ites relativos estudados conduzem ao mesmo valor 0,háqueanalisarpeladefiniçãose0é,defacto,ovalordoiteemestudo. Temos f(x,y) 0 = x 4 y 3 x 4 +y 8 0 = x4 y 3 y 3 x 4 +y 8 = x4 x4 y3 x 4 +y 8 x 4 +y 8 Portanto, é garantido que x4 y3 = ( ) y 3 3<ε = y 3 x2 +y x f(x,y) 0 <δ semprequeε 3 δ,ouseja,semprequeε 3 δ. Arelaçãoε 3 δ mostra queadiminuiçãodoδtomadoimplicaadiminuiçãodovalorε=ε(δ)= 3 δ respetivo. Assim, concluímos que f(x,y)=0. (x,y) (0,0)

9 ROSÁRIO LAUREANO 9 Exercício Estudeaexistênciadeitenospontosdoeixodosxxcom abcissa positiva da função f definida por x 2 y sexy<0 f(x,y)=. ln(xy+1) sexy 0 RESOLUÇÃO:Notemosqueospontosdoeixodosxxcomabcissapositivasãopontosdeacumulaçãododomíniodafunção,poisD f =R 2. Consideremos pontos (x,y) (a,0), com a > 0. Estes pontos (x,y) estão no 1 o ouno4 o quadrantes. Então,dadaaformacomoafunçãof estádefinida (podemosfazerumesquemacomaexpressãoválidaemcadaumdosquadrantes pois ajuda a clarificar o exercício), é necessário calcular os ites [1 o Q] (x,y) (a,0) y>0 f(x,y)= (x,y) (a,0) ln(xy+1)=ln(a 0+1)=0, e [4 o Q] (x,y) (a,0) y<0 x 2 y f(x,y)= (x,y) (a,0) x 2 +y = a2 0 2 a 2 +0 = 0 2 a =0. 2 Como são iguais(note que não estamos a calcular ites relativos), concluímos que o ite de f nos pontos (a,0), com a > 0, existe e tem o valor 0. Exercício Estude a existência de ite no ponto (0,0) da função f definida por 2x 3 y 3 se(x,y) (0,0) f(x,y)=. α se(x,y)=(0,0) RESOLUÇÃO:Notemosque (0,0) é pontodeacumulação ded f. pois afunçãof estádefinidaemtodooplanor 2, D f =R 2. Asubstituiçãode

10 ROSÁRIO LAUREANO 10 xpor0eypor0conduzàindeterminação 0 0. Procedemosentãoaoestudo dos ites relativos: Limites iterados ou sucessivos: 2x 3 y 3 2x 3 = x 0 y 0 x 0 x =2x=0 2 x 0 (casoexistaoitepedido,eleteráovalor0)etambéménulooite 2x 3 y 3 y 3 = =( y)=0. y 0 x 0 y 0 y 2 x 0 Aproximação ao ponto (0, 0) por retas(ites direcionais): 2x 3 y 3 2x 3 m 3 x 3 0 x 3 (2 m 3 ) = = x 0,y=mx x 0 x 2 +m 2 x 2 0 x 0 x 2 (1+m 2 ) x(2 m 3 ) = = 0 (2 m3 ) =0, x 0 1+m 2 1+m 2 paratodoom. Aproximaçãoaoponto(0,0)porparábolasverticais y=kx 2,comk 0: 2x 3 y 3 2x 3 k 3 x 6 0 x 3 (2 k 3 x 3 ) = = x 0,y=kx 2 x 0 x 2 +k 2 x 4 0 x 0 x 2 (1+k 2 x 2 ) x(2 k 3 x 3 ) = = 0 (2 0) =0. x 0 1+k 2 x Dado que todos os ites relativos estudados conduzem ao mesmo valor 0,háqueanalisarpeladefiniçãose0corresponde,defacto,aovalordoite em estudo. Temos f(x,y) 0 = 2x 3 y 3 x 2 +y 0 2 = 2x3 y 3 2x3 + y 3 = 2x3 + 1 y 3 = 2x3 + y 3 = 2 x 3 + y 3 ( ) 3+ ( ) 3 2 x2 +y 2 x2 +y 2 = ( ) 3 3 x2 +y 2 = 3(x2 +y 2 ) =3 <3ε.

11 ROSÁRIO LAUREANO 11 Portanto, é garantido que f(x,y) 0 <δ sempreque3ε δ,ouseja,semprequeε δ/3. Arelaçãoε δ/3mostra queadiminuiçãodoδtomadoimplicaadiminuiçãodovalorε=ε(δ)=δ/3 respetivo. Assim, concluímos que f(x,y)=0. (x,y) (0,0) Exercício Estude a existência de ite no ponto (0,0) da função f definida por x 2 +y 2 se <1e(x,y) (0,0) f(x,y)= ln( ). 0 se(x,y)=(0,0) RESOLUÇÃO: Notemos que (0,0) é ponto de acumulação de D f. Na verdade,odomíniodafunçãoé D f = { (x,y) R 2 <1 }, ouseja,ospontosdointeriordocírculodecentro(0,0)eraio1. Asubstituiçãodexpor0eypor0conduza f(x,y)= (x,y) (0,0) x 0,y 0ln( ) = 0 =0, peloque0éovalordoitedafunçãof noponto(0,0).

