Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace"

Transcrição

1 Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. Prof. Rafael Concatto Beltrame, Me. Eng.

2 Conteúdo da unidade Introdução Definição da Transformada de Laplace Solução de equações diferenciais lineares e invariante no tempo Função de Transferência Conceito de pólos e zeros Estabilidade de sistemas Sistemas com atraso de transporte Análise da resposta transitória Análise da resposta em regime permanente Resposta em frequência e Diagrama de Bode Aulas 01 e 02 Aula 03 Aula 04 Aulas 05 e 06 2

3 Aula 03 Função de Transferência Definição Procedimento de obtenção Integral de convolução Resposta impulsional Conceito de pólos e zeros Definição Estabilidade de sistemas Estabilidade absoluta Estabilidade relativa Análise no plano complexo Critério de estabilidade de Routh 3

4 Função de transferência Aplicável Definição Sistemas representados por equações diferenciais LTI Sistemas relaxados Condições iniciais nulas Enunciado Relação entre as Transfomadas de Laplace do sinal de saída (função resposta) e do sinal de entrada (função excitação) 4

5 Função de transferência Seja o sistema representado pela equação diferencial LTI Função de Transferência G s n n1 a y a y a y a y 0 1 n1 L m m1 b x b x b x b x nm 0 1 m1 LSaída Entrada Condições iniciais 0 n m G s m m1 Y s bs 0 bs 1 bm1sb n n1 X s as as a sa 0 1 n1 m n 5

6 Função de transferência Comentários Modelo matemático do sistema Método operacional para representar a equação diferencial relacionando a saída à entrada Representa uma propriedade intrínseca do sistema Independe da natureza da excitação (amplitude ou tipo) Não fornece informações sobre a estrutura física (interna) do sistema Pode ser obtida experimentalmente Introduz se sinais de entrada conhecidos e mede se os sinais de saída Faz se a relação entre os sinais de saída e entrada 6

7 Função de transferência Procedimento de obtenção 1) Escrever a equação diferencial do sistema (LTI) 2) Aplicar a Transformada de Laplace à equação diferencial Considerar todas as condições iniciais nulas 3) Obter a relação entre as Transformadas de Laplace do sinal de saída e do sinal de entrada Exercício Obter a função de transferência sistema representado pela seguinte equação diferencial LTI 1 y 5y 3y y2x 4x 2 7

8 Função de transferência Integral de convolução Seja a seguinte função de transferência Y s Gs Y s G s X s X s A multiplicação de funções em s equivale à convolução em t Logo a Transformada Inversa de Laplace da equação anterior é t y t x τ gt τ dτ g τ x t τ dτ 0 0 t 8

9 Função de transferência Resposta impulsional Considerando que a entrada x(t) seja um impulso unitário A Transformada de Laplace de um impulso unitário é igual a 1 YsGsXs YsGs Logo a Transformada Inversa de Laplace da equação anterior fornece a resposta do sistema ao impulso unitário aplicado Resposta impulsional do sistema 1 L G s g t OBS: A função de transferência e a resposta impulsional de um sistema LTI contêm a mesma informação acerca da dinâmica do sistema 9

10 Conceito de pólos e zeros Definição de pólo Se G(s) tender ao infinito quando s tender a p e se n para 123,,, G s s p n sp possuir valor finito, não nulo, então s = p édito pólo de ordem n Pontos ordinários Pontos no plano s onde G(s) é analítica Atendem as condições de Cauchy Riemann Pontos singulares Pontos no plano s onde G(s) ou suas derivadas tendem ao infinito (pólos) 10

11 Conceito de pólos e zeros Definição de zero Os pontos nos quais a função G(s) se anula são chamados de zeros da função de transferência Exercício 1) Calcular os pólos e os zeros da seguinte função de transferência G s s 2s s s s s 2) Determine G(s) para s tendendo ao infinito Conceito de zeros no infinito 11

12 Estabilidade de sistemas Estabilidade absoluta Sistema LTI estável A saída retorna àseu ao estado de equilíbrio quando o sistema é submetido a uma condição inicial Sistema LTI criticamente estável A saída apresenta oscilações que se conservam indefinidamente Sistema LTI instável A saída apresenta valores que divergem sem limite do seu estado de equilíbrio quando o sistema é submetido a uma condição inicial 12

13 Estabilidade de sistemas Análise no plano complexo Localização da parte real dos pólos da função de transferência Pólos sem parte complexa Comportamento monotônico Pólos com parte complexa Comportamento oscilatório amortecido 13

14 Estabilidade de sistemas Exercício Esboce a localização dos pólos e dos zeros da seguinte função de transferência no plano complexo e diga se o sistema éestável ou instável Símbolos: O zeros X pólos G s s s13 s 8s 72s65 14

15 Estabilidade de sistemas Critério de Routh Informa a localização das raízes de uma equação polinomial sem a necessidade de resolvê la Procedimento 1) Escrever o polinômio do denominador da forma n n n1 as as a sa 2) Condição necessária à estabilidade: todos os elementos do polinômio com sinal positivo. Esta não éuma condição suficiente! n 15

16 Estabilidade de sistemas 3) Se todos os coeficientes forem positivos, rearranjá los conforme o seguinte padrão: n s a a a a n1 n2 n3 n s a a a a s b b b b s c c c c s d d d d s e e s s f g b c d aa aa, aa aa, b2 a1 a1 ba ab, ba ab, c2 b1 b1 cb bc cb bc,, d2 c1 c1 Repetir processo até que a n ésima linha tenha sido completada 16

17 Estabilidade de sistemas 4) Critério de Routh O número de raízes no semiplano direito (instáveis) éigual ao número de mudanças de sinal dos coeficientes da primeira coluna n s a a a a n1 n2 n3 n s a a a a s b b b b s c c c c s d d d d s e e s s f g

18 Estabilidade de sistemas Exercício Determinar K para que o sistema representado por G(s) seja estável G s Primeiramente, verificar o sinal dos coeficientes do polinômio do denominador Se necessário (todos positivos), aplicar o critério de Routh 1 s s s s K Resposta: 14 9 K 0 18

19 Bibliografia [1] OGATA, K. Engenharia de controle moderno. 3ª ed. Rio de Janeiro: Prentice Hall, [2] CHAPARRO, L. F. Signals and systems using MATLAB. Oxford: Elsevier,

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

AULA #12. Estabilidade de Sistemas de Controle por

AULA #12. Estabilidade de Sistemas de Controle por AULA #12 Estabilidade de Sistemas de Controle por Realimentação Estabilidade de Sistemas de Controle por Realimentação A presença de medidores, controladores e elementos finais de controle afetam as características

Leia mais

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace Resumo Sinais e Sistemas Transformada de aplace lco@ist.utl.pt Instituto Superior Técnico Definição da transformada de aplace. Região de convergência. Propriedades da transformada de aplace. Sistemas caracterizados

Leia mais

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Estabilidade Carlos Alexandre Mello 1 Introdução Já vimos que existem três requisitos fundamentais para projetar um sistema de controle: Resposta Transiente Estabilidade Erros de Estado Estacionário Estabilidade

Leia mais

Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período.

Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período. Período : exp( j α) α/2π = N/K (irredutível) em que se N,K Z então K é o período. sin(t) = sin (t + T), ou exp(t) = exp(t+t) em que T é o período. [sin(a) e/ou cos(a) ]+[ sin(b) e/ou cos(b)] = o periodo

Leia mais

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9 Ex. 4.1 As palavras código são c 0 = [0 0 0 0 0 0 0], c 1 = [0 0 0 1 1 0 1], c 2 = [0 0 1 1 0 1 0], c 3 = [0 0 1 0 1 1 1], c 4 = [0 1 1 0 1 0 0], c 5 = [0 1 1 1 0 0 1], c 6 = [0 1 0 1 1 1 0], c 7 = [0

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92)

4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92) ADL22 4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92) A transformada de Laplace fornece: (4.93) (4.94) A fim de separar X(s), substitua sx(s)

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace em análise de circuitos parte 2 Equivalente

Leia mais

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA.

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Aulas anteriores Tipos de Sinais (degrau, rampa, exponencial, contínuos, discretos) Transformadas de Fourier e suas

Leia mais

Resposta em Frequência de Sistemas LTI 1

Resposta em Frequência de Sistemas LTI 1 Resposta em Frequência de Sistemas LTI A resposta em frequência de um sistema LTI fornece a caracterização intuitiva do comportamento entrada-saída do sistema. Isto ocorre porque a convolução no domínio

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Modelos Variáveis de Estado

Modelos Variáveis de Estado Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo

Leia mais

Transformada de Laplace

Transformada de Laplace Capítulo 8 Transformada de Laplace A transformada de Laplace permitirá que obtenhamos a solução de uma equação diferencial ordinária de coeficientes constantes através da resolução de uma equação algébrica.

Leia mais

ENSINO DE MODELAGEM E IDENTIFICAÇÃO DE PROCESSOS USANDO AMBIENTE COMPUTACIONAL MATLAB/SIMULINK

ENSINO DE MODELAGEM E IDENTIFICAÇÃO DE PROCESSOS USANDO AMBIENTE COMPUTACIONAL MATLAB/SIMULINK ENSINO DE MODELAGEM E IDENTIFICAÇÃO DE PROCESSOS USANDO AMBIENTE COMPUTACIONAL /SIMULINK Leandro dos Santos Coelho Pontifícia Universidade Católica do Paraná, Laboratório de Automação e Sistemas, PUCPR/CCET/LAS

Leia mais

Controle I. Análise de resposta transitória Sistemas de primeira ordem

Controle I. Análise de resposta transitória Sistemas de primeira ordem Controle I Análise de resposta transitória Sistemas de primeira ordem input S output Sistemas de primeira ordem Sistema de primeira ordem do tipo G (s) a bs c input a bs c output Sistemas de primeira

Leia mais

Identificação e Controle Adaptativo

Identificação e Controle Adaptativo Identificação e Controle Adaptativo Prof. Antonio A. R. Coelho 1 Universidade Federal de Santa Catarina, UFSC Grupo de Pesquisa em Tecnologias de Controle Aplicado, GPqTCA Departamento de Automação e Sistemas,

Leia mais

Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros

Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros Capítulo Cálculo da resposta no domínio do tempo: o papel dos pólos e zeros. Introdução O cálculo da resposta no domínio do tempoy(t) de um sistemag(t) pode ser calculado através da integral de convolução:

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

MÉTODOS DISCRETOS EM TELEMÁTICA

MÉTODOS DISCRETOS EM TELEMÁTICA 1 MÉTODOS DISCRETOS EM TELEMÁTICA MATEMÁTICA DISCRETA Profa. Marcia Mahon Grupo de Pesquisas em Comunicações - CODEC Departamento de Eletrônica e Sistemas - UFPE Outubro 2003 2 CONTEÚDO 1 - Introdução

Leia mais

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos. Prof. Cassiano Rech cassiano@ieee.org

Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos. Prof. Cassiano Rech cassiano@ieee.org Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos cassiano@ieee.org 1 Projeto por alocação de pólos Na abordagem convencional, usando por exemplo o método do lugar das

Leia mais

LABORATÓRIO DE CONTROLE I

LABORATÓRIO DE CONTROLE I UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 1: ESTUDO DE FUNÇÕES DE TRANSFERÊNCIA E ANÁLISE DE RESPOSTA TRANSITÓRIA COLEGIADO DE

Leia mais

SCILAB. Software livre para cálculo numérico e simulação de sistemas físicos Utilizado nas áreas de:

SCILAB. Software livre para cálculo numérico e simulação de sistemas físicos Utilizado nas áreas de: SCILAB Software livre para cálculo numérico e simulação de sistemas físicos Utilizado nas áreas de: Controle e processamento de sinais Automação industrial Computação gráfica Matemática Física Entre outras.

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

Transformada de Laplace. Parte 3

Transformada de Laplace. Parte 3 Transformada de Laplace Parte 3 Elementos de circuito no domínio da frequência O resistor no domínio da frequência Pela lei de OHM : v= Ri A transformada da equação acima é V(s) = R I(s) O indutor no domínio

Leia mais

J. A. M. Felippe de Souza 4 - Sistemas. 4 Sistemas

J. A. M. Felippe de Souza 4 - Sistemas. 4 Sistemas 4 Sistemas 4.1 Introdução aos Sistemas 3 4. Principais Classificações de Sistemas 7 Natureza física 7 Continuidade no tempo 9 Linearidade 10 4.3 Modelização de Sistemas 11 Exemplo 4.1 14 4.4 Outras Classificações

Leia mais

Sistemas Lineares. Prof. Alexandre Trofino

Sistemas Lineares. Prof. Alexandre Trofino Sistemas Lineares Prof. Alexandre Trofino Departamento de Automação e Sistemas Centro Tecnológico Universidade Federal de Santa Catarina cep 884-9, Florianópolis-SC email: trofino@lcmi.ufsc.br Internet:

Leia mais

Aula 13 Análise no domínio da frequência

Aula 13 Análise no domínio da frequência Aula 13 Análise no domínio da frequência A resposta em frequência é a resposta do sistema em estado estacionário (ou em regime permanente) quando a entrada do sistema é sinusoidal. Métodos de análise de

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

LABORATÓRIO DE CONTROLE I ESTUDO DE CONTROLADORES ELETRÔNICOS BÁSICOS VIA AMPLIFICADORES OPERACIONAIS

LABORATÓRIO DE CONTROLE I ESTUDO DE CONTROLADORES ELETRÔNICOS BÁSICOS VIA AMPLIFICADORES OPERACIONAIS UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 2: ESTUDO DE CONTROLADORES ELETRÔNICOS BÁSICOS VIA AMPLIFICADORES OPERACIONAIS COLEGIADO

Leia mais

Transformada z. ADL 25 Cap 13. A Transformada z Inversa

Transformada z. ADL 25 Cap 13. A Transformada z Inversa ADL 25 Cap 13 Transformada z A Transformada z Inversa Qualquer que seja o método utilizado a transformada z inversa produzirá somente os valores da função do tempo nos instantes de amostragem. Portanto,

Leia mais

Toolbox de Sistemas de Controle MATLAB

Toolbox de Sistemas de Controle MATLAB Toolbox de Sistemas de Controle MATLAB Control System Toolbox Grupo PET Engenharia Elétrica UFMS Campo Grande MS Junho - 2003 2 Índice Índice 3 1. Introdução 4 2. Representação dos Sistemas 5 2.1. Representação

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

INSTITUTO POLITÉCNICO DE BRAGANÇA

INSTITUTO POLITÉCNICO DE BRAGANÇA INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO CONTROLO DIGITAL MATERIAL DE APOIO ÀS AULAS Eng. João Paulo Coelho 005/006 006 JOÃO PAULO COELHO ESTE DOCUMENTO DESTINA-SE, PRIMARIAMENTE,

Leia mais

Análise de Circuitos Elétricos III

Análise de Circuitos Elétricos III Análise de Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais Introdução à Transformada de Laplace A Transformada

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE CONTROLADORES A SISTEMAS DE 1ªORDEM E 2º ORDEM

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE CONTROLADORES A SISTEMAS DE 1ªORDEM E 2º ORDEM UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 3: APLICAÇÃO DE CONTROLADORES A SISTEMAS DE 1ªORDEM E 2º ORDEM COLEGIADO DE ENGENHARIA

Leia mais

SISTEMAS DE CONTROLO. Objectivos Pedagógicos

SISTEMAS DE CONTROLO. Objectivos Pedagógicos SISTEMAS DE CONTROLO Responsável: Prof. Doutor João Miguel Gago Pontes de Brito Lima Atendimento (Gab. 2.63): Terça e Quarta das 11:00 à 13:00 Objectivos Pedagógicos Pretende-se com esta disciplina fornecer

Leia mais

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle

Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Representação de Modelos Dinâmicos em Espaço de Estados Graus de Liberdade para Controle Espaço de Estados (CP1 www.professores.deq.ufscar.br/ronaldo/cp1 DEQ/UFSCar 1 / 69 Roteiro 1 Modelo Não-Linear Modelo

Leia mais

Análise de sistemas no domínio da frequência

Análise de sistemas no domínio da frequência Análise de sistemas no domínio da frequência Quando se analisa um sistema no domínio da frequência, pretende-se essencialmente conhecer o seu comportamento no que respeita a responder a sinais periódicos,

Leia mais

2.2 Subespaços Vetoriais

2.2 Subespaços Vetoriais 32 CAPÍTULO 2. ESPAÇOS VETORIAIS 2.2 Subespaços Vetoriais Sejam V um espaço vetorial sobre R e W um subconjunto de V. Dizemos que W é um subespaço (vetorial) de V se as seguintes condições são satisfeitas:

Leia mais

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

PÓLOS NA REPRESENTAÇÃO DO ESPAÇO DOS ESTADOS

PÓLOS NA REPRESENTAÇÃO DO ESPAÇO DOS ESTADOS PÓLOS NA REPRESENTAÇÃO DO ESPAÇO DOS ESTADOS. Motiação e necessidade Pólos de um sistema fornecem o comportamento dinâmico do sistema tempo de resposta, frequencia natural, coeficiente de amortecimento

Leia mais

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna

Apostila de Matemática Aplicada. Volume 1 Edição 2004. Prof. Dr. Celso Eduardo Tuna Apostila de Matemática Aplicada Volume Edição 00 Prof. Dr. Celso Eduardo Tuna Capítulo - Revisão Neste capítulo será feita uma revisão através da resolução de alguns eercícios, dos principais tópicos já

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelação, Identificação e Controlo Digital 2-Modelos em Controlo por Computador 1 2 - Modelos em Controlo por Computador Objectivo: Introduzir a classe de modelos digitais que são empregues nesta disciplina

Leia mais

Planilha (2ª parte) Capítulo 15

Planilha (2ª parte) Capítulo 15 Capítulo 15 Planilha (2ª parte) 15.1 Cortando Copiando e Colando Dados Você pode copiar informações de uma célula para a outra de várias maneiras. Selecione a célula que contém a informação que deseja

Leia mais

Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões

Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões Sinais e Sistemas Aplicações das séries e transformadas de Fourier Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões Baseado no seguinte material:

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

José Álvaro Tadeu Ferreira

José Álvaro Tadeu Ferreira UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Computação José Álvaro Tadeu Ferreira Cálculo Numérico Notas de aulas Resolução de Equações Não Lineares Ouro

Leia mais

Transformadas de Laplace

Transformadas de Laplace Transformadas de Laplace Notas de aulas - material compilado no dia 6 de Maio de 23 Computação, Engenharia Elétrica e Engenharia Civil Prof. Ulysses Sodré ii Copyright c 22 Ulysses Sodré. Todos os direitos

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

Automação Industrial

Automação Industrial Automação Industrial Unidade 2 Respostas de um Sistema de Controle Prof. Rodrigo Cardoso Fuentes diretor.ctism@gmail.com Prof. Rafael Concatto Beltrame beltrame@mail.ufsm.br Objetivos da Aula 1. Definir

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO DE MATEMÁTICA 8.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de relacionar números racionais e dízimas, completar a reta numérica e ordenar números

Leia mais

Curso de Controle Discreto 2 Pe. Pedro M. Guimarães Ferreira S.J. http://www.fplf.org.br/pedro_varios/

Curso de Controle Discreto 2 Pe. Pedro M. Guimarães Ferreira S.J. http://www.fplf.org.br/pedro_varios/ Curso de Controle Discreto Pe Pedro M Guimarães Ferreira SJ http://wwwfplforgbr/pedro_varios/ (Texto básico deste curso: Katsuiko Ogata, Discrete-time Control Systems Prentice- Hall, Second Edition, 995)

Leia mais

Sistemas de Controle I (Servomecanismo) Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Sistemas de Controle I (Servomecanismo) Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Sistemas de Controle I (Servomecanismo) Carlos Alexandre Mello 1 O que são sistemas de controle Um sistema de controle é um conjunto de componentes organizados de forma a conseguir a resposta desejada

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Movimentos Periódicos Para estudar movimentos oscilatórios periódicos é conveniente ter algum modelo físico em mente. Por exemplo, um

Leia mais

1 B 1 Dado z = ( 1 + 3 i), então z n é igual a

1 B 1 Dado z = ( 1 + 3 i), então z n é igual a MATEMÁTICA NOTAÇÕES : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária:

Leia mais

FRANCIELE ALVES DA SILVEIRA GONZAGA PEREIRA. Existência e Estabilidade de Órbitas Periódicas da Equação de van der Pol-Mathieu

FRANCIELE ALVES DA SILVEIRA GONZAGA PEREIRA. Existência e Estabilidade de Órbitas Periódicas da Equação de van der Pol-Mathieu FRANCIELE ALVES DA SILVEIRA GONZAGA PEREIRA Existência e Estabilidade de Órbitas Periódicas da Equação de van der Pol-Mathieu UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 1 i ii FRANCIELE

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Resposta em frequência 4.1 Noção do domínio da frequência 4.2 Séries de Fourier e propriedades 4.3 Resposta em frequência dos SLITs 1 Capítulo 4 Resposta em frequência 4.1 Noção do domínio da

Leia mais

2.17 Matlab em Sistemas de Controle

2.17 Matlab em Sistemas de Controle 46 CAPÍTULO 2. INTRODUÇÃO AO MATLAB 2.17 Matlab em Sistemas de Controle Nesta seção, os comandos básicos do CONTROL SYSTEM Toolbox do MATLAB são introduzidos. O comando helpcontrol fornece uma lista das

Leia mais

SISTEMAS, MODELOS E SIMULAÇÃO

SISTEMAS, MODELOS E SIMULAÇÃO SISTEMAS, MODELOS E SIMULAÇÃO 1. INTRODUÇÃO Entende-se por sistema qualquer conjunto de elementos, materiais ou fatores que possam ser relacionados entre si funcionando sob estrutura organizada. Alguns

Leia mais

MÉTODOS DE IDENTIFICAÇÃO E ESTRUTURAS PID APLICADAS A UM SISTEMA DE IÇAMENTO DE CARGAS

MÉTODOS DE IDENTIFICAÇÃO E ESTRUTURAS PID APLICADAS A UM SISTEMA DE IÇAMENTO DE CARGAS MÉTODOS DE IDENTIFICAÇÃO E ESTRUTURAS PID APLICADAS A UM SISTEMA DE IÇAMENTO DE CARGAS Daniel Felipe Guimarães dos Reis daniel.fgreis@gmail.com Pontifícia Universidade Católica de Minas Gerais Rua Dom

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0.

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0. 4. Em cada caso use a definição para calcular f 0 (). (a) f () = 3, R (b) f () =/, 6= 0 (c) f () =/, > 0. 4.2 Mostre que a função f () = /3, R, não é diferenciável em =0. 4.3 Considere a função f : R R

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis. www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I

Leia mais

Razão de Rejeição a Fonte de Potência (PSRR)

Razão de Rejeição a Fonte de Potência (PSRR) 215 Outra unidade que expressa de forma direta o efeito da CMRR. Pode ser obtida observando que a tensão de offset V CM é expressa por: V CM = V C. 1/CMRR = V C.CMRR -1 Agora como CMRR -1 expressa-lo em

Leia mais

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v. Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

TURMA DE ENGENHARIA - FÍSICA

TURMA DE ENGENHARIA - FÍSICA Prof Cazuza 1 (Uff 2012) O ciclo de Stirling é um ciclo termodinâmico reversível utilizado em algumas máquinas térmicas Considere o ciclo de Stirling para 1 mol de um gás ideal monoatônico ilustrado no

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

Sistemas Dinâmicos e Controlo

Sistemas Dinâmicos e Controlo Sistemas Dinâmicos e Controlo José Dores Costa Escola Náutica Infante D. Henrique 003 Ao leitor, Estas folhas constituem um resumo das matérias que fazem parte dos programas das disciplinas na área do

Leia mais

DESENVOLVIMENTO DE UM KIT DIDÁTICO PARA DEMONSTRAÇÃO DA ATUAÇÃO DE UM CONTROLADOR PID DIGITAL EM UMA PLANTA REAL

DESENVOLVIMENTO DE UM KIT DIDÁTICO PARA DEMONSTRAÇÃO DA ATUAÇÃO DE UM CONTROLADOR PID DIGITAL EM UMA PLANTA REAL UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA CURSO DE ENGENHARIA INDUSTRIAL ELÉTRICA - ÊNFASE ELETROTÉCNICA JEFFERSON LUIS GRIEBELER THAÍSA ALINE KIENEN WAGNER ROSA

Leia mais

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos: Exercício 01. Dada à hipérbole de equação 5x 2 4y 2 20x 8y 4 = 0 determine os focos e as equações das assintotas. Escrevendo a hipérbole da maneira convencional teríamos 5[x 2 4x + 4 4] 4[y 2 + 2y + 1]

Leia mais

Análise de Sinais no Tempo Contínuo: A Transformada de Fourier

Análise de Sinais no Tempo Contínuo: A Transformada de Fourier Análise de Sinais no Tempo Contínuo: A Transformada de Fourier Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA - CT DEPARTAMENTO DE ELETRÔNICA E COMPUTAÇÃO - DELC PROJETO REENGE - ENG.

UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA - CT DEPARTAMENTO DE ELETRÔNICA E COMPUTAÇÃO - DELC PROJETO REENGE - ENG. UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA - CT DEPARTAMENTO DE ELETRÔNICA E COMPUTAÇÃO - DELC PROJETO REENGE - ENG. ELÉTRICA CADERNO DIDÁTICO DE SISTEMAS DE CONTROLE 1 ELABORAÇÃO:

Leia mais

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO). LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre

Leia mais

Capítulo 2. Funções complexas. 2.1. Introdução

Capítulo 2. Funções complexas. 2.1. Introdução Capítulo Funções complexas 1 Introdução Neste capítulo consideram-se vários exemplos de funções complexas e ilustram-se formas de representação geométrica destas funções que contribuem para a apreensão

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PLANO DE ENSINO PERÍODO LETIVO: 2008/1

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PLANO DE ENSINO PERÍODO LETIVO: 2008/1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PLANO DE ENSINO PERÍODO LETIVO: 2008/1 DISCIPLINA: ENG 04032 -ANÁLISE DE CIRCUITOS III Créditos: 6 Carácter:

Leia mais

Equações Diferenciais, uma Primeira Abordagem

Equações Diferenciais, uma Primeira Abordagem Equações Diferenciais, uma Primeira Abordagem Maria do Carmo Coimbra Departamento de Engenharia Civil Faculdade de Engenharia da Universidade do Porto Julho de 2008 Prefácio Imagination is more important

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

1 C. Logo, A B = {c} e P(A B) = {Ø, {c}}

1 C. Logo, A B = {c} e P(A B) = {Ø, {c}} MATEMÁTICA NOTAÇÕES = {,,,,...} : conjunto dos números reais : conjunto dos números compleos [a, b] = { ; a b} (a, + ) = ]a, + [ = { ; a < < + } A\B = { A; B} A C : complementar do conjunto A i: unidade

Leia mais

Curso de SIMULINK 2.0

Curso de SIMULINK 2.0 Curso de SIMULINK 2.0 1 aa EDIÇÃO Modelagem, Simulação e Análise de Sistemas Dinâmicos Faculdade de Engenharia Laboratório de Engenharia Elétrica Programa Prodenge / Sub-Programa Reenge Universidade do

Leia mais

SOFTWARE DIDÁTICO PARA PROCESSAMENTO DE SINAIS

SOFTWARE DIDÁTICO PARA PROCESSAMENTO DE SINAIS SOFTWARE DIDÁTICO PARA PROCESSAMENTO DE SINAIS Felipe Marcon 1 e Álvaro L. Stelle 2 Centro Federal de Educação Tecnológica do Paraná Departamento Acadêmico de Eletrônica Av. Sete de Setembro, 3165 80230-901

Leia mais

CÁLCULO PARA ECONOMIA E ADMINISTRAÇÃO: VOLUME I

CÁLCULO PARA ECONOMIA E ADMINISTRAÇÃO: VOLUME I CÁLCULO PARA ECONOMIA E ADMINISTRAÇÃO: VOLUME I MAURICIO A. VILCHES Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total

Leia mais

CURSO DE. Álgebra Linear Aplicada

CURSO DE. Álgebra Linear Aplicada CURSO DE Álgebra Linear Aplicada Antonio Cândido Faleiros Centro de Matemática, Computação e Cognição Universidade Federal do ABC Santo André, SP 6 de abril de 2009 Sumário 1 Equações lineares 1 1.1 Equaçãoalgébricalinear...

Leia mais

1 Solução geral para equação de ondas

1 Solução geral para equação de ondas 1 2.1. SOLUÇÃO GERAL PARA EQUAÇÃO DE ONDAS 1.138J/2.062J, PROPAGAÇÃO DE ONDAS Outono, 2000 MIT Observações de C. C. Mei CAPÍTULO DOIS ONDAS MONODIMENSIONAIS 1 Solução geral para equação de ondas É fácil

Leia mais

Capítulo 1 Erros e representação numérica

Capítulo 1 Erros e representação numérica Capítulo 1 Erros e representação numérica Objetivos Esperamos que ao final desta aula, você seja capaz de: Pré-requisitos Identificar as fases de modelagem e os possíveis erros nelas cometidos; Compreender

Leia mais