Modelos estatísticos para previsão de partidas de futebol

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Modelos estatísticos para previsão de partidas de futebol"

Transcrição

1 Modelos estatístcos para prevsão de partdas de futebol Dan Gamerman Insttuto de Matemátca, UFRJ X Semana da Matemátca e II Semana da Estatístca da UFOP Ouro Preto, MG 03/11/2010

2 Algumas perguntas que queremos responder: Resultados dos jogos futuros; Quantos pontos serão necessáros para se garantr o Cruzero na Lbertadores; Quantos pontos serão necessáros para o Galo se lvrar do rebaxamento; Quantos pontos serão necessáros para ganhar o título; Quas as chances do Flamengo termnar na frente do Vasco. Qual a colocação do Flumnense?

3 Mutos grupos de pesqusa tratando dsso Casas de apostas (vrtuas) usam estatístcos Tratamento centífco deu orgem a váras publcações Grupos fazendo sso no Brasl: Mat/UFMG Bernardo Lma e co-autores Est/UFSCar Francsco Louzada e co-autores Est/UFF Leonardo Bastos e co-autores Est/USP Marcelo Arruda (chancedegol.com.br) etc...

4 Fatos estlzados: futebol é um dos esportes mas ncertos; um dos poucos onde o por pode ganhar ncerteza quantfcada com probabldades não se pode dzer nada com alta probabldade; muto menos com rodadas de antecedênca requer tratamento da dependênca temporal entre rodadas do campeonato

5 Espaço amostral Conjunto de resultados possíves Para cada jogo, podemos ter: vtóra, empate e derrota número de gols de cada tme

6 Probablstas trabalham com (vt,emp,der) atualzadas segundo técnca de alsamento exponencal Estatístcos trabalham com # de gols # de gols é uma contagem modelo natural é o Posson alguns usam técnca de alsamento outros usam modelo sem tratar dependênca temporal

7 Tratamento adequado devera passar por Formulação de um modelo estatístco Forma centífca de especfcar (e testar) conjecturas Incorporar todas as característcas do problema, especalmente a dependênca temporal

8 Como avalar resultados? Consdere 3 predtores do clma: P1, P2 e P3. P1 e P2 dsseram que hoje a fazer sol P3 dsse que hoje a chover Se hoje fez sol, prefermos P1e P2. Na prátca, problemas de ncerteza envolvem probabldade

9 Para P1: P( sol ) = 80% Para P2: P( sol ) = 70% Para P3: P( sol ) = 40% P1 e P2 acertaram... mas P1 acertou mas Prncípo da máxma verossmlhança: o melhor é quem fornece maor probabldade para o que efetvamente ocorreu. Voltaremos a esse ponto mas à frente...

10 Análse Prelmnar Análse Unvarada Posson se ajusta bem aos dados. Ex: Campeonato Braslero de estmado observado estmado observado

11 Análse Prelmnar Análse Bvarada H 0 : Posson Independentes Bondade de ajuste: p-valor = 0,368 estmado observado

12 Modelo Incal Queremos explcar o resultado do jogo A x B. Podemos postular fatores que determnam o comportamento dos tmes: Fator qualdade: quantfca o desempenho de um tme; cada tme tem seu fator qualdade Fator Campo: nforma o tme que tem mando de campo; cada tme tem o seu fator campo ou é um fator comum?

13 Fator qualdade pode ser mas detalhado: pode ser fator únco (força do tme) pode ser decomposto em setores Exemplos: 1. Fator ataque, Fator defesa, Fator meo de campo, Fator nfraestrutura, Fator elenco,... Vamos trabalhar com 2 fatores: ataque e defesa.

14 Modelo Incal Assm, para o jogo A x B, temos o segunte modelo: GF GF log λ log λ GF At De Ca tme tme tme A B A B tme ~ ~ = = Posson Posson At At A B De De ( λ ) A ( λ ) B A B + Ca Independentes A onde: representa o número de gols fetos pelo tme representa o fator ataque do tme representa o fator defesa do tme representa o fator campo do tme

15 Modelo Incal Abaxo, temos a tabela com os fatores para os tmes do Ro. Esses fatores foram obtdos usando prmera fase do campeonato de Fator Ataque Fator Defesa Fator Campo Gols Pró Gols Contra Botafogo Flamengo Flumnense Vasco

16 Modelo Incal Agora, com 3 seleções da Amérca do Sul. Esses fatores foram obtdos usando os dados até a 7ª rodada das Elmnatóras da Copa do Mundo. Fator Ataque Fator Defesa Fator Campo Gols Pró Gols Contra Brasl Equador Urugua

17 Modelo Dnâmco Estávamos supondo até agora que os parâmetros do modelo não varavam com as rodadas. Agora, achamos razoável permtr tal mudança. Portanto, At tme vrou vetor. Ou seja, temos agora: At 1 tme At 2 tme,...,at T tme. onde T é o número total de rodadas

18 Modelo Dnâmco Achamos razoável assumr que os fatores na rodada +1 dependem dos mesmos fatores na rodada, ou seja, são sempre dependentes do passo anteror. Por exemplo, para o tme A, temos: At Fator Ataque = At + ω A A At Fator Defesa De = De + ω A A De onde ω At +1 ~ N (0, σ 2 At ) onde ω De +1 ~ N (0, σ 2 De ) Ca Fator Campo = Ca + ω A A Ca onde ω Ca +1 ~ N (0, σ 2 Ca )

19 Modelo Dnâmco O modelo é completado com mas 2 tens: as volatldades σ 2 At, σ 2 De e σ 2 Ca das perturbações ω At, ωde e ωca são obtdas emprcamente. a pror para os parâmetros da rodada ncal para os tmes. pode ser baseada no desempenho passado ou ser vaga: At 1 tme ~ N(0, 10 4 ) De 1 tme ~ N(0, 10 4 ) Ca 1 tme ~ N(0,10 4 )

20 Modelo Dnâmco Consdere o jogo A x B O modelo para as observações do tme A, jogando em casa, agora é FG A ~ Posson ( λ ) A logλ A = At De + A B Ca A Da mesma forma, para o tme B, temos: FG B ~ Posson ( λ ) B log λ B = At B De A

21 Notação ( At At At ) At = Atletco MG, Atletco PR,..., Vtora vetor com fatores ataque para a rodada ( De De De ) De = Atletco MG, Atletco PR,..., Vtora vetor com fatores defesa para a rodada θ = ( Ca Ca Ca ) Ca = Atletco MG, Atletco PR,..., ( At, De, Ca ) NGF = (NGF AtletcoMG,..., NGF Vtora) D = {NGF 1,..., NGF } Vtora vetor com fatores campo para a rodada vetor de parâmetros para a rodada número de gols fetos na rodada todas as nformações até a rodada

22 Estmação Utlzando o teorema de Bayes, a estmação dos parâmetros até a rodada, será feta a partr da posteror obtda da segunte forma: p ( 1 ) ( 1 D L ) p( 1 θ,..., θ θ,..., θ θ,..., θ ) posteror verossmlhança pror verossmlhança: pror: L p t ( θ 1,..., θ ) = L( θ ) t= 1 1 t t 1 1 ( θ,..., θ ) = p( θ θ ) p( θ ) t= 2 e L Vtora t t t ( θ ) = p( GFj θ ) j= AtletcoMG

23 Computação Extrar nformações de p(θ 1,..., θ D ) é complcado!! Esse problema é soluconado através de smulações va MCMC (Gamerman e Lopes, 2006). Um programa utlzado para fazer tas smulações é o WnBugs (Spegelhalter et al, 2003). Dessa forma, serão obtdas amostras da posteror. E portanto, teremos amostras de θ D, para determnada rodada.

24 Computação Exemplo: Camp. Braslero de 2002 parâmetros de 3 tmes: Cortba, Flamengo e Ponte Preta. Apenas 3 varações nas rodadas 15, 30 e 44 devdo a lmtes computaconas. Fator Campo PontePreta Flamengo Cortba Varações Fator Ataque Fator Defesa PontePreta Flamengo Cortba PontePreta Flamengo Cortba Varações Varações

25 Computação Outro exemplo: Copa do Mundo parâmetros de 3 países: Argentna, Bolíva e Brasl. Foram fetas 4 varações nas rodadas 4, 5, 6 e 7.

