Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes"

Transcrição

1 Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Saulo Dornellas Universidade Federal do Vale do São Francisco Juazeiro - BA Dornellas (UNIVASF) Juazeiro - BA 1 / 44

2 Análise do Lugar da Raízes A resposta transitória depende da localização dos pólos de malha fechada Como os pólos de malhada fechada se movem no plano-s à medida que o ganho de malha varia? Dornellas (UNIVASF) Juazeiro - BA 2 / 44

3 Análise do Lugar da Raízes Os pólos de malha fechada são as raízes da equação característica Método do Lugar das Raízes: permite que as raízes da equação característica sejam representados graficamente para todos os valores de um parâmetro do sistema Dornellas (UNIVASF) Juazeiro - BA 3 / 44

4 Método do Lugar da Raízes C(s) R(s) = G(s) 1+G(s)H(s) Equação característica: Condição angular 1+G(s)H(s) = 0 G(s)H(s) = 1 (G(s)H(s)) = ±180 (2k+1) (k = 0,1,2,...) Condição de módulo G(s)H(s) = 1 Dornellas (UNIVASF) Juazeiro - BA 4 / 44

5 Método do Lugar da Raízes Lugar das raízes Lugar dos pontos no plano-s que satisfaz a condição angular Considere G(s)H(s) G(s)H(s)= K(s+z 1)(s+z 2 )...(s+z m ) (s+ p 1 )(s+ p 2 )...(s+ p n ) onde k > 0 é o ganho Dornellas (UNIVASF) Juazeiro - BA 5 / 44

6 Passos para obtenção do Lugar das Raízes e Exemplo 1 Localizar os pólos e zeros de G(s)H(s) no plano-s 2 Determinar os trechos do lugar das raízes no eixo real 3 Determinar as assíntotas do lugar das raízes 4 Determinar os pontos de partida e os de chegada do eixo real 5 Determinar o ângulo de partida de um pólo complexo (ou de chegada a um zero complexo) do lugar das raízes 6 Determinar os pontos onde o lugar das raízes pode cruzar o eixo imaginário 7 Obter uma série de pontos de teste na região próxima à origem do plano-s e esboçar o lugar das raízes 8 Determinar os pólos de malha fechada Dornellas (UNIVASF) Juazeiro - BA 6 / 44

7 1. Localizar os pólos e zeros de G(s)H(s) no plano-s Os ramos se iniciam nos pólos de malha aberta e terminam nos zeros de malha aberta (finitos ou infinitos) O lugar das raízes é sempre simétrico em relação ao eixo real Dornellas (UNIVASF) Juazeiro - BA 7 / 44

8 Exemplo Considere o sistema G(s)H(s) = K s(s+1)(s+2) -2-1 Dornellas (UNIVASF) Juazeiro - BA 8 / 44

9 2. Determinar os trechos do lugar das raízes no eixo real Os pólos e zeros complexos de malha aberta não influenciam os trechos do lugar das raízes no eixo real Se o número de pólos reais e zeros reais à direita do ponto de teste for ímpar, então o ponto de testes pertence ao lugar das raízes Dornellas (UNIVASF) Juazeiro - BA 9 / 44

10 Exemplo -2-1 s (s)+ (s+1)+ (s+2) = 0 Dornellas (UNIVASF) Juazeiro - BA 10 / 44

11 Exemplo -2-1 s (s)+ (s+1)+ (s+2) = 180 Dornellas (UNIVASF) Juazeiro - BA 11 / 44

12 Exemplo -2 s -1 (s)+ (s+1)+ (s+2) = 360 Dornellas (UNIVASF) Juazeiro - BA 12 / 44

13 Exemplo s -2-1 (s)+ (s+1)+ (s+2) = = 180 Dornellas (UNIVASF) Juazeiro - BA 13 / 44

14 Exemplo -2-1 Dornellas (UNIVASF) Juazeiro - BA 14 / 44

15 3. Determinar as assíntotas do lugar das raízes Ângulo das assíntotas G(s)H(s) = K(s+z 1)(s+z 2 )...(s+z m ) (s+ p 1 )(s+ p 2 )...(s+ p n ) ±180 (2k+1) n m (k = 0,1,2,...) Ponto de interseção das abscissas no eixo real (p 1 + p p n ) (z 1 + z z m ) n m Dornellas (UNIVASF) Juazeiro - BA 15 / 44

16 Exemplo Ângulo das assíntotas G(s)H(s) = K s(s+1)(s+2) ±180 (2k+1) 3 0 = ±60 (2k+1) (k = 0,1,2,...) Ponto de interseção das abscissas no eixo real (0+1+2) (0) = Dornellas (UNIVASF) Juazeiro - BA 16 / 44

17 Exemplo Assíntotas Dornellas (UNIVASF) Juazeiro - BA 17 / 44

18 4. Determinar os pontos de partida e os de chegada do eixo real -2-1 Ponto de partida Dornellas (UNIVASF) Juazeiro - BA 18 / 44

19 4. Determinar os pontos de partida e os de chegada do eixo real Exprimir K em função de s na equação característica Os pontos de partida e os de chegada do eixo real são raízes de Observação: dk ds = 0 Nem todas as raízes serão pontos de partida e chegada É necessário que pertençam ao lugar das raízes no eixo real Dornellas (UNIVASF) Juazeiro - BA 19 / 44

20 Exemplo Equação característica: G(s)H(s) = K s(s+1)(s+2) K s(s+1)(s+2) = 1 k = s3 3s 2 2s dk ds = 0 3s2 6s 2 = 0 s = 1 ± 3 3 Dornellas (UNIVASF) Juazeiro - BA 20 / 44

21 Exemplo 3 s= 1± Somente pertence ao lugar das raízes no eixo real Dornellas (UNIVASF) Juazeiro - BA 21 / 44

22 5. Determinar o ângulo de partida de um pólo complexo (ou de chegada a um zero complexo) do lugar das raízes Tomar um ponto de teste nas proximidades de um pólo complexo (ou zero complexo) As contribuições angulares de todos os pólos e zeros devem satisfazer a condição angular Dornellas (UNIVASF) Juazeiro - BA 22 / 44

23 Exemplo φ 1 ( θ 1 + θ 2) = ±180 (2k+1) ou θ 1 = 180 θ 2 +φ 1 = 180 θ 2 +φ 1 Dornellas (UNIVASF) Juazeiro - BA 23 / 44

24 6. Determinar os pontos onde o lugar das raízes pode cruzar o eixo imaginário Duas maneiras: Critério da estabilidade de Routh k? Fazendo s = jω na equação característica, e resolver para ω e k Dornellas (UNIVASF) Juazeiro - BA 24 / 44

25 Exemplo Equação característica K s(s+1)(s+2) + 1 = 0 s3 + 3s 2 + 2s+k = 0 Critério de Routh: s s 2 3 K s 1 2 K 3 0 s 0 K O lugar das raízes pode cruzar o eixo imaginário para Usando a equação auxiliar da linha s 2 3s 2 + K = 0 3s = 0 s = ± j 2 2 K 3 = 0 K = 6 Dornellas (UNIVASF) Juazeiro - BA 25 / 44

26 Exemplo Fazendo s = jω na equação característica ( jω) 3 + 3( jω) 2 + 2( jω)+k = 0 jω 3 3ω jω+k = 0 { ω 3 { + 2ω = 0 ω = 0,± 2 3ω 2 + K = 0 K = 3ω 2 Para ω = 0, K = 0 é inadmissível Para ω = ± 2, K = 6 Dornellas (UNIVASF) Juazeiro - BA 26 / 44

27 Exemplo j 2 j 2 Dornellas (UNIVASF) Juazeiro - BA 27 / 44

28 7. Obter uma série de pontos de teste na região próxima à origem do plano-s e esboçar o lugar das raízes Duas maneiras: Manualmente, observando-se a condição angular Através do MatLab (função rlocus) Dornellas (UNIVASF) Juazeiro - BA 28 / 44

29 Exemplo Gráfico do lugar das raízes de G(s) = k/[s(s+1)(s+2)] j 2 1 Eixo imaginário j Eixo real Dornellas (UNIVASF) Juazeiro - BA 29 / 44

30 8. Determinar os pólos de malha fechada A condição de módulo permite encontrar o valor de K relativo a qualquer ponto específico do lugar das raízes Dornellas (UNIVASF) Juazeiro - BA 30 / 44

31 Exemplo Gráfico do lugar das raízes de G(s) = k/[s(s+1)(s+2)] k = 6 1 Eixo imaginário k = k = Eixo real Dornellas (UNIVASF) Juazeiro - BA 31 / 44

32 Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Requisitos dos sistemas de controle Requisitos da resposta transitória Requisitos em regime permanente Projeto pelo Lugar das raízes Alterar o lugar das raízes pela adição de pólos e zeros na função de transferência de malha aberta O novo lugar das raízes deve passar pelos pólos de malha fechada desejados Dornellas (UNIVASF) Juazeiro - BA 32 / 44

33 Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Ajustar o ganho Nem sempre permite o desempenho desejado Melhora o regime permanente, mas torna o sistema pouco estável, ou até mesmo instável Reprojetar o sistema Modificação de sua estrutura Adição de um compensador Dornellas (UNIVASF) Juazeiro - BA 33 / 44

34 Esquemas de compensação Compensação em série Compensação em paralelo Dornellas (UNIVASF) Juazeiro - BA 34 / 44

35 Efeitos da adição de pólos Dornellas (UNIVASF) Juazeiro - BA 35 / 44

36 Efeitos da adição de zeros Dornellas (UNIVASF) Juazeiro - BA 36 / 44

37 Compensador avanço de fase s+ 1 T G c (s) = K c s+ 1 αt onde α < 1 e consequentemente p > z Técnica: Considere um sistema = K c s+z s+ p instável ou estável, mas com resposta transitória insatisfatória Modificar o lugar das raízes para que um par de pólos dominantes de malha fechada passe pela posição desejada no plano-s Dornellas (UNIVASF) Juazeiro - BA 37 / 44

38 Compensador atraso de fase onde β > 1 Técnica: Considere um sistema G c (s) = ˆK c s+ 1 T s+ 1 βt com resposta transitória satisfatória e com resposta em regime permanente insatisfatória Aumentar o ganho de malha aberta sem alterar sensivelmente as características da resposta transitória Dornellas (UNIVASF) Juazeiro - BA 38 / 44

39 Compensador atraso de fase Para evitar uma alteração significativa do lugar das raízes A contribuição angular do compensador atraso de fase deve ser pequena ( ) s+ 5 1 T < s+ 1 < 0 βt É possível alocar o pólo e o zero próximos um do outro e da origem do plano-s. Para um pólo dominante de malha fechada s = s 1, G c (s 1 ) = ˆK c s T s βt = ˆK c s T s βt = ˆK c s T s βt = ˆK c Dornellas (UNIVASF) Juazeiro - BA 39 / 44

40 Compensador atraso de fase Fazendo ˆK c = 1 As características da resposta transitória não serão alteradas O ganho resultante da função de transferência de malha aberta pode ser aumentado por um fator β > 1 Sistema não compensado Sistema compensado K v = lim s 0 sg(s) ˆK v = lim s 0 sg c (s)g(s) = lim s 0 G c (s)k v = ˆK c βk v Dornellas (UNIVASF) Juazeiro - BA 40 / 44

41 Compensador atraso e avanço de fase onde γ > 1 e β > 1 G c (s) = K c ( s+ 1 T 1 s+ γ T 1 )( ) s+ 1 T 2 s+ 1 βt 1 Consideramos K c pertencente à porção de avanço de fase Técnica: Melhorar tanto a resposta transitória quanto a resposta em regime permanente Dornellas (UNIVASF) Juazeiro - BA 41 / 44

42 Compensação em paralelo Na compensação em série C(s) R(s) = G c (s)g(s) 1+G c (s)g(s)h(s) Equação característica 1+G c (s)g(s)h(s) = 0 Dados G(s) e H(s), o problema de projeto é a determinação de G c (s) Dornellas (UNIVASF) Juazeiro - BA 42 / 44

43 Compensação em paralelo Na compensação em paralelo C(s) R(s) = G 2 (s) 1+G 2 (s)g c (s) G 2 (s) G 1 (s) 1+G 1 (s) 1+G 2 (s)g c (s) H(s) = G 1 (s)g 2 (s) 1+G 2 (s)g c (s)+g 1 (s)g 2 (s)h(s) Dornellas (UNIVASF) Juazeiro - BA 43 / 44

44 Compensação em paralelo Equação característica G 2 (s) 1+G 2 (s)g c (s)+g 1 (s)g 2 (s)h(s) = 0 1+G c (s) G 1 (s)g 2 (s)h(s) = 0 Fazendo Temos 1+G c (s)g f (s) = 0 G f (s) = G 2 (s) G 1 (s)g 2 (s)h(s) O projeto de G c (s) é o mesmo que no caso da compensação em série Dornellas (UNIVASF) Juazeiro - BA 44 / 44

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Aula 13 Análise no domínio da frequência

Aula 13 Análise no domínio da frequência Aula 13 Análise no domínio da frequência A resposta em frequência é a resposta do sistema em estado estacionário (ou em regime permanente) quando a entrada do sistema é sinusoidal. Métodos de análise de

Leia mais

VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES

VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES Prof. Davi Antônio dos Santos (davists@ita.br) Departamento

Leia mais

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Estabilidade Carlos Alexandre Mello 1 Introdução Já vimos que existem três requisitos fundamentais para projetar um sistema de controle: Resposta Transiente Estabilidade Erros de Estado Estacionário Estabilidade

Leia mais

AULA #12. Estabilidade de Sistemas de Controle por

AULA #12. Estabilidade de Sistemas de Controle por AULA #12 Estabilidade de Sistemas de Controle por Realimentação Estabilidade de Sistemas de Controle por Realimentação A presença de medidores, controladores e elementos finais de controle afetam as características

Leia mais

ANÁLISE LINEAR DE SISTEMAS

ANÁLISE LINEAR DE SISTEMAS ANÁLISE LINEAR DE SISTEMAS JOSÉ C. GEROMEL DSCE / Faculdade de Engenharia Elétrica e de Computação UNICAMP, CP 6101, 13083-970, Campinas, SP, Brasil, geromel@dsce.fee.unicamp.br Campinas, Janeiro de 2007

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;

Leia mais

Desempenho de Sistemas de Controle Realimentados

Desempenho de Sistemas de Controle Realimentados Desempenho de Sistemas de Controle Realimentados. Erro em estado estacionário de sistemas de controle realimentados 2. Erro em estado estacionário de sistemas com realimentação não-unitária 3. Índice de

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES A função de transferência do circuito abaixo em malha fechada é: F(s) = C(s) = G(s)

Leia mais

Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos. Prof. Cassiano Rech cassiano@ieee.org

Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos. Prof. Cassiano Rech cassiano@ieee.org Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos cassiano@ieee.org 1 Projeto por alocação de pólos Na abordagem convencional, usando por exemplo o método do lugar das

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace Resumo Sinais e Sistemas Transformada de aplace lco@ist.utl.pt Instituto Superior Técnico Definição da transformada de aplace. Região de convergência. Propriedades da transformada de aplace. Sistemas caracterizados

Leia mais

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica Aula 11 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução - Lugar das Raízes

Leia mais

PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho

PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=

Leia mais

SISTEMAS DE CONTROLE II

SISTEMAS DE CONTROLE II SISTEMAS DE CONTROLE II - Algumas situações com desempenho problemático 1) Resposta muito oscilatória 2) Resposta muito lenta 3) Resposta com erro em regime permanente 4) Resposta pouco robusta a perturbações

Leia mais

O método do lugar das raízes

O método do lugar das raízes Capítulo 4 O método do lugar das raízes 4.1 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização dos pólos de um sistema em malha fechada

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle

Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle Hector Bessa Silveira e Daniel Coutinho 2012/2 1 Objetivos Neste próximos laboratórios, utilizar-se-á

Leia mais

Sistemas de Controle 2

Sistemas de Controle 2 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.8 - Técnicas do Lugar das Raízes Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic

Leia mais

Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II

Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II Recapitulando (da parte I): Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada, quando K varia.

Leia mais

p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem

p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem Introdução Os primeiros filtros construídos eram circuitos LC passivos.

Leia mais

Análise de Erro Estacionário

Análise de Erro Estacionário Análise de Erro Estacionário Sistema de controle pode apresentar erro estacionário devido a certos tipos de entrada. Um sistema pode não apresentar erro estacionário a uma determinada entrada, mas apresentar

Leia mais

Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros

Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros Capítulo Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros. Introdução O cálculo da resposta no domínio do tempoy(t) de um sistemag(t) pode ser calculado através da integral de convolução:

Leia mais

PRINCÍPIOS DE CONTROLE E SERVOMECANISMO

PRINCÍPIOS DE CONTROLE E SERVOMECANISMO PRINCÍPIOS DE CONTROLE E SERVOMECANISMO JOSÉ C. GEROMEL e RUBENS H. KOROGUI DSCE / Faculdade de Engenharia Elétrica e de Computação UNICAMP, CP 6101, 13083-970, Campinas, SP, Brasil, geromel@dsce.fee.unicamp.br

Leia mais

SC1 Sistemas de Controle 1. Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor

SC1 Sistemas de Controle 1. Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor SC1 Sistemas de Controle 1 Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor Sumário 1. Introdução 2. Definições 3. Alguns detalhes construtivos sobre LR 4. Condições para um

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Capítulo 3 Sistemas de Controle com Realimentação

Capítulo 3 Sistemas de Controle com Realimentação Capítulo 3 Sistemas de Controle com Realimentação Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Sistemas de Controle com

Leia mais

Um resumo das regras gerais para a construção do lugar das raízes p. 1/43. Newton Maruyama

Um resumo das regras gerais para a construção do lugar das raízes p. 1/43. Newton Maruyama Um resumo das regras gerais para a construção do lugar das raízes p. 1/43 Um resumo das regras gerais para a construção do lugar das raízes Newton Maruyama Um resumo das regras gerais para a construção

Leia mais

Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sistemas O Método do Lugar das Raízes Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Introdução No projeto de um sistema de controle, é fundamental se determinar

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Sessão Prática: Simulação e Controle com LabVIEW

Sessão Prática: Simulação e Controle com LabVIEW Sessão Prática: Simulação e Controle com LabVIEW 1 Visão geral Este tutorial mostra as características dos controles proporcional (P), integral (I) e derivativo (D), e como utilizálos para obter a resposta

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

EA616B Análise Linear de Sistemas Resposta em Frequência

EA616B Análise Linear de Sistemas Resposta em Frequência EA616B Análise Linear de Sistemas Resposta em Frequência Prof. Pedro L. D. Peres Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre 2013 Resposta em Frequência

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

Método do Lugar das Raízes

Método do Lugar das Raízes Método do Lugar das Raízes 1. Esboçando o Lugar das Raízes (LR) pag.1 Controle de Sistemas Lineares Aula 9 O procedimento para esboçar o gráfico do Lugar das Raízes é realizado em 12 passos ordenados a

Leia mais

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA.

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Aulas anteriores Tipos de Sinais (degrau, rampa, exponencial, contínuos, discretos) Transformadas de Fourier e suas

Leia mais

SISTEMAS DE CONTROLO. Objectivos Pedagógicos

SISTEMAS DE CONTROLO. Objectivos Pedagógicos SISTEMAS DE CONTROLO Responsável: Prof. Doutor João Miguel Gago Pontes de Brito Lima Atendimento (Gab. 2.63): Terça e Quarta das 11:00 à 13:00 Objectivos Pedagógicos Pretende-se com esta disciplina fornecer

Leia mais

Pólos, Zeros e Estabilidade

Pólos, Zeros e Estabilidade Pólos, Zeros e Estabilidade Definindo Estabilidade A condição para estabilidade pode também ser expressa da seguinte maneira: se um sistema é estável quando sujeito a um impulso, a saída retoma a zero.

Leia mais

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO João Baptista Bayão Ribeiro USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO EXEMPLO 7.04 DO OGATA Rio de Janeiro 2014 2 ÍNDICE USO DO SCILAB PARA REALIZAÇÃO...1

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

RESUMO 2 - FÍSICA III

RESUMO 2 - FÍSICA III RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos

Leia mais

Circuitos Osciladores

Circuitos Osciladores Circuitos Osciladores Em virtude da realimentação do sinal, a estabilidade do circuito deve ser analisada pois quando a freqüência aumenta, o deslocamento de fase varia e como parte deste sinal é adicionado

Leia mais

Podemos concluir: Todas as funções desse tipo passam pelos pontos: (0,0),(-1,-1) e (1,1). Todas as funções desse tipo são exemplos de funções ímpares.

Podemos concluir: Todas as funções desse tipo passam pelos pontos: (0,0),(-1,-1) e (1,1). Todas as funções desse tipo são exemplos de funções ímpares. 4.3 Funções potência Uma função da forma f(x)=x n, onde n é uma constante, é chamada função potência. Os gráficos de f(x)=x n para n=1,2,3,4 e 5 são dados a seguir. A forma geral do gráfico de f(x)=x n

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Sistema de excitação

Sistema de excitação Sistema de excitação Introdução Introdução A função do sistema de excitação é estabelecer a tensão interna do gerador síncrono; Em consequência,o sistema de excitação é responsável não somente pela tensão

Leia mais

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES VERSÃO 1.0.2 Resumo. Este texto resume e complementa alguns assuntos dos Capítulo 9 do Boyce DiPrima. 1. Sistemas autônomos

Leia mais

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do

Leia mais

Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1

Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro 2012. 1 / 48 Resumo 1 Introdução 2 Diagramas de Bode 3

Leia mais

ANÁLISE DO LUGAR DAS RAÍZES

ANÁLISE DO LUGAR DAS RAÍZES VII- &$3Ì78/ 9,, ANÁLISE DO LUGAR DAS RAÍZES 7.- INTRODUÇÃO O étodo de localização e análise do lugar das raízes é ua fora de se representar graficaente os pólos da função de transferência de u sistea

Leia mais

Melhoramos a resposta temporal associando um compensador de avanço de fase que contribui com

Melhoramos a resposta temporal associando um compensador de avanço de fase que contribui com Compensador por Avanço / Atraso de fase A compensação de avanço / atraso de fase, é a composição das duas técnicas vistas anteriormente em um único compensador. Melhoramos a resposta temporal associando

Leia mais

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre

Leia mais

Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período.

Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período. Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período. sin(t) = sin (t + T), ou exp(t) = exp(t+t) em que T é o período. [sin(a) e/ou cos(a) ]+[ sin(b) e/ou cos(b)] = o periodo

Leia mais

Fundamentos de Controle

Fundamentos de Controle Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;

Leia mais

Prova 2 - Sistemas de Controle Projetos

Prova 2 - Sistemas de Controle Projetos Prova - Sistemas de Controle Projetos Pedro Batista (887) - pedro@ufpa.br Paulo Victor Mocbel (887) - pvmocbel@gmail.com December 4, Projeto de Controlador PI ideal Desejamos adicionar um controlador proporcional

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Amplificadores lineares e filtros

Amplificadores lineares e filtros Instrumentação de Controle - 167347 Departamento de Engenharia Elétrica (ENE) Universidade de Brasília (UnB) Amplificadores lineares e filtros Tópicos Características de amplificadores operacionais Amplificadores

Leia mais

Função de Transferência de Malha Fechada

Função de Transferência de Malha Fechada Função de Transferência de Malha Fechada R(s) B(s) + - E(s) Controlador Gc(S) U(s) Sensor G(S) Planta C(s) C(s)=G(s)*U(s) H(S) C(s)=G(s)*Gc(s)*E(s) C(s)=G(s)*Gc(s)*[ R(s)-B(s) ] C(s)=G(s)*Gc(s)*[ R(s)-H(s)*C(s)

Leia mais

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO João Baptista Bayão Ribeiro USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO Rio de Janeiro 2014 2 ÍNDICE USO DO SCILAB PARA REALIZAÇÃO...1 EM COMPUTADOR DE UM PROJETO...1

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Resposta em frequência 4.1 Noção do domínio da frequência 4.2 Séries de Fourier e propriedades 4.3 Resposta em frequência dos SLITs 1 Capítulo 4 Resposta em frequência 4.1 Noção do domínio da

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge 5.A. Traçado das Assíntotas Traçado

Leia mais

LABORATÓRIO DE CONTROLE I ESTUDO DE COMPENSADORES DE FASE

LABORATÓRIO DE CONTROLE I ESTUDO DE COMPENSADORES DE FASE UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 4: ESTUDO DE COMPENSADORES DE FASE COLEGIADO DE ENGENHARIA ELÉTRICA DISCENTES: Lucas

Leia mais

Modelo Matemático e Controle de um Robô Móvel. 2.1. Modelo do motor que aciona cada roda do robô

Modelo Matemático e Controle de um Robô Móvel. 2.1. Modelo do motor que aciona cada roda do robô 1. Introdução Modelo Matemático e Controle de um Robô Móvel Nesta aula serão apresentadas leis de controle que permitem a um robô móvel nãoholonômico navegar de maneira coordenada desde uma localização

Leia mais

MÓDULO 9. A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais:

MÓDULO 9. A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais: A COR DE UM CORPO MÓDULO 9 A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais: luz branca vermelho alaranjado amarelo verde azul anil violeta A cor que um corpo iluminado

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelação, Identificação e Controlo Digital 2-Modelos em Controlo por Computador 1 2 - Modelos em Controlo por Computador Objectivo: Introduzir a classe de modelos digitais que são empregues nesta disciplina

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

Projetos de Controle

Projetos de Controle Projetos de Cotrole EA7 - Prof. Vo Zube Cotrole do Pêdulo Ivertido com Carro.... Modelo matemático (pg. 7 das Notas de Aula).... Cotrole por realimetação de estados supodo acesso a todos os estados (CASO

Leia mais

R + b) Determine a função de transferência de malha fechada, Y (s)

R + b) Determine a função de transferência de malha fechada, Y (s) FUP IC Teoria do Controlo xercícios Análise de Sistemas ealimentados Teoria do Controlo xercícios Análise de Sistemas ealimentados AS Considere o sistema da figura ao lado: a) Determine a função de transferência

Leia mais

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações

Leia mais

CONTROLO DE SISTEMAS

CONTROLO DE SISTEMAS UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS Lugar Geométrico das Raízes PROJECTO E ANÁLISE DA RESPOSTA TRANSITÓRIA E ESTABILIDADE Parte 1/3 - Compensação

Leia mais

Critério de Estabilidade: Routh-Hurwitz

Critério de Estabilidade: Routh-Hurwitz Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO Respostas breves: 1.1) 9,063 N 1.2) norte, pois é positiva. 1.3) São José (Costa Rica). 2) Não, porque Santa Maria não está localizada sobre ou entre os dois

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Newton Maruyama. Projeto de Controladores No Domínio Da Freqüência p. 1/4

Newton Maruyama. Projeto de Controladores No Domínio Da Freqüência p. 1/4 Projeto de Controladores No Domínio Da Freqüência Newton Maruyama Projeto de Controladores No Domínio Da Freqüência p. 1/4 Compensação por avanço de fase Função de Transferência: H(s)=K c α Ts+ 1 αts+

Leia mais

Espelhos Esféricos. Definições e Elementos:

Espelhos Esféricos. Definições e Elementos: Definições e Elementos: Calota Esférica. Espelho Esférico é uma calota esférica na qual uma das faces é refletora. Espelho Côncavo Superfície refletora interna. Espelho Convexo Superfície refletora externa.

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

Curso de Controle Discreto 2 Pe. Pedro M. Guimarães Ferreira S.J. http://www.fplf.org.br/pedro_varios/

Curso de Controle Discreto 2 Pe. Pedro M. Guimarães Ferreira S.J. http://www.fplf.org.br/pedro_varios/ Curso de Controle Discreto Pe Pedro M Guimarães Ferreira SJ http://wwwfplforgbr/pedro_varios/ (Texto básico deste curso: Katsuiko Ogata, Discrete-time Control Systems Prentice- Hall, Second Edition, 995)

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

Controle de Processos Aula: Estabilidade e Critério de Routh

Controle de Processos Aula: Estabilidade e Critério de Routh 107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

O Papel dos Pólos e Zeros

O Papel dos Pólos e Zeros Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),

Leia mais

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 5: APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM COLEGIADO DE ENGENHARIA

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Teoria de Erros Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 O que é a Análise Numérica? Ramo da Matemática dedicado ao estudo e desenvolvimento de métodos (métodos

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta

Leia mais

Filtro FIR: Estudo, Projeto e Simulação

Filtro FIR: Estudo, Projeto e Simulação Filtro FIR : Características Projeto de um Filtro FIR 1/38 Filtro FIR: Estudo, Projeto e Simulação Fabrício Simões IFBA 28 de Novembro de 2011 Filtro FIR : Características Projeto de um Filtro FIR 2/38

Leia mais

Escola Superior de Tecnologia e Educação de Rio Claro

Escola Superior de Tecnologia e Educação de Rio Claro Favor grampear! Engenharia de Produção Cálculo Vetorial e Geometria Analítica Prof. Dr. Marcello G. Rodrigues Nota só do relatório (máx. 9,0 pontos): Data: / / 2015 Nome completo do aluno Número RA Período:

Leia mais

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

Aula 18 Elipse. Objetivos

Aula 18 Elipse. Objetivos MÓDULO 1 - AULA 18 Aula 18 Elipse Objetivos Descrever a elipse como um lugar geométrico. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio entre os focos e eixo

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais