Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano

Tamanho: px
Começar a partir da página:

Download "Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano"

Transcrição

1 Material Teórico - Módulo Elementos ásicos de Geometria Plana Parte 2 esigualdade Triangular Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto

2 1 desigualdade triangular Iniciamos esta seção com dois resultados que fornecem uma importante relação entre os comprimendos dos lados e as medidas dos ângulos de um triângulo. Proposição 1. Se é um triângulo tal que >, então > Ĉ. Prova. omo >, podemos considerar um ponto, tal que = (cf. Figura 1). Prova. Seja uma cidade qualquer desse país. fimamos inicialmente que, se em aterrissaram aviões partindo de outras duas cidades e, então, considerando o triângulo, devemos ter  > 60o. e fato, se  60o, então, uma vez que a soma dos ângulos de todo triângulo é 180, concluímos que pelo menos um dos outros dois ângulos internos do triângulo seria maior do que 60 o. esse modo, pela Proposição 2, uma das duas possibilidades a seguir ocorreria: (i) < (caso Ĉ > 60 Â); (ii) < (caso > 60 Â). Figura 1: ao maior lado opõe-se o maior ângulo. gora, observe que = >. Entretanto, uma qualquer das possibilidades acima contradiria o fato de ser a cidade mais próxima de e de, de sorte que deve ser  > 60. gora, suponha que chegassem seis aviões em, com origens nas cidades,,, E, F e G. (Veja a Figura 2.) E Mas, uma vez que o triângulo é isósceles, temos =. Por outro lado, como o ângulo é um ângulo externo do triângulo, temos > Ĉ = Ĉ. Portanto, obtemos: = > = > Ĉ = Ĉ. F Vale a recíproca da Proposição 1. Mais precisamente, temos o resultado a seguir. Proposição 2. Se é um triângulo tal que > Ĉ, então >. Prova. Uma vez que e são números reais, temos que ocorre uma, e somente uma, das seguintes opções: i. = ; ii. < ; iii. >. Se fosse =, o triângulo seria isósceles com base e, desse modo, teríamos = Ĉ, o que contraria a hipótese > Ĉ. Se fosse <, então, pela Proposição 1, deveria ocorrer < Ĉ, o que também contraria a hipótese > Ĉ. Portanto, a única possibilidade é termos >. Exemplo 3. Em um país, certo dia, um avião partiu de cada cidade com destino à cidade mais próxima. Se as distâncias entre as cidades são duas a duas distintas, prove que em nenhuma cidade aterrissaram mais de cinco aviões. Figura 2: os aviões que chegam em. Então, por um lado teríamos 360 o =  +Â+ÂE +EÂF +FÂG+GÂG, de sorteque pelo menos um desses seis ângulosseriamenor ou igual a 60 o. Poroutro, afirmaçãodemonstradano início da prova fornece uma contradição, uma vez que garante quecadaumdessesseisângulosdevesermaiorque60 o. seguir, colecionamos duas consequências importantes da Proposição 2. orolário 4. Se é um triângulo tal que  90o, então é o seu maior lado. Em particular, a hipotenusa é o maior lado de um triângulo retângulo. Prova. omoâ 90o e Â+ +Ĉ = 180o, temosqueâ 90 o > e  90o > Ĉ. Portanto, segue da Proposição 2 que > e >. orolário 5. Sejam e triângulos tais que = e =. Se  < Â, então <. G 1 matematica@obmep.org.br

3 Prova. Sejam α o semiplano determinado por e que contém o ponto, e o ponto de α tal que = e  = Â. (Veja a Figura 3.) c c b Figura 3: comparando o terceiro lado de dois triângulos. Então os triângulos e são congruentes (pelo caso LL). aí, obtemos =, e resta mostrar que >. Para o que falta, a Proposição 2 garante ser suficiente mostrarmos que >. Mas essa desigualdade segue de que > = >. (Observe que vale a igualdade = porque o triângulo é isósceles com base.) O teorema a seguir, conhecido como a desigualdade triangular, é o principal resultado a ser discutido nesse material. Teorema 6. Em todo triângulo, cada um dos lados tem comprimento menor do que a soma dos comprimentos dos outros dois lados. Prova. Seja um triângulo com = c, = b e = a. Podemos supor, sem perda de generalidade, que é o maior dos lados do triângulo, de modo que a b e a c. aí, segue imediatamente que b < a+c e c < a+b. Resta, pois, mostrar que a < b+c. Para tanto, marque o ponto sobre a semirreta oposta à semirreta tal que = = c (cf. Figura 4). Temos então que = + = b+c. Mas, note que o triângulo é isósceles, o que acarreta = e, portanto, = = < + =. gora, aplicando a Proposição 2 ao triângulo, temos que a < b+c. desigualdade triangular fornece uma condição necessária e suficiente para a colinearidade de três pontos no plano. Mais precisamente, três pontos, e no plano são colineares se, e somente se, uma das três opções abaixo é satisfeita: (a) = +; (b) = +; (c) = +. a Figura 4: a desigualdade triangular. Realmente, é claro que quando três pontos, e no plano são colineares, ocorre uma, e somente uma das três opções acima, dependendo de qual dos três pontos dados esteja situado entre os outros dois. Reciprocamente, se, e não são colineares, então eles formam um triângulo e, neste caso, a desigualdade triangular nos diz que < +, < + e < +. Exemplo 7. alcule a quantidade de retas determinadas por quatro pontos,, e no plano, sabendo que = 8, = 12, = 5, = 15, = 13 e = 14. Solução. omo + = 8+5 = 13 =, temos que, e são colineares, com situado entre e. ssim,, e representam a mesma reta. Por outro lado, como + = 8+12 = 20 > 15 =, concluímos que / (veja a Figura 5). Portanto, as retas determinadas por,, e são,, e, num total de 4 retas. 2 lgumas aplicações da desigualdade triangular Nesta seção, colecionamos, a título de ilustração, algumas aplicações interessantes da desigualdade triangular. Para outras mais, veja as referências listadas ao final deste material teórico. 2 matematica@obmep.org.br

4 E Figura 7: distância de um ponto interior aos vértices de um triângulo (bis). Figura 5: retas determinadas por quatro pontos, três dos quais colineares. e + < +. Exemplo 8. Seja um ponto interior ao triângulo, conforme mostrado na Figura 6. Prove que: (a) + < +. (b) + + < + +. Figura 6: distância de um ponto interior aos vértices de um triângulo. Prova. Para provar a parte (a), iniciamos com o prolongamento do segmento até que ele intersecte o lado no ponto E (cf. Figura 7). plicando a desigualdade triangular aos triângulos E e E, obtemos respectivamente Somando membro a membro essas duas últimas desigualdades com aquela do item (a), obtemos ou seja, 2(+ +) < 2( + +), + + < + +. Para nossa próxima aplicação, precisamos definir alguns termos úteis. ado um triângulo, definimos a mediana relativa ao vértice (ou ao lado ) como o segmento de reta M 1, em que M 1 é o ponto médio do segmento. Medianas relativas aos vértices e podem ser definidas, de maneira análoga, como sendo os segmentos M 2 e M 3, em que M 2 3 M 3 são, respectivamente, os pontos médios dos lados e. Um resultado muito conhecido - mas que não será demonstrado aqui por fugir dos objetivos dessas notas 1 - diz que as três medianas de um triângulo se intersectam em um único ponto, denominado o baricentro do triângulo (veja a Figura 8). < E +E e E < +E. ombinando as duas desigualdades acima e utilizando a desigualdade triangular, obtemos: M 2 G M 1 + < +(E +E) = ( +E)+E = E +E < ( +E)+E = +(E +E) = +. Parao item (b), observe que há, ainda, duas outras desigualdades análogas à desigualdade que foi provada no item (a): + < + M 3 Figura 8: as medianas e o baricentro de um triângulo. 1 O leitor interessado pode encontrar demonstrações desse fato nas referências colecionadas no final deste material teórico. 3 matematica@obmep.org.br

5 Exemplo 9. Mostre que, em todo triângulo, a soma dos comprimentos das medianas é maior que seu semiperímetro. Prova. plicando a desigualdade triangular aos triângulos GM 1, GM 3 e GM 2 (veja a Figura 8), obtemos respectivamente: e M 1 < G+GM 1, M 3 < G+GM 3 M 2 < G+GM 2. gora, somando membro a membro as três desigualdades acima, obtemos: 1 2 ( + +) = M 1 +M 3 +M 2 < G+GM 1 +G +GM 3 +G+GM 2 = (G+GM 3 )+(G+GM 2 ) +(G+GM 1 ) = M 3 +M 2 +M 1. icas para o Professor Sugerimos que seja utilizada uma sessão de 50min para discutir cada uma das seções que compõem esse material. NaSeção1, procurefazerouso dedesenhosparaexplicara desigualdade triangular. inda fazendo o uso de desenhos, ressalte que, no caso em que o comprimento de um dos lados de um triângulo é igual à soma dos comprimentos dos outros dois lados, os três vértices passam a ser colineares e, assim, determinam um triângulo degenerado. Já na Seção 2, explique os resultados apresentados com todos os detalhes, sempre explicitando onde está sendo utilizada a desigualdade triangular. s referências colecionadas a seguir contêm muito mais sobre a desigualdade triangular. Sugestões de Leitura omplementar 1.. aminha. Tópicos de Matemática Elementar, Volume 2: Geometria Euclidiana Plana. Rio de Janeiro, SM, aminha. Geometria. Rio de Janeiro, SM, O. olce e J. N. Pompeo. Os Fundamentos da Matemática Elementar, Volume 9: Geometria Plana. São Paulo, tual Editora, matematica@obmep.org.br

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 2. A Desigualdade Triangular. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana Parte 2 esigualdade Triangular Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto Portal da OMEP 1 desigualdade

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. META: Definir e calcular área de figuras geométricas. AULA 8 OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. PRÉ-REQUISITOS

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

ELIPSES INSCRITAS NUM TRIÂNGULO

ELIPSES INSCRITAS NUM TRIÂNGULO ELIPSES INSCRITAS NUM TRIÂNGULO SERGIO ALVES IME-USP Freqüentemente apresentada como um exemplo notável de sistema dedutivo, a Geometria tem, em geral, seus aspectos indutivos relegados a um segundo plano.

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

Avaliação 1 - MA12-2015.1 - Gabarito

Avaliação 1 - MA12-2015.1 - Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA1-015.1 - Gabarito Questão 01 [,00 pts ] Uma escola pretende formar uma comissão de 6 pessoas para organizar uma festa junina. Sabe-se

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

AV1 - MA 13-2011 UMA SOLUÇÃO. b x

AV1 - MA 13-2011 UMA SOLUÇÃO. b x Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

Geometria Analítica Plana.

Geometria Analítica Plana. Geometria Analítica Plana. Resumo teórico e eercícios. 3º Colegial / Curso Etensivo. Autor - Lucas Octavio de Souza (Jeca) Estudo de Geometria Analítica Plana. Considerações gerais. Este estudo de Geometria

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

A B C F G H I. Apresente todas as soluções possíveis. Solução

A B C F G H I. Apresente todas as soluções possíveis. Solução 19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA

COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9

Leia mais

3. Estruturas de seleção

3. Estruturas de seleção 3. Estruturas de seleção 3.1 Introdução O último exemplo do capítulo anterior apresentava um programa para calcular a área de um triângulo, dados os comprimentos dos seus lados. Foi visto que o comando

Leia mais

Aplicações de Combinatória e Geometria na Teoria dos Números

Aplicações de Combinatória e Geometria na Teoria dos Números Aplicações de Combinatória e Geometria na Teoria dos Números Nesse artigo vamos discutir algumas abordagens diferentes na Teoria dos Números, no sentido de envolverem também outras grandes áreas, como

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

ESPAÇOS MUNIDOS DE PRODUTO INTERNO

ESPAÇOS MUNIDOS DE PRODUTO INTERNO ESPAÇOS MUNIDOS DE PRODUTO INTERNO Angelo Fernando Fiori 1 Bruna Larissa Cecco 2 Grazielli Vassoler 3 Resumo: O presente trabalho apresenta um estudo sobre os espaços vetoriais munidos de produto interno.

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Calculando distâncias sem medir

Calculando distâncias sem medir alculando distâncias sem medir UUL L No campo ocorrem freqüentemente problemas com medidas que não podemos resolver diretamente com ajuda da trena. Por exemplo: em uma fazenda, como podemos calcular a

Leia mais

Aula 4 Ângulos em uma Circunferência

Aula 4 Ângulos em uma Circunferência MODULO 1 - AULA 4 Aula 4 Ângulos em uma Circunferência Circunferência Definição: Circunferência é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva.

Leia mais

A trigonometria do triângulo retângulo

A trigonometria do triângulo retângulo A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

Introdução às equações diferenciais

Introdução às equações diferenciais Introdução às equações diferenciais Professor Leonardo Crochik Notas de aula 1 O que é 1. é uma equação:... =... 2. a incógnita não é um número x R, mas uma função x(t) : R R 3. na equação estão presentes,

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

Unidade II - Sistemas de Equações Lineares

Unidade II - Sistemas de Equações Lineares Unidade II - Sistemas de Equações Lineares 1- Situando a Temática Discutiremos agora um dos mais importantes temas da matemática: Sistemas de Equações Lineares Trata-se de um tema que tem aplicações dentro

Leia mais

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS http://apostilas.netsaber.com.br/ver_apostila.php?c=622 ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA 97003133 - BM3 01-011 POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

INTRODUÇÃO À ENGENHARIA

INTRODUÇÃO À ENGENHARIA INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. Questão 84 A taxa de analfabetismo representa a porcentagem da população com idade de anos ou mais que é

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130

Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130 Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 2.

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações - Parte 2. Material Teórico - Módulo lementos ásicos de Geometria Plana - Parte 2 ongruência de Triângulos e plicações - Parte 2 Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto Portal

Leia mais

Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro

Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro Programa Olímpico de Treinamento urso de Geometria - Nível 2 Prof. Rodrigo Pinheiro ula 1 Introdução Nesta aula, aprenderemos conceitos iniciais de geometria e alguns teoremas básicos que utilizaremos

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

Realizando cálculos para o aparelho divisor (I)

Realizando cálculos para o aparelho divisor (I) Realizando cálculos para o aparelho divisor (I) A UU L AL A Você já estudou como fazer os cálculos para encontrar as principais medidas para a confecção de uma engrenagem cilíndrica de dentes retos. Vamos

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

Discussão de Sistemas Teorema de Rouché Capelli

Discussão de Sistemas Teorema de Rouché Capelli Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

A Torre de Hanói e o Princípio da Indução Matemática

A Torre de Hanói e o Princípio da Indução Matemática A Torre de Hanói e o Princípio da Indução Matemática I. O jogo A Torre de Hanói consiste de uma base com três pinos e um certo número n de discos de diâmetros diferentes, colocados um sobre o outro em

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011 PROVAS DE MATEMÁTICA DO VESTIBULAR-0 DA MACKENZIE Profa. Maria Antônia Gouveia. //0 QUESTÃO N o 9 Turma N o de alunos Média das notas obtidas A 0,0 B 0,0 C 0,0 D 0,0 A tabela acima refere-se a uma prova

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa 1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 07 ATIVIDADE 01 Na aula anterior, vimos como rastrear pontos. Abra o arquivo

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

Abordagem de geometria no ensino médio partindo de poliedros

Abordagem de geometria no ensino médio partindo de poliedros Abordagem de geometria no ensino médio partindo de poliedros José Luiz Magalhães de Freitas INMA/UFMS e-mail: joseluizufms2@gmail.com Marilena Bittar INMA/UFMS e-mail: marilenabittar@gmail.com O objetivo

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Vou de Taxi. Série Matemática na Escola

Vou de Taxi. Série Matemática na Escola Vou de Taxi Série Matemática na Escola Objetivos 1 Utilizar coordenadas cartesianas no plano introduzindo uma nova noção de distância onde a função módulo aparece de forma natural 2 Apresentar a Geometria

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma

Leia mais

Desenhando perspectiva isométrica

Desenhando perspectiva isométrica Desenhando perspectiva isométrica A UU L AL A Quando olhamos para um objeto, temos a sensação de profundidade e relevo. As partes que estão mais próximas de nós parecem maiores e as partes mais distantes

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio

Leia mais

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Unidade 3 Função Logarítmica Definição de aritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Definição de Logaritmo de um número Suponha que certo medicamento,

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 1. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana Parte 1. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana Parte 1 Triângulos Oitavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha M. Neto Portal da OMEP 1 Intrudução ados três pontos

Leia mais

Um triângulo isósceles tem o lado diferente medindo 12 cm. Calcule as medidas dos outros dois lados, sabendo que o seu perímetro é de 40cm.

Um triângulo isósceles tem o lado diferente medindo 12 cm. Calcule as medidas dos outros dois lados, sabendo que o seu perímetro é de 40cm. EXERÍIO OMPLEMENTRES - MTEMÁTI - 8º NO - ENSINO FUNDMENTL - 2ª ETP ============================================================================================== 01- ssunto: Triângulos Um triângulo isósceles

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

1. A corrida de vetores numa folha de papel.

1. A corrida de vetores numa folha de papel. 1. A corrida de vetores numa folha de papel. desenhando a pista. o movimento dos carros. o início da corrida. as regras do jogo. 2. A corrida no computador. o número de jogadores. o teclado numérico. escolhendo

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

ANPAD CURSO LÓGICA 1

ANPAD CURSO LÓGICA 1 01. Três amigas, Tânia, Janete e Angélica, estão sentadas lado a lado em um teatro. Tânia sempre fala a verdade, Janete às vezes fala a verdade e Angélica nunca fala a verdade. A que está sentada à esquerda

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais