Projetos de Controle

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Projetos de Controle"

Transcrição

1 Projetos de Cotrole EA7 - Prof. Vo Zube Cotrole do Pêdulo Ivertido com Carro.... Modelo matemático (pg. 7 das Notas de Aula).... Cotrole por realimetação de estados supodo acesso a todos os estados (CASO ).... Cotrole por realimetação de estados supodo acesso a todos os estados (CASO )...7. Cotrole por realimetação de estados com observador de estados....5 Realimetação de estados: vatages e desvatages....6 Programa o MATLAB...5 Projeto de Cotrole Proporcioal-Itegral-Derivativo (PID)...6. Método de Ziegler-Nichols...7. Método Aalítico...8. Cotrole P D... Aula 9 Projetos de Cotrole Cotrole do Pêdulo Ivertido com Carro EA7 - Prof. Vo Zube. Modelo matemático (pg. 7 das Notas de Aula) Aula 9 Projetos de Cotrole

2 EA7 - Prof. Vo Zube Aula 9 Projetos de Cotrole θ θ θ g dt d dt d l u dt d ml dt d m M ) ( tomado como variáveis de estado: θ θ resulta a seguite equação de estado: u M Ml M mg Ml g m M ) ( EA7 - Prof. Vo Zube Aula 9 Projetos de Cotrole. Cotrole por realimetação de estados supodo acesso a todos os estados (CASO ) equação de saída: y y y y parâmetros da plata: M ; m.; l.. codição iicial: o 7.. rad θ ; θ especificações de desempeho: 5. ξ e 5. ω rad/s pólos domiates: j ± demais pólos (parte real 5 vezes 6.75):.75 j ±

3 como calcular o gaho tal que a matriz EA7 - Prof. Vo Zube A B teha como pólos [ 6.75 j j j.75 j ] T P comado do MATLAB: place(a,b,p); a multiplicidade dos pólos ão pode ser maior que o úmero de etradas. gaho de realimetação de estado resultate: ação de cotrole: [ ] u Valor máimo:? Valor míimo: 9. Aula 9 Projetos de Cotrole 5 EA7 - Prof. Vo Zube Aula 9 Projetos de Cotrole 6

4 EA7 - Prof. Vo Zube. Cotrole por realimetação de estados supodo acesso a todos os estados (CASO ) equação de saída: y y y y parâmetros da plata: M ; m.; l.. o codição iicial: θ. rad 7. ; θ especificações de desempeho: ξ. 5 e ω rad/s pólos domiates:.75 ± j5. 85 demais pólos (parte real 5 vezes os domiates): ± j Aula 9 Projetos de Cotrole 7 gaho de realimetação de estado resultate: [ ] EA7 - Prof. Vo Zube ação de cotrole: u Valor máimo:.5 Valor míimo: 5.5 Aula 9 Projetos de Cotrole 8

5 EA7 - Prof. Vo Zube Aula 9 Projetos de Cotrole 9 EA7 - Prof. Vo Zube. Cotrole por realimetação de estados com observador de estados equação de saída: y [ ] parâmetros da plata: M ; m.; l.. o codição iicial: θ. rad 7. ; θ especificações de desempeho: ξ. 5 e ω rad/s pólos domiates:.75 ± j5. 85 demais pólos (parte real 5 vezes os domiates): ± j Aula 9 Projetos de Cotrole

6 gaho de realimetação de estado resultate: [ ] EA7 - Prof. Vo Zube pelo pricípio da separação, o gaho do observador pode ser obtido de forma idepedete, aplicado a mesma fução do MATLAB, só que agora a forma dual: L place(a,c,p); pólos domiates do observador (parte real vezes a diâmica do sistema em malha fechada):.5 ± j7. 55 demais pólos (parte real 5 vezes os domiates): 5.65 ± j gaho do observador: L [ ] tomado como codição iicial do observador: [.5 ] T ˆ () Aula 9 Projetos de Cotrole EA7 - Prof. Vo Zube Aula 9 Projetos de Cotrole

7 Comparação etre as ações de cotrole sem e com observador EA7 - Prof. Vo Zube Sem observador Com observador.5 Realimetação de estados: vatages e desvatages vatages: permite defiir arbitrariamete a posição dos pólos; é diretamete etesível a sistemas MIMO. Aula 9 Projetos de Cotrole desvatages: EA7 - Prof. Vo Zube ão foram apresetadas técicas para alocação de zeros (ão serão tratadas aqui); o compesador tem a mesma dimesão do sistema diâmico; o compesador ecarece o sistema de cotrole; critérios o domíio da freqüêcia, como marges de estabilidade, ão podem ser cosiderados diretamete; o observador de estados aumeta a compleidade do projeto; o observador de estados tede a reduzir as marges de estabilidade; observador de ordem reduzida (ão será tratado aqui) tora o sistema mais suscetível a ruído de alta freqüêcia; o projeto pode ser muito sesível a icertezas o modelo da plata. coclusão: técicas clássicas, evolvedo compesadores lead-lag, devem ser cosideradas iicialmete. Se o resultado ão for satisfatório, adote o projeto por realimetação de estados. Aula 9 Projetos de Cotrole

8 EA7 - Prof. Vo Zube.6 Programa o MATLAB Cotrole por realimetação de estados com observador de estados de ordem completa clear all; M ; m.; l.; g 9.8; A [ ;((Mm)*g)/(M*l) ; ;-(m*g)/m ]; B [;-/(M*l);;/M]; C [ ]; D zeros(,); % qsi.5 w 6.75 rad/s P [-.75i*5.85;-.75-i*5.85;-6.875i*; i*]; place(a,b,p); P [-.5i*7.55;-.5-i*7.55;-5.65i*;-5.65-i*]; L place(a',c',p); Ak A-B*-L'*C; Bk L'; Ck ; Dk ; [At,Bt,Ct,Dt] feedback(a,b,c,d,ak,bk,ck,dk); [Ata,Bta,Cta,Dta] augstate(at,bt,ct,dt); sys ss(ata,bta,cta,dta); [..5 ]; T [:.:]'; y iitial(sys,,t); y(:,:5); _est y(:,6:9); Aula 9 Projetos de Cotrole 5 EA7 - Prof. Vo Zube Projeto de Cotrole Proporcioal-Itegral-Derivativo (PID) o cotrole PID é de loge o mais utilizado juto a processos idustriais; está dispoível as formas aalógica, digital e adaptativa (ão tratada este curso); o cotrole P (apeas proporcioal) é o mais simples, possibilitado ao projetista satisfazer apeas um critério de desempeho em malha fechada. Eemplo: margem de gaho ou margem de fase ou erro de estado estacioário. a adição do termo derivativo aumeta o amortecimeto do sistema em malha fechada; a adição do termo itegral aumeta o tipo do sistema e, assim, permite a redução de erro de estado estacioário; Aula 9 Projetos de Cotrole 6

9 EA7 - Prof. Vo Zube. Método de Ziegler-Nichols PID: P Ds s I Ziegler, J.G. Nichols, N.B. Optimum Settigs for Automatic Cotrollers, Tras. ASME, pp , 9. método para defiição de P, D e I baseado em uma aálise simples de estabilidade; Passo : faça D I. Passo : aumete o gaho proporcioal até que o sistema etre em oscilação permaete. Este gaho recebe a deomiação de M e a freqüêcia de oscilação associada é deomiada ω M. Repare que a técica do lugar das raízes e até o diagrama de Bode podem ser utilizados para obter M e ω M. Passo : defia os parâmetros do cotrolador PID como segue: Aula 9 Projetos de Cotrole 7 EA7 - Prof. Vo Zube. 6 P M D Pπ ω M I P ω M π. Método Aalítico busca defiir P, D e I para ateder critérios específicos de desempeho em malha fechada. Resultado : o gaho de malha de uma sistema com cotrole PID é dado por: P D s s G(s) Resultado : se G(s) é uma plata do tipo, o sistema compesado será do tipo. A costate de erro, que é igual ao iverso do erro em estado estacioário, assume a forma: k s I G( s) s ess Passo : dada uma especificação de erro em estado estacioário, obtém-se I. Aula 9 Projetos de Cotrole 8 I

10 EA7 - Prof. Vo Zube Passo : dadas especificações o domíio do tempo, como sobre-elevação e tempo de acomodação, determiam-se ξ e ω em malha fechada. Passo : a partir de ξ obtém-se a margem de fase PM e a freqüêcia (freqüêcia atural em malha fechada) o gaho do sistema compesado deve ser e a fase deve ser 8 o PM, que em radiaos é dada por θ ( ). ω ω Passo : dos resultados acima, chega-se a (lembre-se que I já está determiado) I jθ ( ω ) P jω D G( jω ) e jω que leva a Passo 5: faça P jω D jθ ( ω ) e G( jω P. imag P Preal e D ω j ) ω I P real jp imag Aula 9 Projetos de Cotrole 9. Cotrole P D EA7 - Prof. Vo Zube Aula 9 Projetos de Cotrole

Unidade V - Desempenho de Sistemas de Controle com Retroação

Unidade V - Desempenho de Sistemas de Controle com Retroação Uidade V - Desempeho de Sistemas de Cotrole com Retroação Itrodução; Siais de etrada para Teste; Desempeho de um Sistemas de Seguda Ordem; Efeitos de um Terceiro Pólo e de um Zero a Resposta Sistemas de

Leia mais

CONTROLO. 1º semestre 2007/2008. Transparências de apoio às aulas teóricas. Capítulo 10 Diagrama de Bode e Relação Tempo-Frequência

CONTROLO. 1º semestre 2007/2008. Transparências de apoio às aulas teóricas. Capítulo 10 Diagrama de Bode e Relação Tempo-Frequência Mestrado Itegrado em Egeharia Electrotécica e de Computadores (LEEC Departameto de Egeharia Electrotécica e de Computadores (DEEC CONTROLO º semestre 007/008 Trasparêcias de apoio às aulas teóricas Capítulo

Leia mais

J. A. M. Felippe de Souza 9 Diagramas de Bode

J. A. M. Felippe de Souza 9 Diagramas de Bode 9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de

Leia mais

5 Análise de sistemas no domínio da frequência. 5.1 Resposta em regime estacionário a uma onda sinusoidal

5 Análise de sistemas no domínio da frequência. 5.1 Resposta em regime estacionário a uma onda sinusoidal 5 Aálise de sistemas o domíio da frequêcia O termo resposta a frequêcia utiliza-se para desigar a resposta de um sistema, em regime estacioário, a uma oda siusoidal. Esta resposta, para o caso de um sistema

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

Motivação e Definição..1. Factores Básicos...3. Constante...3. Factor derivativo e Integral...4. Factores Básicos...12

Motivação e Definição..1. Factores Básicos...3. Constante...3. Factor derivativo e Integral...4. Factores Básicos...12 ÍNDICE Motivação e Defiição.. Diagramas de Bode... Factores Básicos...3 Costate...3 Factor derivativo e Itegral...4 Factores de ª ordem...5 Factores de ª ordem...7 Sistemas de Fase míima e Não-Míima...

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

INSTRUMENTAÇÃO E CONTROLO

INSTRUMENTAÇÃO E CONTROLO ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE ENGENHARIA MARÍTIMA INSTRUMENTAÇÃO E CONTROLO REVISÕES SOBRE SISTEMAS DE CONTROLO CONTÍNUO Elemetos coligidos por: Prof. Luís Filipe Baptista

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

AVALIAÇÃO DE DESEMPENHO

AVALIAÇÃO DE DESEMPENHO AVALIAÇÃO DE DESEMPENHO Itrodução Aálie o domíio do tempo Repota ao degrau Repota à rampa Repota à parábola Aálie o domíio da freqüêcia Diagrama de Bode Diagrama de Nyquit Diagrama de Nichol Eta aula EM

Leia mais

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com Aalise de Ivestimetos e Custos Prof. Adilso C. Bassa email: adilsobassa@adilsobassa.com JUROS SIMPLES 1 Juro e Cosumo Existe juro porque os recursos são escassos. As pessoas têm preferêcia temporal: preferem

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Métodos de Sintonização de Controladores PID

Métodos de Sintonização de Controladores PID 3ª Aula de Controlo Inteligente Controlo PI iscreto Métodos de Sintonização de Controladores PI Os controladores PI são muito utilizados em aplicações industrias. A função de transferência que define o

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Secção 9. Equações de derivadas parciais

Secção 9. Equações de derivadas parciais Secção 9 Equações de derivadas parciais (Farlow: Sec 9 a 96) Equação de Derivadas Parciais Eis chegado o mometo de abordar as equações difereciais que evolvem mais do que uma variável idepedete e, cosequetemete,

Leia mais

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Saulo Dornellas Universidade Federal do Vale do São Francisco Juazeiro - BA Dornellas (UNIVASF) Juazeiro - BA 1 / 44 Análise do

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt:

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt: Proposta de Resolução do Exame de Matemática Aplicada às Ciêcias Sociais Cód. 835-2ª 1ª Fase 2014 1.1 Comecemos por determiar a distribuição de represetates por aplicação do método de Hodt: Divisores PARTIDOS

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem Aula 07 Aálise o domíio do tempo Parte II Sistemas de ª ordem Aálise o domíio do tempo - Sistemas de ª ordem iput S output Sistema de seguda ordem do tipo α G(s) as + bs + c Aálise o domíio do tempo -

Leia mais

VARIAÇÃO DE VELOCIDADE DE MOTORES ELÉCTRICOS

VARIAÇÃO DE VELOCIDADE DE MOTORES ELÉCTRICOS VARIAÇÃO DE VELOCIDADE DE OTORES ELÉCTRICOS ACCIONAENTOS A VELOCIDADE VARIÁVEL Rede Coversor de potecia otor Carga Dispositivo de cotrolo Parâmetros O coversor estático trasforma a eergia eléctrica de

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge 5.A. Traçado das Assíntotas Traçado

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Análise no domínio dos tempos de sistemas representados no Espaço dos Estados

Análise no domínio dos tempos de sistemas representados no Espaço dos Estados MEEC Mestrado em Egeharia Electrotécica e de Computadores MCSDI Guião do trabalho laboratorial º 3 Aálise o domíio dos tempos de sistemas represetados o Espaço dos Estados Aálise o domíio dos tempos de

Leia mais

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Disciplia: Séries e Equações Difereciais Ordiárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Ambiete Virtual de Apredizagem: Moodle (www.ead.ufpb.br) Site do Curso: www.mat.ufpb.br/ead

Leia mais

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente; 2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada

Leia mais

2. Teoria das Filas. 2.1. Características estruturais dos sistemas de fila

2. Teoria das Filas. 2.1. Características estruturais dos sistemas de fila 2. Teoria das Filas Segudo Fogliatti (2007), a teoria das filas osiste a modelagem aalítia de proessos ou sistemas que resultam em espera e tem omo objetivo determiar e avaliar quatidades, deomiadas medidas

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

5. Diagramas de blocos

5. Diagramas de blocos 5. Diagramas de blocos Um sistema de controlo pode ser constituído por vários componentes. O diagrama de blocos é uma representação por meio de símbolos das funções desempenhadas por cada componente e

Leia mais

I - FUNDAMENTOS DO CONCRETO ARMADO 1- INTRODUÇÃO GERAL. 1.1- Definição

I - FUNDAMENTOS DO CONCRETO ARMADO 1- INTRODUÇÃO GERAL. 1.1- Definição I - FUNDAMENTOS DO CONCRETO ARMADO - INTRODUÇÃO GERAL.- Defiição O cocreto armado é um material composto, costituído por cocreto simples e barras ou fios de aço. Os dois materiais costituites (cocreto

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

FILAS DE ESPERA. Notas baseadas em Introduction to Operations Research de Hillier e Lieberman.

FILAS DE ESPERA. Notas baseadas em Introduction to Operations Research de Hillier e Lieberman. FILA DE EPERA otas baseadas em Itroductio to Operatios Research de Hillier e Lieberma. 77 ETRUTURA BÁICA DO ITEMA DE FILA DE EPERA Quado um determiado serviço é procurado por vários clietes, poder-se-ão

Leia mais

CIRCUITOS SEQUÊNCIAIS

CIRCUITOS SEQUÊNCIAIS Coelh ho, J.P. @ Sistem mas Digita ais : Y20 07/08 CIRCUITOS SEQUÊNCIAIS O que é um circuito it sequêcial? Difereça etre circuito combiatório e sequecial... O elemeto básico e fudametal da lógica sequecial

Leia mais

( 7) ( 3) Potenciação

( 7) ( 3) Potenciação Poteciação Defiição: Calcular a potêcia de um úmero real a equivale a multiplicar a, por ele mesmo, vezes. A otação da operação de poteciação é equivalete a: Eemplos: 6; 7 9 a a. a. a... a vezes Propriedades:

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

SISTEMAS DE CONTROLE II

SISTEMAS DE CONTROLE II SISTEMAS DE CONTROLE II - Algumas situações com desempenho problemático 1) Resposta muito oscilatória 2) Resposta muito lenta 3) Resposta com erro em regime permanente 4) Resposta pouco robusta a perturbações

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

TEORIAS, TÉCNICAS E SIMULAÇÕES EM PROCESSOS ALEATÓRIOS - Marco Antonio Leonel Caetano PROCESSOS FILAS

TEORIAS, TÉCNICAS E SIMULAÇÕES EM PROCESSOS ALEATÓRIOS - Marco Antonio Leonel Caetano PROCESSOS FILAS PROCESSOS FILAS VIII. - Itrodução Cogestioameto é um feômeo atural em sistemas reais. Um serviço tora-se cogestioado se há mais pessoas ( iformações ) do que o servidor ( ou servidores ) pode ateder. As

Leia mais

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo.

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo. Matemática Prof.: Joaquim Rodrigues ESTUDO DOS POLINÔMIOS Questão 0 Dê o grau de P em cada caso: a) P() = 7 + b) P () = + + 7 c) P () = + d) P () = + e) P () = 0 f) P () = 0 Questão 0 Dado o poliômio P()

Leia mais

O período do pêndulo: Porque Galileu estava ao mesmo tempo certo e errado

O período do pêndulo: Porque Galileu estava ao mesmo tempo certo e errado UNIVERSIDADE FEDERAL DE MINAS GERAIS UFMG DEPARTAMENTO DE MATEMÁTICA ICEx MONOGRAFIA PARA OBTENÇÃO DE TÍTULO DE ESPECIALISTA EM MATEMÁTICA COM ÊNFASE EM CÁLCULO O período do pêdulo: Porque Galileu estava

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Capitulo 9 Resolução de Exercícios

Capitulo 9 Resolução de Exercícios FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

ERROS ERRO DE ARREDONDAMENTO

ERROS ERRO DE ARREDONDAMENTO ERROS Seja o valor aproimado do valor eacto. O erro de deie-se por ε ε erro absoluto de Aálise N um érica 4 ERRO DE ARREDONDAENTO Seja o valor aproimado do valor eacto tedo eactamete k dígitos após o poto

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

Equações Diferenciais (ED) Resumo

Equações Diferenciais (ED) Resumo Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Cap. 5-Trasformada de Z Uiversidade de Coimbra Aálise e Processameto de BioSiais Mestrado Itegrado em Egeharia Biomédica Faculdade de Ciêcias e Tecologia Uiversidade de Coimbra Slide Aálise e Processameto

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

Capitulo 2 Resolução de Exercícios

Capitulo 2 Resolução de Exercícios FORMULÁRIO Regime de Juros Simples S C J S 1 C i J Ci S C (1 i) S 1 C i Juro exato C i 365 S C 1 i C i 360 Juro Comercial 2.7 Exercícios Propostos 1 1) Qual o motate de uma aplicação de R$ 100.000,00 aplicados

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

Capítulo 39: Mais Ondas de Matéria

Capítulo 39: Mais Ondas de Matéria Capítulo 39: Mais Odas de Matéria Os elétros da superfície de uma lâmia de Cobre foram cofiados em um curral atômico - uma barreira de 7,3 âgstros de diâmetro, imposta por 48 átomos de Ferro. Os átomos

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria

Leia mais

Aula 02 - Relações de Equivalência

Aula 02 - Relações de Equivalência MATEMÁTICA FINANCEIRA Aula 02 - Relações de Equivalêcia Prof. Waderso S. Paris, M.Eg. prof@croosquality.com.br Relação etre P e F F 0 0 P Relação etre P e F Demostração da relação: Pricipal + juros = P

Leia mais

CONTROLO MEEC. Cap 7 Parte I Root Locus. 1º semestre 2015/2016. Transparências de apoio às aulas teóricas. Isabel Ribeiro António Pascoal

CONTROLO MEEC. Cap 7 Parte I Root Locus. 1º semestre 2015/2016. Transparências de apoio às aulas teóricas. Isabel Ribeiro António Pascoal CONTROLO MEEC º semestre 05/06 Trasparêcias de apoio às aulas teóricas Cap 7 Parte I Root Locus Isabel Ribeiro Atóio Pascoal Todos os direitos reservados Estas otas ão podem ser usadas para fis disotos

Leia mais

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS 4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS Muitas vezes os experimetos requerem medidas de gradezas físicas que variam com o tempo. Para a correta medição destas gradezas, é ecessário cohecer as propriedades

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

Demonstrações especiais

Demonstrações especiais Os fudametos da Física Volume 3 Meu Demostrações especiais a ) RLAÇÃO NTR próx. e sup. osidere um codutor eletrizado e em equilíbrio eletrostático. Seja P sup. um poto da superfície e P próx. um poto extero

Leia mais

Professor Mauricio Lutz LIMITES

Professor Mauricio Lutz LIMITES LIMITES ) Noção ituitiva de ites Seja a fução f ( ) +. Vamos dar valores de que se aproimem de, pela sua direita (valores maiores que ) e pela esquerda (valores meores que ) e calcular o valor correspodete

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Egeharia - Campus de Guaratiguetá esquisa Operacioal Livro: Itrodução à esquisa Operacioal Capítulo 6 Teoria de Filas Ferado Maris fmaris@feg.uesp.br Departameto de rodução umário Itrodução

Leia mais

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos DELC - Departameto de Eletrôica e Computação ELC 0 Estudo de Casos em Egeharia Elétrica Solução de Equações Difereciais Ordiárias Usado Métodos Numéricos Versão 0. Giovai Baratto Fevereiro de 007 Ídice

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON PUCPR- Potifícia Uiversidade Católica Do Paraá PPGIA- Programa de Pós-Graduação Em Iformática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ATRAVÉS DA PROJEÇÃO DO DISCRIMINANTE LINEAR DE FISHER SOBRE O

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

4 Teoria da Localização 4.1 Introdução à Localização

4 Teoria da Localização 4.1 Introdução à Localização 4 Teoria da Localização 4.1 Itrodução à Localização A localização de equipametos públicos pertece a uma relevate liha da pesquisa operacioal. O objetivo dos problemas de localização cosiste em determiar

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais