Método do Lugar das Raízes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Método do Lugar das Raízes"

Transcrição

1 Método do Lugar das Raízes 1. Esboçando o Lugar das Raízes (LR) pag.1 Controle de Sistemas Lineares Aula 9

2 O procedimento para esboçar o gráfico do Lugar das Raízes é realizado em 12 passos ordenados a seguir Passo 1 Escreve-se a EC na forma 1 + F(s) = 0 e, se necessário, esta é re-arranjada de forma que o parâmetro de interesse, K, apareça como fator multiplicador, ie 1 + KP(s) = 0 pag.2 Controle de Sistemas Lineares Aula 9

3 Passo 2 Fatora-se P(s), se necessário, e escreve-se o polinômio na forma de ganho, pólos e zeros M (s + z i ) 1 + K i=1 n (s + p j ) j=1 = 0 Passo 3 Marcam-se os pólos e zeros no plano-s com símbolos próprios ( e, respectivamente). Normalmente está-se interessado em determinar o LR quando 0 K e a EC pode ser reescrita da forma n (s + p j ) + K j=1 M (s + z i ) = 0 i=1 pag.3 Controle de Sistemas Lineares Aula 9

4 Para K = 0, as raízes da EC são os pólos de P(s) Quando K, as raízes da EC se aproximam dos zeros de P(s) O Lugar das Raízes da EC, 1 + KP(s) = 0, começa nos pólos de P(s) e termina nos zeros de P(s) quando K é variado de 0 a pag.4 Controle de Sistemas Lineares Aula 9

5 Como normalmente P(s) pode ter vários zeros em infinito, ie, n > M, então n M ramos do LR tenderão a n M zeros em Passo 4 Localizam-se os seguimentos do LR que recaem sobre o eixo real O Lugar das Raízes no eixo real recae sempre sobre um trecho do eixo real à esquerda de um número ímpar de pólos e zeros (Verificado pela condição de ângulo...) pag.5 Controle de Sistemas Lineares Aula 9

6 Exemplo (Passo 1) EC: 1 + F(s) = 1 + K(1 2 s + 1) s( 1 4 s + 1) = 0 (Passo 2) F(s) é reescrita na forma ganho-pólo-zero 1 + 2K(s + 2) s(s + 4) = 0 (Passo 3) Marcam-se os pólos (0, 4) e zero ( 2) com a simbologia adotada Zero Pólos θ p1 pag.6 Controle de Sistemas Lineares Aula 9

7 (Passo 4) O critério de ângulo é satisfeito no segmento do eixo real entre os pontos 0 e 2 (veja que o pólo p 1 = 0 contribui com 180 0, o zero z = 2 contribui com 0 0 e o pólo em p 2 = 4 contribui com ). Entre o zero, z = 2, e o pólo p 2 = 4 obtém-se 0 0 (contribuição de de p 1, de z e 0 0 de p 2 ). Por outro lado, entre p 2 e a contribuição total é de Portanto os trechos entre p 1 e z e p 2 e sobre o eixo real, fazem parte do LR Veja ainda que n M = 2 1 = 1 ramo tenderá a Segmentos do LR pag.7 Controle de Sistemas Lineares Aula 9

8 Passo 5 Determina-se o número de curvas do LR que é igual ao número de pólos (já que o número de pólos é maior ou igual ao número de zeros) Passo 6 O lugar das raízes é simétrico com relação ao eixo real já que raízes complexas sempre aparecem em pares complexos conjugados Passo 7 Se houver zeros em, o LR tende a aproximando-se de assíntotas centradas em σ A (ponto este denominado centróide) e com ângulo φ A, sendo σ A = pólos dep(s) zeros dep(s) n p n z = n M ( p j ) ( z i ) j=1 i=1 n p n z pag.8 Controle de Sistemas Lineares Aula 9

9 E o ângulo das assíntotas em relação ao eixo real é φ A = (2q + 1) n p n z 180 0, q = 0, 1, 2,..., (n p n z 1) A equação acima é obtida usando o fato que, a um ponto muito distante dos pólos e zeros, pode-se considerar que os ângulos de cada pólo e zero, φ, são praticamente iguais e, portanto, o ângulo ĺıquido (de ) é simplesmente φ(n p n z ). Ou, de forma alternativa, φ = /(n p n z ), o que resulta na forma acima aplicável a cada ramo do LR em pag.9 Controle de Sistemas Lineares Aula 9

10 Passo 8 Determina-se, quando for o caso, o ponto em que o LR cruza o eixo imaginário usando o critério de Routh-Hurwitz Passo 9 Determina-se o ponto de partida ou de chegada do eixo real (se houver). O LR deixa o eixo real no ponto em que, para pequenas variações do parâmetro em consideração, o ângulo ĺıquido é zero Veja que o LR deixa de pertencer ao eixo real nos casos em que há multiplicidade de raízes, tipicamente duas Em geral, para obedecer à condição de ângulo, as tangentes do LR no ponto de partida/chegada são igualmente espaçadas sobre os pag.10 Controle de Sistemas Lineares Aula 9

11 MASTER 86 1 j1 Copyright 1998 by Addison Wesley Longman. All rights reserved. Breakaway point (a) 0 j j1 1 j1 (b) Figure 7.8 Illustration of the breakaway point (a) for a simple second-order system and (b) for a fourth-order system

12 O ponto de partida/chegada pode ser avaliado graficamente ou analiticamente. A maneira mais direta de se determinar o ponto de partida/chegada requer que se re-arranje a EC isolando o fator multiplicador K para que a EC apareça na forma p(s) = K Exemplo Para um sistema de 2a. ordem em malha aberta G(s) = a EC é da forma K (s+2)(s+4) 1 + G(s) = 1 + K (s + 2)(2 + 4) = (s + 2)(s + 4) + K = 0 K = p(s) = (s + 2)(s + 4) pag.12 Controle de Sistemas Lineares Aula 9

13 Para este caso em particular, espera-se pelo esboço do LR que o ponto de partida esteja próximo a s = σ = 3 Traçando-se o gráfico de p(s) versus σ determina-se o ponto de máximo (veja tabela abaixo). Além disso o gráfico gerado é simétrico em relação a σ = 3, ie, o valor de máximo corresponde ao ponto de partida/chegada s p(s) pag.13 Controle de Sistemas Lineares Aula 9

14 Analiticamente, o mesmo resultado pode ser obtido a partir da determinação do máximo de K = p(s). Como? Derivando p(s) e igualando a zero... dk ds = dp(s) ds = 0 Exemplo Do exemplo anterior com K = p(s) = (s + 2)(s + 4) = (s 2 + 6s + 8) dp(s) ds = (2s + 6) = 0 s = σ = 3 pag.14 Controle de Sistemas Lineares Aula 9

15 Exemplo Para um sistema com EC dada por 1 + G(s)H(s) = 1 + K(s + 1) s(s + 2)(s + 3) = 0 Obtém-se n p n z = 3 1 = 2. Número de assíntotas? Duas (dois pólos tenderão a zeros em ), com φ A = (2q + 1) n p n z = (2(0) + 1) = 90 0 φ A = (2(1) + 1) = = 90 0 pag.15 Controle de Sistemas Lineares Aula 9

16 n M σ A = ( p j ) j=1 i=1 n p n z ( z i ) = [0 + ( 2) + ( 3)] [ 1] 2 = 2 Particularmente, K = p(s) = s(s+2)(s+3) (s+1) e o ponto de partida é calculado de dk ds = 2s3 + 8s s + 6 (s + 1) 2 = 0 com raízes = { ; ± j0.7926} s = pag.16 Controle de Sistemas Lineares Aula 9

17 G(s) R(s) K(s 1) s(s 2) Y(s) Copyright 1998 by Addison Wesley Longman. All rights reserved. Asymptote Figure 7.10 H(s) 1 s 3 Closed-loop system p(s) Figure 7.11 (a) Evaluation of the (a) asymptotes and (b) breakaway point (b) MASTER 87

18 Passo 10 Determina-se o ângulo de partida do LR de um pólo e o ângulo de chegada em cada zero, usando a condição de ângulo. O ângulo de partida (ou chegada) corresponde à diferença entre o ângulo ĺıquido devido a todos os outros pólos e zeros e a condição de ângulo de ±180 0 (2q + 1). Pólos (ou zeros) complexos... Exemplo Para um sistema de 3a. ordem em malha aberta com 2 dois pólos complexos p 1 e p 2 F(s) = G(s)H(s) = K (s + p 3 )(s 2 + 2ζω n s + ω 2 n ) tem-se que, em um ponto de teste, s 1, a uma distância infinitesimal de p 1, pela condição de ângulo (vide figura a seguir) θ 1 + θ 2 + θ 3 = θ θ 3 = θ 1 = 90 0 θ 3 pag.18 Controle de Sistemas Lineares Aula 9

19 A point a small distance from p 1 1 s 1 p 1 p 1 3 Departure vector MASTER 88 Copyright 1998 by Addison Wesley Longman. All rights reserved. p 3 3 p 2 2 p p 2 3 (a) (b) Figure 7.12 Illustration of the angle of departure (a) Test point infinitesimal distance from p 1 (b) Actual departure vector at p 1

20 Passo 11 Determinação da localização das raízes que satisfazem a condição de ângulo P(s) = ± q360 0, q = 1, 2,... na raiz s x, x = 1, 2,..., n p Passo 12 Determinação do valor do parâmetro K x para uma raiz específica s x aplicando a condição de ganho n (s + p j ) j=1 K x = m (s + z i ) i=1 s=s x pag.20 Controle de Sistemas Lineares Aula 9

21 Exemplo (Passo 1) Deseja-se traçar o gráfico do LR da EC (com 0 < K < ) do seguinte sistema 1 + K s s s s = 0 (Passo 2) Determinando os pólos 1 + K s(s + 4)(s j4)(s + 4 j4) = 0 os zeros estão em... pag.21 Controle de Sistemas Lineares Aula 9

22 (Passo 3) Localizar os pólos no plano-s (Passo 4) O LR tem um segmento sobre o eixo real entre s = 0 e s = 4 (Passo 5) Como o número de pólos é n p = 4, há 4 curvas no LR (Passo 6) O gráfico é simétrico em relação ao eixo real pag.22 Controle de Sistemas Lineares Aula 9

23 (Passo 7) Os ângulos das assíntotas são φ A = (2q + 1) n p n z 180 0, q = 0, 1, 2, 3 O centro das assíntotas é φ A = 45 0, 135 0, 225 0, σ A = n M ( p j ) ( z i ) j=1 i=1 n p n z = [0 + ( 4) + ( 4 j4)( 4 + j4)] [0] 4 = 3 pag.23 Controle de Sistemas Lineares Aula 9

24 (Passo 8) Cruza o eixo imaginário? A EC é s s s s + K = 0 O arranjo é dado por s K s s 2 b 1 K s 1 c 1 s 0 K b 1 = c 1 = 12(64) 128 = (128) 12K > Logo para manter estabilidade K < , o que leva, pela eq. auxiliar, a obter raízes em ±j3.266 pag.24 Controle de Sistemas Lineares Aula 9

25 (Passo 9) Ponto de partida é calculado fazendo e K = p(s) = s(s + 4)(s j4)(s + 4 j4) dk ds = 4s3 + 36s s = 0 com raízes em { , ± j2.5533}. Portanto o ponto de partida ocorre em s = pag.25 Controle de Sistemas Lineares Aula 9

26 (Passo 10) O ângulo de partida de um dos pólos complexos, p 1, é obtido a partir da contribuição de cada pólo, na vizinhança de p 1 usando a condição de ângulo, o que resulta em Logo θ p1 + θ p2 + θ p= 4 + θ p=0 = θ p θ p=0 = θ p1 = θ p=0 [ ( )] 4 = tan 1 4 = ( ) = = pag.26 Controle de Sistemas Lineares Aula 9

27 (Passo 11) Determinam-se as localizações das raízes que satisfazem a condição de ângulo... (Passo 12) Determina-se o valor do ganho K em ponto de teste s = s 1... E o gráfico? pag.27 Controle de Sistemas Lineares Aula 9

28 MASTER 89 TABLE 7.2 Step The Twelve Steps of the Root Locus Procedure Related Equation or Rule 1. Write the characteristic equation so that the parameter of interest K appears as a multiplier. 1 KP(s) 0. n z (s z i) i 1 2. Factor P(s) in terms of n p poles and n z zeros. 1 K n p 0. (s p ) j 1 j 3. Locate the open-loop poles and zeros of F(s) in the s-plane with selected symbols. 4. Locate the segments of the real axis that are root loci. poles, zeros, or roots of characteristic equation. Locus begins at a pole and ends at a zero. Locus lies to the left of an odd number of poles and zeros. 5. Determine the number of separate loci, SL. SL n p when n p n z ; n p number of finite poles, n z number of finite zeros. 6. The root loci are symmetrical with respect to the horizontal real axis. 7. The loci proceed to the zeros at infinity along ( p j) ( z i) asymptotes centered at A and with angles A. A. np nz (2q 1) A 180, q 0,1,2,...(n p n z 1). n n p z 8. By utilizing the Routh Hurwitz criterion, determine the point at which the locus crosses the imaginary axis (if it does so). 9. Determine the breakaway point on the real axis (if any). See Section 6.2. a) Set K p(s). dp(s) b) Obtain 0. ds c) Determine roots of (b) or use graphical method to find maximum of p(s). 10. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. / P(s) 180 q360 at s p j or z i. 11. Determine the root locations that satisfy the phase criterion. 12. Determine the parameter value K x at a specific root s x. / P(s) 180 q360 at a root location s x. K j 1 n p (s p ) j x nz (s z i) i 1 s s x. Table 7.2 The 12 Steps of the root locus procedure Copyright 1998 by Addison Wesley Longman. All rights reserved.

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica Aula 11 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução - Lugar das Raízes

Leia mais

Sistemas de Controle 2

Sistemas de Controle 2 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.8 - Técnicas do Lugar das Raízes Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic

Leia mais

O Método do Lugar das Raízes Parte 2. Controle de Sistemas I Renato Dourado Maia (FACIT)

O Método do Lugar das Raízes Parte 2. Controle de Sistemas I Renato Dourado Maia (FACIT) O Método do Lugar das Raízes Parte 2 Controle de Sistemas I Renato Dourado Maia (FACIT) 1 O procedimento para se obter o traçado do gráfico do Lugar das Raízes é realizado por meio de um procedimento ordenado

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES A função de transferência do circuito abaixo em malha fechada é: F(s) = C(s) = G(s)

Leia mais

O método do lugar das raízes

O método do lugar das raízes Capítulo 4 O método do lugar das raízes 4.1 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização dos pólos de um sistema em malha fechada

Leia mais

Um resumo das regras gerais para a construção do lugar das raízes p. 1/43. Newton Maruyama

Um resumo das regras gerais para a construção do lugar das raízes p. 1/43. Newton Maruyama Um resumo das regras gerais para a construção do lugar das raízes p. 1/43 Um resumo das regras gerais para a construção do lugar das raízes Newton Maruyama Um resumo das regras gerais para a construção

Leia mais

Métodos de Resposta em Freqüência

Métodos de Resposta em Freqüência Métodos de Resposta em Freqüência. Exemplo de projeto: sistema de controle de uma máquina de inscultura 2. MATLAB 3. Exemplo de Projeto Seqüencial: sistema de leitura de um drive 4. Diagramas de Bode de

Leia mais

Critério de Estabilidade: Routh-Hurwitz

Critério de Estabilidade: Routh-Hurwitz Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Estabilidade no Domínio da Freqüência 1. Estabilidade relativa e o critério de Nyquist: margens de ganho e fase 2. Critérios de desempenho especificados no domínio da freqüência Resposta em freqüência

Leia mais

Método do Lugar das Raízes

Método do Lugar das Raízes Método do Lugar das Raízes 1. Conceito do Lugar das Raízes 2. Virtudes do Lugar das Raízes (LR) pag.1 Controle de Sistemas Lineares Aula 8 No projeto de um sistema de controle, é fundamental determinar

Leia mais

Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II

Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II Recapitulando (da parte I): Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada, quando K varia.

Leia mais

Fundamentos de Controlo

Fundamentos de Controlo Fundamentos de Controlo 4 a Série Root-locus: traçado, análise e projecto. S4.1 Exercícios Resolvidos P4.1 Considere o sistema de controlo com retroacção unitária representado na Figura 1 em que G(s) =

Leia mais

PID e Lugar das Raízes

PID e Lugar das Raízes PID e Lugar das Raízes 1. Controlador PID 2. Minorsky (1922), Directional stability of automatically steered bodies, Journal of the American Society of Naval Engineers, Vol. 34, pp. 284 Pilotagem de navios

Leia mais

PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho

PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=

Leia mais

AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I

AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I AULA 3 CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz PROF. DR. ALFREDO DEL SOLE LORDELO TELA CHEIA Critério de estabilidade de Routh A questão

Leia mais

O Papel dos Pólos e Zeros

O Papel dos Pólos e Zeros Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),

Leia mais

Diagrama de Lugar das Raízes (Root-Locus)

Diagrama de Lugar das Raízes (Root-Locus) Diagrama de Lugar das Raízes (Root-Locus) Carlos Eduardo de Brito Novaes carlos.novaes@aedu.com http://professorcarlosnovaes.wordpress.com 8 de outubro de 202 Introdução O diagrama do lugar das raízes

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1

Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro 2012. 1 / 48 Resumo 1 Introdução 2 Diagramas de Bode 3

Leia mais

ANÁLISE DO LUGAR DAS RAÍZES

ANÁLISE DO LUGAR DAS RAÍZES VII- &$3Ì78/ 9,, ANÁLISE DO LUGAR DAS RAÍZES 7.- INTRODUÇÃO O étodo de localização e análise do lugar das raízes é ua fora de se representar graficaente os pólos da função de transferência de u sistea

Leia mais

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Saulo Dornellas Universidade Federal do Vale do São Francisco Juazeiro - BA Dornellas (UNIVASF) Juazeiro - BA 1 / 44 Análise do

Leia mais

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta

Leia mais

4.1 Pólos, Zeros e Resposta do Sistema

4.1 Pólos, Zeros e Resposta do Sistema ADL17 4.1 Pólos, Zeros e Resposta do Sistema A resposta de saída de um sistema é a soma de duas respostas: a resposta forçada e a resposta natural. Embora diversas técnicas, como a solução de equações

Leia mais

Aula 9. Diagrama de Bode

Aula 9. Diagrama de Bode Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais

Leia mais

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14 Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ1- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge Informação Papel Bode 1 3 Papel

Leia mais

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre

Leia mais

RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE

RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle

Leia mais

MÓDULO 1 - AULA 21. Objetivos

MÓDULO 1 - AULA 21. Objetivos Aula 1 Hipérbole - continuação Objetivos Aprender a desenhar a hipérbole com compasso e régua com escala. Determinar a equação reduzida da hipérbole no sistema de coordenadas com origem no ponto médio

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Descrição de Incertezas e Estabilidade Robusta

Descrição de Incertezas e Estabilidade Robusta Descrição de Incertezas e Estabilidade Robusta 1. Estabilidade robusta? 1.1. Função de transferência nominal e critério de estabilidade robusta 2. Caracterizando modelos de incertezas não-estruturadas

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica. Sistemas de Controle Realimentados

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica. Sistemas de Controle Realimentados Critério de Estabilidade de Nyquist Introdução Princípio do Argumento Contorno de Nyquist Exemplos Problemas Propostos 1 Critério de Estabilidade de Nyquist { Estabilidade absoluta Estudo de Estabilidade

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1

Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1 Números omplexos Prof. Eng. Antonio arlos Lemos Júnior 1 AGENDA Revisão de conceitos matemáticos Números complexos Exercícios Números complexos Objetivo: O objetivo desta seção é fazer uma pequena revisão

Leia mais

Desempenho de Sistemas de Controle Realimentados

Desempenho de Sistemas de Controle Realimentados Desempenho de Sistemas de Controle Realimentados. Erro em estado estacionário de sistemas de controle realimentados 2. Erro em estado estacionário de sistemas com realimentação não-unitária 3. Índice de

Leia mais

Método da Resposta da Freqüência

Método da Resposta da Freqüência Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude

Leia mais

FUNÇÃO DO 2º GRAU. y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e. O gráfico de uma função quadrática é uma parábola

FUNÇÃO DO 2º GRAU. y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e. O gráfico de uma função quadrática é uma parábola FUNÇÃO DO 2º GRAU A função do 2º grau está presente em inúmeras situações cotidianas, na Física ela possui um papel importante na análise dos movimentos uniformemente variados (MUV), pois em razão da aceleração,

Leia mais

I Controle Contínuo 1

I Controle Contínuo 1 Sumário I Controle Contínuo 1 1 Introdução 3 1.1 Sistemas de Controle em Malha Aberta e em Malha Fechada................ 5 1.2 Componentes de um sistema de controle............................ 5 1.3 Comparação

Leia mais

Campo Elétrico 2 Objetivos:

Campo Elétrico 2 Objetivos: Campo Elétrico 2 Objetivos: Apresentar a discretização do espaço para a resolução de problemas em coordenadas: Cartesianas; Polar; Aplicar a discretização do espaço para resolução de problemas de campo

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

SISTEMAS DE COORDENADAS

SISTEMAS DE COORDENADAS 1 SISTEMAS DE COORDENADAS 2.1 Coordenadas polares no R² Fonte: Cálculo A. Funções. Limite. Derivação. Integração. Diva Marília Flemming. Mírian Buss Gonçalves. Até o presente momento, localizamos um ponto

Leia mais

Diagramas de Bode. Sandra Mara Torres Müller

Diagramas de Bode. Sandra Mara Torres Müller Diagramas de Bode Sandra Mara Torres Müller Introdução Os diagramas de Bode são construções gráficas que permitem esboçar a resposta de frequência de um circuito Geralmente são usados quando a distância

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

SEM0 M Aul u a a 1 1 Sínt n e t se s d e d M e M can a i n sm s os s Pro r f. D r.r Ma M r a c r elo Becker SEM - EESC - USP

SEM0 M Aul u a a 1 1 Sínt n e t se s d e d M e M can a i n sm s os s Pro r f. D r.r Ma M r a c r elo Becker SEM - EESC - USP SEM0104 - Aula 11 Síntese de Mecanismos Prof. Dr. Marcelo Becker SEM - EESC - USP Sumário da Aula Introdução Tipos de Síntese Erros de Trajetória Erros Estruturais Síntese de Mecanismos Exemplos Bibliografia

Leia mais

Sistemas e Sinais (LEE & LETI)

Sistemas e Sinais (LEE & LETI) Sistemas e Sinais (LEE & LETI) Laboratório nº 3: Sistemas Contínuos Modelo de Estado e Função de Transferência Preparado por Isabel Lourtie pfpfpf Trabalho Experimental pfpfpf Grupo nº Turno Nº Nome: Nº

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Polynomials Prasolov

Polynomials Prasolov Polynomials Prasolov Theorem 1.1.1 (Rouché). Let and be polynomials, and γ a closed curve without self-intersections in the complex plane. If for all γ, then inside γ there is an equal number of roots

Leia mais

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4, Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,

Leia mais

MAT Poli Roteiro de Estudos sobre as Cônicas

MAT Poli Roteiro de Estudos sobre as Cônicas MAT25 - Poli - 2003 Roteiro de Estudos sobre as Cônicas Martha Salerno Monteiro Departamento de Matemática IME-USP Uma equação quadrática em duas variáveis é uma equação da forma a + by 2 + cxy + dx +

Leia mais

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

Equação de 1º Grau. ax = -b

Equação de 1º Grau. ax = -b Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

FATEC Faculdade de Tecnologia de Pavimentação Departamento de Transportes e Obras de Terra - Prof. Edson 4- CURVAS HORIZONTAIS DE TRANSIÇÃO

FATEC Faculdade de Tecnologia de Pavimentação Departamento de Transportes e Obras de Terra - Prof. Edson 4- CURVAS HORIZONTAIS DE TRANSIÇÃO 4- CURVAS HORIZONTAIS DE TRANSIÇÃO 4.1 INTRODUÇÃO Quando um veículo passa pelo ponto PC ponto de começo da curva circular horizontal ou PT ponto de término da curva circular horizontal, dependendo do comprimento

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

Conteúdo. Definições básicas;

Conteúdo. Definições básicas; Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições

Leia mais

Experimento 9 Circuitos RL em corrente alternada

Experimento 9 Circuitos RL em corrente alternada 1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Compensadores: projeto no domínio da

Compensadores: projeto no domínio da Compensadores: projeto no domínio da frequência Relembrando o conteúdo das aulas anteriores: o Compensador (também conhecido como Controlador) tem o objetivo de compensar características ruins do sistema

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

CAPÍTULO Compensação via Compensador de Avanço de Fase

CAPÍTULO Compensação via Compensador de Avanço de Fase CAPÍTULO 8 Projeto no Domínio da Freqüência 8.1 Introdução Este capítulo aborda o projeto de controladores usando o domínio da freqüência. As caracteristicas de resposta em freqüência dos diversos controladores,

Leia mais

Diagramas de Bode. Introdução

Diagramas de Bode. Introdução Diagramas de Bode Introdução Sistemas e Sinais Diagramas de Bode Escala Logarítmica de Amplitude Escala Logarítmica de Frequência Análise dos Termos das Funções de Resposta em Frequência Composição do

Leia mais

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua.

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Por exemplo, a força gravitacional está relacionada a um campo gravitacional,

Leia mais

Análise de Sistemas no Domínio da Freqüência. Diagrama de Bode

Análise de Sistemas no Domínio da Freqüência. Diagrama de Bode Análise de Sistemas no Domínio da Freqüência Diagrama de Bode Análise na Freqüência A análise da resposta em freqüência compreende o estudo do comportamento de um sistema dinâmico em regime permanente,

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Função de Transferência do Amplificador re- alimentado

Função de Transferência do Amplificador re- alimentado p. 1/2 Resumo Efeito da Realimentação nos Pólos do Amplificador Amplificador só com um Pólo Amplificador com dois Pólos Amplificador com três ou mais Pólos Estabilidade usando Diagramas de Bode Compensação

Leia mais

Módulo 1 Potenciação, equação exponencial e função exponencial

Módulo 1 Potenciação, equação exponencial e função exponencial Módulo 1 Potenciação, equação exponencial e função exponencial 1. Potenciação e suas propriedades 1.1. Potência de expoente natural Potenciação nada mais é do que uma multiplicação de fatores iguais. Casos

Leia mais

Física I 2009/2010. Aula02 Movimento Unidimensional

Física I 2009/2010. Aula02 Movimento Unidimensional Física I 2009/2010 Aula02 Movimento Unidimensional Sumário 2-1 Movimento 2-2 Posição e Deslocamento. 2-3 Velocidade Média 2-4 Velocidade Instantânea 2-5 Aceleração 2-6 Caso especial: aceleração constante

Leia mais

Experimento 7 Circuitos RC em corrente alternada

Experimento 7 Circuitos RC em corrente alternada 1. OBJETIVO Experimento 7 Circuitos RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação de corrente alternada.. 2. MATERIAL

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

20 de setembro de MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas

20 de setembro de MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas 20 de setembro de 2015 Já vimos que se a seguinte equação s = f (t), representa a distância percorrida por uma partícula em um período de tempo

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Experiência 3. Identificação de motor de corrente contínua com tacômetro. 1-Introdução. 2-Modelo do processo

Experiência 3. Identificação de motor de corrente contínua com tacômetro. 1-Introdução. 2-Modelo do processo Experiência 3 Identificação de motor de corrente contínua com tacômetro Autores: Adolfo Bauchspiess e Geovany A. Borges O objetivo deste experimento é levantar o modelo dinâmico do conjunto atuador e motor

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

Curso de Geometria Analítica

Curso de Geometria Analítica Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 10 - Posições relativas entre Pontos Retas e Planos. I.

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

Material de Apoio. Roteiro para Esboçar uma Curva 1

Material de Apoio. Roteiro para Esboçar uma Curva 1 Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Cálculo M I Prof a Yane Lísle Material de Apoio Roteiro para Esboçar uma Curva A lista a seguir pretende servir como um guia

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10). Lista 3: Cônicas Professora Elisandra Bär de Figueiredo 1. Determine a equação do conjunto de pontos P (x, y) que são equidistantes da reta x = e do ponto (0, ). A seguir construa este conjunto de pontos

Leia mais

Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sistemas O Método do Lugar das Raízes Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Introdução No projeto de um sistema de controle, é fundamental se determinar

Leia mais

Representação e Análise de Sistemas Dinâmicos Lineares

Representação e Análise de Sistemas Dinâmicos Lineares Representação e Análise de Sistemas Dinâmicos Lineares 1. Funções de transferência de sistemas lineares 2. Diagramas de blocos 3. ráfico de fluxo de sinais 4. Modelagem matemática de sistemas físicos pag.1

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Controle por Computador - Parte I

Controle por Computador - Parte I Controle por Computador - Parte I 22 de novembro de 2011 Outline 1 Introdução 2 Amostragem 3 Segurador 4 Redução à Dinâmica de Tempo Discreto 5 Introdução Controle por Computador Computador Clock {y(t

Leia mais

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma

Leia mais

y x f x y y x y x a x b

y x f x y y x y x a x b 50 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Uma equação diferencial é uma equação que envolve uma função desconecida e algumas de suas derivadas. Se a função é de uma só variável, então a equação

Leia mais

4 Controle de motores de passo

4 Controle de motores de passo 36 4 ontrole de motores de passo O controle em malha aberta é o mais comum em motores de passo. Entretanto, o motor deve operar razoavelmente abaixo de sua capacidade para evitar a perda de passos. As

Leia mais

Projeto de Compensadores no Domínio da Frequência

Projeto de Compensadores no Domínio da Frequência Projeto de Compensadores no Domínio da Frequência Maio de 214 Loop Shaping I No projeto de compensadores no domínio da frequência, parte-se do pressuposto de que o sistema a ser controlado pode ser representado

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola

Leia mais