CálculoDiferencialem R n Continuidade

CálculoDiferencialem R n Continuidade ROSÁRIO LAUREANO 1 CálculoDiferencialem R n Continuidade [Elaborado por Rosário Laureano] [2012/13] Este ficheiro contém: 1 Tópicos de teoria- continuidade(p 1) 2 Exercícios resolvidos(p 3) 3 Exercício

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis. www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS GRUPO Educação adistância Caderno de Estudos EQUAÇÕES DIFERENCIAIS Prof. Ruy Piehowiak Editora UNIASSELVI 2012 NEAD Copyright Editora UNIASSELVI 2012 Elaboração: Prof. Ruy Piehowiak Revisão, Diagramação

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes

Leia mais

Cálc. Diferencialem R n Derivadadirecional

Cálc. Diferencialem R n Derivadadirecional ROSÁRIO LAUREANO 1 Cálc. Diferencialem R n Derivadadirecional [Elaborado por Rosário Laureano] [01/13] Este ficheiro contém: 1. Tópicos de teoria- derivada direcional(p. 1). Exercícios resolvidos(p. 6)

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Prof. Rossini Bezerra Faculdade Boa Viagem

Prof. Rossini Bezerra Faculdade Boa Viagem Sistemas de Coordenadas Polares Prof. Rossini Bezerra Faculdade Boa Viagem Coordenadas Polares Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Unidade 3 Função Logarítmica Definição de aritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Definição de Logaritmo de um número Suponha que certo medicamento,

Leia mais

ponto P terá as projecções P 1 e P 2. E o eixo X passa para X. Vamos ver o que acontece no plano do

ponto P terá as projecções P 1 e P 2. E o eixo X passa para X. Vamos ver o que acontece no plano do Mudança de planos 1- Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos de projecção. Caso contrário as projecções

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

ANÁLISE NUMÉRICA DEC - 1996/97

ANÁLISE NUMÉRICA DEC - 1996/97 ANÁLISE NUMÉRICA DEC - 996/97 Teoria de Erros A Teoria de Erros fornece técnicas para quantificar erros nos dados e nos resultados de cálculos com números aproximados. Nos cálculos aproximados deve-se

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Introdução aos Modelos Biomatemáticos - aulas

Introdução aos Modelos Biomatemáticos - aulas Introdução aos Modelos Biomatemáticos - aulas Teórico-Práticas Mestrado em BBC, 2008/2009 1 Capítulo 1 Nos exercícios 1) e 2) suponha que o crescimento é exponencial. 1. Entre 1700 e 1800 a população humana

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013)

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013) Universidade da Beira Interior - Departamento de Matemática MATEMÁTICA I ECONOMIA (5598) Ficha de eercícios (0/03). Determine o conjunto dos pontos interiores, eteriores e fronteiros dos seguintes conjuntos:

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

Exercícios Resolvidos Integrais de Linha. Teorema de Green

Exercícios Resolvidos Integrais de Linha. Teorema de Green Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Exercícios Resolvidos Integrais de Linha. Teorema de Green Exercício 1 Um aro circular de raio 1 rola sem deslizar ao longo

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru

Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Coordenadas Polares Mauri C. Nascimento Dep. De Matemática FC Unesp/Bauru Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos

13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos 3 a Aula 2004.0.3 AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 3. Singularidades isoladas Para na prática podermos aplicar o teorema dos resíduos com eficiência, precisamos de conhecer

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra Aparecida de Amo Lista de Exercícios n o 2 Exercícios sobre Modelos de Máquinas de Turing

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas.

UniposRio - FÍSICA. Leia atentamente as oito (8) questões e responda nas folhas de respostas fornecidas. UniposRio - FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 9 de novembro de 00 Nome (legível): Assinatura: Leia atentamente as oito (8) questões e responda nas folhas de

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1

Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 Lista de Exercícios sobre trabalho, teorema de Green, parametrizações de superfícies, integral de superfícies : MAT 1153-2006.1 1. Fazer exercícios 1, 4, 5, 7, 8, 9 da seção 8.4.4 pgs 186, 187 do livro

Leia mais

EXERCÍCIOS SOBRE: III A ORGANIZAÇÃO E O FUNCIONAMENTO DOS MERCADOS. Grupo I - Teoria do Consumidor ou da Procura

EXERCÍCIOS SOBRE: III A ORGANIZAÇÃO E O FUNCIONAMENTO DOS MERCADOS. Grupo I - Teoria do Consumidor ou da Procura EXERCÍCIOS SOBRE: III A ORGANIZAÇÃO E O FUNCIONAMENTO DOS MERCADOS Grupo I - Teoria do Consumidor ou da Procura Questão 1 A lei da utilidade marginal decrescente diz-nos que, quanto maior for a quantidade

Leia mais

Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F.

Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F. Problema Conversão Matricial Maria Cristina F. de Oliveira Traçar primitivas geométricas (segmentos de reta, polígonos, circunferências, elipses, curvas,...) no dispositivo matricial rastering = conversão

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016

Análise Complexa e Equações Diferenciais 1 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 205/206 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ). Considere a função u : R 2 R dada por onde a e b são duas constantes reais. 09 de Abril

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

Métodos Numéricos 2010-11. Exame 11/07/11

Métodos Numéricos 2010-11. Exame 11/07/11 ESCOLA SUPERIOR DE BIOTECNOLOGIA Métodos Numéricos 2010-11 Exame 11/07/11 Parte Teórica Duração: 30 minutos Atenção: Teste sem consulta. Não é permitido o uso da máquina de calcular. Não esquecer de indicar

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar? Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em

Leia mais

FLAVIA MESCKO FERNANDES VELOCIDADE DE CONVERGÊNCIA DE MÉTODOS DE OTIMIZAÇÃO IRRESTRITA

FLAVIA MESCKO FERNANDES VELOCIDADE DE CONVERGÊNCIA DE MÉTODOS DE OTIMIZAÇÃO IRRESTRITA FLAVIA MESCKO FERNANDES VELOCIDADE DE CONVERGÊNCIA DE MÉTODOS DE OTIMIZAÇÃO IRRESTRITA CURITIBA DEZEMBRO, 2010 FLAVIA MESCKO FERNANDES VELOCIDADE DE CONVERGÊNCIA DE MÉTODOS DE OTIMIZAÇÃO IRRESTRITA Monografia

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

(Testes intermédios e exames 2005/2006)

(Testes intermédios e exames 2005/2006) 158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Eemplo 1: Determinação

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR

CAPÍTULO 6 TRANSFORMAÇÃO LINEAR INODUÇÃO AO ESUDO DA ÁLGEBA LINEA CAPÍULO 6 ANSFOMAÇÃO LINEA Introdução Muitos problemas de Matemática Aplicada envolvem o estudo de transformações, ou seja, a maneira como certos dados de entrada são

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Operações com números racionais decimais

Operações com números racionais decimais Divisão 1º: Divisão exata Operações com números racionais decimais Considere a seguinte divisão: 1,4 : 0,05 Transformando em frações decimais, temos: Método prático 1º) Igualamos o números de casas decimais,

Leia mais

CURSO DE CÁLCULO INTEGRAIS

CURSO DE CÁLCULO INTEGRAIS CURSO DE CÁLCULO MÓDULO 4 INTEGRAIS SUMÁRIO Unidade 1- Integrais 1.1- Introdução 1.2- Integral Indefinida 1.3- Propriedades da Integral Indefinida 1.4- Algumas Integrais Imediatas 1.5- Exercícios para

Leia mais

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1 Prof. William Mascia Resende Engenharia Elétrica ITAJUBÁ 2013 CENTRO UNIVERSITÁRIO DE ITAJUBÁ Curso: Engenharia

Leia mais

(Versão 1/09) Mauro Patrão. UnB - Departamento de Matemática

(Versão 1/09) Mauro Patrão. UnB - Departamento de Matemática Cálculo 1 (Versão 1/09) Mauro Patrão UnB - Departamento de Matemática 2 É permitido copiar e distriuir cópias verbatim (completas e idênticas) deste livro, mas qualquer modificação do mesmo é proibida.

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime Diurno/Nocturno Disciplina de COMPLEMENTOS DE MATEMÁTICA Ano lectivo de 7/8 - º Semestre Etremos

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II z t t C C α y β y Colaboradores para elaboração da apostila: Elisandra Bär de Figueiredo, Enori Carelli, Ivanete Zuchi Siple, Marnei Luis Mandler, Rogério

Leia mais

Onde usar os conhecimentos os sobre função?

Onde usar os conhecimentos os sobre função? II FUNÇÃO E LOGARITMO Por que aprender função?... As funções exponenciais e logarítmicas estão presentes no estudo de fenômenos que envolvem taxas de crescimento e de decrescimento. Onde usar os conhecimentos

Leia mais

Comprimentos de Curvas e Coordenadas Polares Aula 38

Comprimentos de Curvas e Coordenadas Polares Aula 38 Comprimentos de Curvas e Coordenadas Polares Aula 38 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

TOPOLOGIA DA IMAGEM DIGITAL

TOPOLOGIA DA IMAGEM DIGITAL Faculdade de Computação Universidade Federal de Uberlândia TOPOLOGIA DA IMAGEM DIGITAL Sumário Vizinhança de um pixel O que é conectividade? Algoritmo para rotular componentes conectadas Relação de adjacência

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com;

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com; Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 26 GRUPOS DE PERMUTAÇÕES E ALGUMAS DE PROPOSIÇÕES Thiago Mariano Viana 1, Marco Antônio Travasso 2 & Antônio Carlos

Leia mais

Introdução: momento fletor.

Introdução: momento fletor. Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Um curso introdutório Coleção BC&T - UFABC Textos Didáticos 1 Rodney Carlos Bassanezi Equações Diferenciais Ordinárias Um curso introdutório Coleção BC&T - UFABC Textos

Leia mais