26 Prevsões Aqu, vamos obter os valores prevstos para o número de gols fetos para uma rodada futura, a partr de nformações passadas. A prevsão é baseada na dstrbução predtva: p + h + h ( GF D ) = p( GF θ, D ) p( θ D ) dθ onde: GF h θ, D ~ Posson ( + h λ ) 3 é obtdo por smulação va MCMC, servndo de parâmetro para smular amostras de 2. Desta forma, automatcamente temos amostras de 1.

27 Prevsões Com as dstrbuções predtvas dos jogos podemos calcular váras dstrbuções. Exemplo: número de pontos que os tmes farão ao fnal do campeonato. Por exemplo, para o tme A temos: T A 1 T ( GF GF ) P = f,..., NP T A é o número de pontos do tme A na rodada fnal T Qualquer função desse tpo pode ter sua dstrbução aproxmada por smulação Exemplo: classfcação (que depende não só de NP).

28 Resultados Aqu, é possível calcular as probabldades para o resultado de cada jogo (1x0, 2x0,...). Para exemplfcar, será exposto um resultado mas detalhadamente.

29 Resultados 2003 Vtóra 1x0 15.2% 2x0 9.7% 2x1 8.9% 3x0 4.0% 3x1 3.3% 3x2 1.5% Outros 3.6% Empate 0x0 9.8% 1x1 14.4% 2x2 3.6% 3x3 0.3% Outros 0.1% Derrota 0x1 10.8% 0x2 3.6% 1x2 5.5% 0x3 1.3% 1x3 1.9% 2x3 1.0% Outros 1.5% Os 2 resultados mas prováves resultado real 1 x 0 Vasco x Fguerense 26% Vtóra 46% Empate 28% Derrota

30 Resultados 2004 Vtóra 1x0 9.7% 2x0 15.7% 2x1 8.6% 3x0 19.9% 3x1 14.1% 3x2 2.0% 4x0 11.9% 4x1 5.2% Outros 0.9% Empate 0x0 2.0% 1x1 2.5% 2x2 1.3% 3x3 0.1% Outros 0.1% Os 3 resultados mas prováves Brasl resultado real? x? Bolíva Brasl x Bolíva Derrota 0x1 0.7% 0x2 0.1% 1x2 0.8% 0x3 0.1% 1x3 0.1% 2x3 0.1% Outros 0.1% 6%2% 92% Vtóra Empate Derrota

31 Resultados 2003 Na rodada de número 34, fo feta uma análse e chegamos às seguntes prevsões para os tmes carocas na rodada 45: hoje prevsão

32 Resultados 2003 hoje prevsão hoje prevsão

33 Resultados 2003 para os tmes mneros, temos: hoje prevsão hoje prevsão

34 Resultados 2003 Os gráfcos abaxo mostram as chances de um tme ser rebaxado com determnado número de pontos em duas rodadas dstntas. Rodada 34 Rodada 45

35 Resultados 2003 Os gráfcos abaxo mostram as chances de um tme se classfcar para a Lbertadores com determnado número de pontos em duas rodadas dstntas. Rodada 34 Rodada 45

36 Resultados 2004 O gráfco abaxo mostra as chances de uma seleção se classfcar para a Copa do Mundo com determnado número de pontos na rodada 7. Rodada 7

37 Análse de Resultados Resultados do nosso modelo comparados com os do Chance de Gol (www.chancedegol.com.br), utlzandos o crtéro das verossmlhanças ( EO ) Verossml hança = P 1,..., EO T EO é o Evento Ocorrdo no jogo Verossmlhança do modelo do Chance de Gol: 2.26 x Verossmlhança do nosso modelo: 7.66 x 10-17

38 Comentáros fnas Modelos váldos em qualquer campeonato e muto smples de serem mplementados (no WnBUGS). Modelo dnâmco é mas razoável. Modelo pode ser estenddo/alterado em váras dreções. Dssertação de Fabo F. Faras (2008) apresenta extensões melhoradoras ao permtr evoluções estaconáras para os fatores.

39 Bblografa Faras, F. F. (2008). Análse e prevsão de resultados de partdas de futebol. Dssertação de mestrado, Estatístca, UFRJ. Gamerman, D. e Lopes, H. (2006) Markov Chan Monte Carlo. 2ª. Edção. Nova York: Chapman & Hall. Knorr-Held, L. (2000) Dynamc ratng of sports teams. The Statstcan (JRSS-D), 49, Rue, H. e Salvesen O. (2000) Predcton and retrospectve analyss of soccer matches n a league. JRSS-D, 49, Spegelhalter, D., Thomas, A., Best, N. e Lunn, D. (2003) WnBugs User Manual. Cambrdge: Medcal Research Councl.

40 Obrgado!

Autores: Dani Gamerman (IM-UFRJ) Oswaldo Gomes de Souza Junior (SERPROS)

Autores: Dani Gamerman (IM-UFRJ) Oswaldo Gomes de Souza Junior (SERPROS) Prevsões de partdas de futebol usando modelos dnâmcos Autores: Dan Gamerman (IM-UFRJ) Oswaldo Gomes de Souza Junor (SERPROS) Alguns resultados que poderemos responder: Resultados dos jogos futuros; Quantos

Leia mais

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS PREVISÃO DE PRTIDS DE FUTEBOL USNDO MODELOS DINÂMICOS Oswaldo Gomes de Souza Junor Insttuto de Matemátca Unversdade Federal do Ro de Janero junor@dme.ufrj.br Dan Gamerman Insttuto de Matemátca Unversdade

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

MAE5778 - Teoria da Resposta ao Item

MAE5778 - Teoria da Resposta ao Item MAE5778 - Teora da Resposta ao Item Fernando Henrque Ferraz Perera da Rosa Robson Lunard 1 de feverero de 2005 Lsta 2 1. Na Tabela 1 estão apresentados os parâmetros de 6 tens, na escala (0,1). a b c 1

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X ANEXO II Nota Técnca nº 256/2009-SRE/ANEEL Brasíla, 29 de julho de 2009 METODOLOGIA E ÁLULO DO FATOR X ANEXO II Nota Técnca n o 256/2009 SRE/ANEEL Em 29 de julho de 2009. Processo nº 48500.004295/2006-48

Leia mais

CAPÍTULO 1 Exercícios Propostos

CAPÍTULO 1 Exercícios Propostos CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz,

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello Aula 03 Erros epermentas Incerteza Aula 03 Prof. Valner Brusamarello Incerteza Combnada Efeto da Incerteza sobre = f ± u, ± u, L, ± u, L ( ) 1 1 Epansão em Sére de Talor: k k L f = f 1,, 3, + ± uk + L,,,

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Otimização de Custos de Transporte e Tributários em um Problema de Distribuição Nacional de Gás

Otimização de Custos de Transporte e Tributários em um Problema de Distribuição Nacional de Gás A pesqusa Operaconal e os Recursos Renováves 4 a 7 de novembro de 2003, Natal-RN Otmzação de ustos de Transporte e Trbutáros em um Problema de Dstrbução Naconal de Gás Fernanda Hamacher 1, Fernanda Menezes

Leia mais

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que DESEMPREGO DE JOVENS NO BRASIL I. Introdução O desemprego é vsto por mutos como um grave problema socal que vem afetando tanto economas desenvolvdas como em desenvolvmento. Podemos dzer que os índces de

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

E FICIÊNCIA EM S AÚDE E C OBERTURA DE P LANOS DE S AÚDE NO B RASIL

E FICIÊNCIA EM S AÚDE E C OBERTURA DE P LANOS DE S AÚDE NO B RASIL E FICIÊNCIA EM S AÚDE E C OBERTURA DE P LANOS DE S AÚDE NO B RASIL Clarssa Côrtes Pres Ernesto Cordero Marujo José Cechn Superntendente Executvo 1 Apresentação Este artgo examna se o rankng das Undades

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Metodologia IHFA - Índice de Hedge Funds ANBIMA

Metodologia IHFA - Índice de Hedge Funds ANBIMA Metodologa IHFA - Índce de Hedge Funds ANBIMA Versão Abrl 2011 Metodologa IHFA Índce de Hedge Funds ANBIMA 1. O Que é o IHFA Índce de Hedge Funds ANBIMA? O IHFA é um índce representatvo da ndústra de hedge

Leia mais

Palavras-chave: jovens no mercado de trabalho; modelo de seleção amostral; região Sul do Brasil.

Palavras-chave: jovens no mercado de trabalho; modelo de seleção amostral; região Sul do Brasil. 1 A INSERÇÃO E O RENDIMENTO DOS JOVENS NO MERCADO DE TRABALHO: UMA ANÁLISE PARA A REGIÃO SUL DO BRASIL Prscla Gomes de Castro 1 Felpe de Fgueredo Slva 2 João Eustáquo de Lma 3 Área temátca: 3 -Demografa

Leia mais

Atribuição Automática de Propagandas a Páginas da Web

Atribuição Automática de Propagandas a Páginas da Web Atrbução Automátca de Propagandas a Págnas da Web Aníso Mendes Lacerda Lara Crstna Rodrgues Coelho Resumo O problema da propaganda dreconada baseada em conteúdo (PDC) consttu-se em atrbur propagandas a

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Abordagens Matemáticas e Estatísticas para o Futebol

Abordagens Matemáticas e Estatísticas para o Futebol Universidade Estadual de Campinas UNICAMP Abordagens Matemáticas e Estatísticas para o Futebol Aluna: Juliana Mayumi Aoki Orientador: Laércio Luis Vendite Identificação do trabalho Título Abordagens Matemáticas

Leia mais

Testando um Mito de Investimento : Eficácia da Estratégia de Investimento em Ações de Crescimento.

Testando um Mito de Investimento : Eficácia da Estratégia de Investimento em Ações de Crescimento. Testando um Mto de Investmento : Efcáca da Estratéga de Investmento em Ações de Crescmento. Autora: Perre Lucena Rabon, Odlon Saturnno Slva Neto, Valera Louse de Araújo Maranhão, Luz Fernando Correa de

Leia mais

TEXTO PARA DISCUSSÃO PROPOSTA DE MUDANÇA NO RATEIO DA COTA PARTE DO ICMS ENTRE OS MUNICÍPIOS CEARENSES

TEXTO PARA DISCUSSÃO PROPOSTA DE MUDANÇA NO RATEIO DA COTA PARTE DO ICMS ENTRE OS MUNICÍPIOS CEARENSES GOVERO DO ESTADO DO CEARÁ SECRETARIA DE PLAEJAMETO E GESTÃO (SEPLAG) Insttuto de Pesqusa e Estratéga Econômca do Ceará (IPECE) TEXTO PARA DISCUSSÃO PROPOSTA DE MUDAÇA O RATEIO DA COTA PARTE DO ICMS ETRE

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recfe - PE GRUPO XIII GRUPO DE ESTUDO DE TRANSFORMADORES, REATORES, MATERIAIS E TECNOLOGIAS

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL

ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL Danlo Augusto Hereda VIEIRA 1 Celso Correa de SOUZA 2 José Francsco dos REIS NETO 3 Resumo. As

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

OTIMIZAÇÃO DO FLUXO REVERSO DE PNEUS INSERVÍVEIS ATRAVÉS DE UM MODELO DE LOCALIZAÇÃO DE FACILIDADES: UM ESTUDO DE CASO

OTIMIZAÇÃO DO FLUXO REVERSO DE PNEUS INSERVÍVEIS ATRAVÉS DE UM MODELO DE LOCALIZAÇÃO DE FACILIDADES: UM ESTUDO DE CASO OTIMIZAÇÃO DO FLUXO REVERSO DE PNEUS INSERVÍVEIS ATRAVÉS DE UM MODELO DE LOCALIZAÇÃO DE FACILIDADES: UM ESTUDO DE CASO Felpe Mendonca Gurgel Bandera (UFERSA) felpembandera@hotmal.com Breno Barros Telles

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Mara Manuela Portela DECvl, IST, 0 PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Professor Assocado, Escola de Engenhara

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

ANÁLISE DA ESTABILIDADE DE UM BRAÇO ROBÓTICO PARA COLHEITA DE FRUTAS

ANÁLISE DA ESTABILIDADE DE UM BRAÇO ROBÓTICO PARA COLHEITA DE FRUTAS XLIII Congresso Braslero de Engenhara Agrícola - CONBEA 2014 Centro de Convenções Arquteto Rubens Gl de Camllo - Campo Grande -MS 27 a 31 de julho de 2014 ANÁLISE DA ESTABILIDADE DE UM BRAÇO ROBÓTICO PARA

Leia mais

ÍNDICE NOTA INTRODUTÓRIA

ÍNDICE NOTA INTRODUTÓRIA OGC00 05-0-06 ÍDICE. Introdução. Âmbto e defnções 3. Avalação da ncerteza de medção de estmatvas das grandezas de entrada 4. Cálculo da ncerteza-padrão da estmatva da grandeza 5 de saída 5. Incerteza de

Leia mais

SCATTER SEARCH APLICADO AO PROBLEMA DE OTIMIZAÇÃO DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO

SCATTER SEARCH APLICADO AO PROBLEMA DE OTIMIZAÇÃO DA ALOCAÇÃO DE SONDAS DE PRODUÇÃO EM POÇOS DE PETRÓLEO ! "#$ " %'&)(*&)+,.- /10.2*&4365879&4/1:.+58;.2*=?5.@A2*3B;.- C)D 5.,.5FE)5.G.+ &4- (IHJ&?,.+ /?=)5.KA:.+5MLN&OHJ5F&4E)2*EOHJ&)(IHJ/)G.- D - ;./);.& SCATTER SEARCH APLICADO AO PROBLEMA DE OTIMIZAÇÃO

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA 658 Gaudo & Zandonade Qum. Nova Qum. Nova, Vol. 4, No. 5, 658-671, 001. Dvulgação PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA Anderson Coser Gaudo

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS

MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS versão mpressa ISSN 0101-7438 / versão onlne ISSN 1678-5142 MODELAGEM DA FRAÇÃO DE NÃO-CONFORMES EM PROCESSOS INDUSTRIAIS Ângelo Márco Olvera Sant Anna* Carla Schwengber ten Caten Programa de Pós-graduação

Leia mais

Situação Ocupacional dos Jovens das Comunidades de Baixa Renda da Cidade do Rio de Janeiro *

Situação Ocupacional dos Jovens das Comunidades de Baixa Renda da Cidade do Rio de Janeiro * Stuação Ocupaconal dos Jovens das Comundades de Baxa Renda da Cdade do Ro de Janero * Alessandra da Rocha Santos Cínta C. M. Damasceno Dense Brtz do Nascmento Slva ' Mara Beatrz A. M. da Cunha Palavras-chave:

Leia mais

Análise logística da localização de um armazém para uma empresa do Sul Fluminense importadora de alho in natura

Análise logística da localização de um armazém para uma empresa do Sul Fluminense importadora de alho in natura Análse logístca da localzação de um armazém para uma empresa do Sul Flumnense mportadora de alho n natura Jader Ferrera Mendonça Patríca Res Cunha Ilton Curty Leal Junor Unversdade Federal Flumnense Unversdade

Leia mais

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Geração de poses de faces utilizando Active Appearance Model Tupã Negreiros 1, Marcos R. P. Barretto 2, Jun Okamoto 3

Geração de poses de faces utilizando Active Appearance Model Tupã Negreiros 1, Marcos R. P. Barretto 2, Jun Okamoto 3 Geração de poses de faces utlzando Actve Appearance Model Tupã Negreros 1, Marcos R. P. Barretto 2, Jun Okamoto 3 1, 2, 3 Escola Poltécnca da Unversdade de São Paulo (POLI/USP) Caxa Postal 61548 CEP 05508-900

Leia mais

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade Aplcações de Estmadores Bayesanos Empírcos para Análse Espacal de Taxas de Mortaldade Alexandre E. dos Santos, Alexandre L. Rodrgues, Danlo L. Lopes Departamento de Estatístca Unversdade Federal de Mnas

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

PROCESSAMENTO DE VÍDEO PARA ESTIMAÇÃO DA CURVA DE RESFRIAMENTO EM UMA PLANTA DE SINTERIZAÇÃO

PROCESSAMENTO DE VÍDEO PARA ESTIMAÇÃO DA CURVA DE RESFRIAMENTO EM UMA PLANTA DE SINTERIZAÇÃO PROCESSAMENTO DE VÍDEO PARA ESTIMAÇÃO DA CURVA DE RESFRIAMENTO EM UMA PLANTA DE SINTERIZAÇÃO GABRIEL NAZARETH GUEDES ALCOFORADO*, VALTER BARBOSA DE OLIVEIRA JUNIOR*, DOUGLAS ALMONFREY, KARIN SATIE KOMATI

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 XXX.YY 22 a 25 Novembro de 2009 Recfe - PE GRUPO - VI GRUPO DE ESTUDO DE COMERCIALIZAÇÃO, ECONOMIA E REGULAÇÃO DE ENERGIA

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

SOFTWARE PARA CÁLCULO DO ÍNDICE DE SEVERIDADE DE SECA DE PALMER

SOFTWARE PARA CÁLCULO DO ÍNDICE DE SEVERIDADE DE SECA DE PALMER SOFTWARE PARA CÁLCULO DO ÍNDICE DE SEVERIDADE DE SECA DE PALMER Rodrgo Cézar Lmera 1, Pedro Vera de Azevedo 2, Wagner de Aragão Bezerra 3, Josefa Morgana Vturno de Almeda 3 RESUMO: A modelagem consttu-se

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

ASSOCIAÇÃO DE RESISTORES

ASSOCIAÇÃO DE RESISTORES Prof(a) Stela Mara de arvalho Fernandes SSOIÇÃO DE ESISTOES ssocação de esstores em Sére Dos ou mas resstores estão assocados em sére quando são percorrdos pela mesma corrente elétrca. omo U D Somando

Leia mais

MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS

MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS versão mpressa ISSN 00-7438 / versão onlne ISSN 678-542 MODELO DE FILA HIPERCUBO COM MÚLTIPLO DESPACHO E BACKUP PARCIAL PARA ANÁLISE DE SISTEMAS DE ATENDIMENTO MÉDICO EMERGENCIAIS EM RODOVIAS Ana Paula

Leia mais

ALTERNATIVAS E COMPARAÇÕES DE MODELOS LINEARES PARA ESTIMAÇÃO DA BIOMASSA VERDE DE Bambusa vulgaris NA EXISTÊNCIA DE MULTICOLINEARIDADE

ALTERNATIVAS E COMPARAÇÕES DE MODELOS LINEARES PARA ESTIMAÇÃO DA BIOMASSA VERDE DE Bambusa vulgaris NA EXISTÊNCIA DE MULTICOLINEARIDADE ADRIANO VICTOR LOPES DA SILVA ALTERNATIVAS E COMPARAÇÕES DE MODELOS LINEARES PARA ESTIMAÇÃO DA BIOMASSA VERDE DE Bambusa vulgars NA EXISTÊNCIA DE MULTICOLINEARIDADE RECIFE-PE Feverero /2008. Lvros Gráts

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

Metodologia para Eficientizar as Auditorias de SST em serviços contratados Estudo de caso em uma empresa do setor elétrico.

Metodologia para Eficientizar as Auditorias de SST em serviços contratados Estudo de caso em uma empresa do setor elétrico. Metodologa para Efcentzar as Audtoras de SST em servços contratados Estudo de caso em uma empresa do setor elétrco. Autores MARIA CLAUDIA SOUSA DA COSTA METHODIO VAREJÃO DE GODOY CHESF COMPANHIA HIDRO

Leia mais

AVALIAÇÃO DO IMPACTO DO MECANISMO DE REALOCAÇÃO DE ENERGIA NO RISCO FINANCEIRO DE PROJETOS HIDROELÉTRICOS

AVALIAÇÃO DO IMPACTO DO MECANISMO DE REALOCAÇÃO DE ENERGIA NO RISCO FINANCEIRO DE PROJETOS HIDROELÉTRICOS GPL/011 21 a 26 de Outubro de 2001 Campnas - São Paulo - Brasl GUPO VII GUPO DE ESTUDO DE PLANEJAMENTO DE SISTEMAS ELÉTICOS AVALIAÇÃO DO IMPACTO DO MECANISMO DE EALOCAÇÃO DE ENEGIA NO ISCO FINANCEIO DE

Leia mais

AS COMPONENTES SIMÉTRICAS INSTANTÂNEAS E A MÁQUINA SIMÉTRICA

AS COMPONENTES SIMÉTRICAS INSTANTÂNEAS E A MÁQUINA SIMÉTRICA CAPÍTULO 5 A COMPONENTE IMÉTICA INTANTÂNEA E A MÁQUINA IMÉTICA 5. INTODUÇÃO O emprego das componentes smétrcas nstantâneas permte a obtenção de modelos mas smples que aqueles obtdos com a transformação

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Software para Furação e Rebitagem de Fuselagem de Aeronaves

Software para Furação e Rebitagem de Fuselagem de Aeronaves Anas do 14 O Encontro de Incação Centífca e Pós-Graduação do ITA XIV ENCITA / 2008 Insttuto Tecnológco de Aeronáutca São José dos Campos SP Brasl Outubro 20 a 23 2008. Software para Furação e Rebtagem

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Análise multivariada do risco sistemático dos principais mercados de ações da América Latina: um enfoque Bayesiano

Análise multivariada do risco sistemático dos principais mercados de ações da América Latina: um enfoque Bayesiano XXVI ENEGEP - Fortaleza, CE, Brasl, 9 a 11 de Outubro de 006 Análse multvarada do rsco sstemátco dos prncpas mercados de ações da Amérca Latna: um enfoque Bayesano André Asss de Salles (UFRJ) asalles@nd.ufrj.br

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade Departaento de Inforátca Dscplna: do Desepenho de Ssteas de Coputação Medda de Probabldade Prof. Sérgo Colcher colcher@nf.puc-ro.br Teora da Probabldade Modelo ateátco que perte estudar, de fora abstrata,

Leia mais

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE)

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE) IPECE ota Técnca GOVERO DO ESTADO DO CEARÁ SECRETARIA DO PLAEJAMETO E GESTÃO (SEPLAG) ISTITUTO DE PESQUISA E ESTRATÉGIA ECOÔMICA DO CEARÁ (IPECE) OTA TÉCICA º 33 METODOLOGIA DE CÁLCULO DA OVA LEI DO ICMS

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

ESTUDO SOBRE A EVASÃO ESCOLAR USANDO REGRESSÃO LOGÍSTICA: ANÁLISE DOS ALUNOS DO CURSO DE ADMINISTRAÇÃO DA FUNDAÇÃO EDUCACIONAL DE ITUVERAVA

ESTUDO SOBRE A EVASÃO ESCOLAR USANDO REGRESSÃO LOGÍSTICA: ANÁLISE DOS ALUNOS DO CURSO DE ADMINISTRAÇÃO DA FUNDAÇÃO EDUCACIONAL DE ITUVERAVA ESTUDO SOBRE A EVASÃO ESCOLAR USANDO REGRESSÃO LOGÍSTICA: ANÁLISE DOS ALUNOS DO CURSO DE ADMINISTRAÇÃO DA FUNDAÇÃO EDUCACIONAL DE ITUVERAVA STUDY ON THE TRUANCY USING LOGISTIC REGRESSION: ANALYSIS OF THE

Leia mais

* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI.

* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI. O desempenho setoral dos muncípos que compõem o Sertão Pernambucano: uma análse regonal sob a ótca energétca. Carlos Fabano da Slva * Introdução Entre a publcação de Methods of Regonal Analyss de Walter

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

2 CONSIDERAÇÕES TEÓRICAS

2 CONSIDERAÇÕES TEÓRICAS 20 2 CONSIDERAÇÕES TEÓRICAS 2.1. Defnção de gás Um gás é defndo como um fludo cujas condções de temperatura e pressão são superores às do ponto crítco, não podendo haver duas fases presentes em um processo,

Leia mais

A mobilidade ocupacional das trabalhadoras domésticas no Brasil

A mobilidade ocupacional das trabalhadoras domésticas no Brasil A mobldade ocupaconal das trabalhadoras doméstcas no Brasl Resumo Kata Sato Escola de Economa de São Paulo Fundação Getúlo Vargas EESP-FGV André Portela Souza Escola de Economa de São Paulo Fundação Getúlo

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

CAMPEONATO BRASILEIRO DA SÉRIE A TABELA BÁSICA / EDIÇÃO 2016 TURNO REF ROD DATA HORA JOGO ESTÁDIO CIDADE

CAMPEONATO BRASILEIRO DA SÉRIE A TABELA BÁSICA / EDIÇÃO 2016 TURNO REF ROD DATA HORA JOGO ESTÁDIO CIDADE CAMPEONATO BRASILEIRO DA SÉRIE A TABELA BÁSICA / EDIÇÃO 2016 TURNO REF ROD DATA HORA JOGO ESTÁDIO 001 1ª 14/05 (sáb) ou Botafogo RJ x São Paulo SP 15/05 (dom) 002 1ª Flamengo RJ x Sport PE 0 1ª 15/5 Dom

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais