Pontifícia Universidade Católica de Goiás Escola de Engenharia. Aluno (a): Aula Laboratório 11 Cap 6 Estabilidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Pontifícia Universidade Católica de Goiás Escola de Engenharia. Aluno (a): Aula Laboratório 11 Cap 6 Estabilidade"

Transcrição

1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Laboratório ENG 3503 Sistemas de Controle Prof: Filipe Fraga 11 Aluno (a): Aula Laboratório 11 Cap 6 Estabilidade 1- Considerações teóricas: A estabilidade é a especificação de sistema mais importante. Caso um sistema seja instável, a resposta transitória e os erros em regime permanente são uma questão irrelevante. Um sistema instável não pode ser projetado para ter uma resposta transitória específica ou para atender um requisito de erro em regime permanente. Um sistema é estável se toda entrada limitada gerar uma saída limitada. Um sistema é instável se alguma entrada limitada gerar uma saída ilimitada.

2 1. Regiões de estabilidade no plano complexo das raízes da equação característica Contudo, em certas condições, podemos tirar algumas conclusões sobre a estabilidade do sistema. Primeiro, se a função de transferência em malha fechada possuir apenas polos no semiplano da esquerda, então os fatores do denominador da função de transferência em malha fechada consistirão em produtos de termos como (s + ai), em que ai é real e positivo, ou complexo com parte real positiva. O produto desses termos é um polinômio com todos os coeficientes positivos. Nenhum termo do polinômio pode estar faltando, uma vez que isso implicaria o cancelamento entre coeficientes positivos e negativos ou fatores de raízes sobre o eixo imaginário, o que não é o caso. Portanto, uma condição suficiente para que um sistema seja instável é que nem todos os sinais dos coeficientes do denominador da função de transferência em malha fechada sejam iguais. Se potências de s estiverem faltando, o sistema é instável ou, na melhor das hipóteses, marginalmente estável. Infelizmente, se todos os coeficientes do denominador estiverem presentes e forem positivos, não temos informações definitivas sobre as posições dos polos do sistema. É possível verificar quantos polos estão fora do semipleno direito do plano de s, utilizando o comando roots: roots[ ]

3 2. Contribuições dos polos na resposta malha fechada 3. Critério de Routh-Hurwitz O método requer dois passos: (1) gerar uma tabela de dados chamada de tabela de Routh e (2) interpretar a tabela de Routh para dizer quantos polos de sistema em malha fechada estão no semiplano esquerdo, no semiplano direito e sobre o eixo jω.

4 Se a função de transferência em malha fechada possui todos os polos na metade esquerda do plano s, o sistema é estável. Assim, um sistema é estável se não houver mudança de sinal na primeira coluna da tabela de Routh. Problema 01: Utilizando a tabela de Routh, diga quantos polos da função a seguir estão no semiplano da direita, no semiplano da esquerda e sobre o eixo jω: clear all clc %-det([si() si(); sj() sj()])/sj() %Gabarito para uso em cada célula syms e %Constroi o objeto simbólico para cada epsilon s5=[ ] %Constroi a linha s5 da tabela Routh s4=[ ] %Constroi a linha s4 da tabela Routh if -det([s5(1) s5(2);s4(1) s4(2)])/s4(1)==0 s3=[e... -det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0]; %Constroi a linha s3 da tabela de Routh %Se o primeiro elemento for 0. else s3=[-det([s5(1) s5(2);s4(1) s4(2)])/s4(1)... -det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0] %Constroi a linha s3 da tabela de Routh %Se o primeiro elemento não for 0. end if -det([s4(1) s4(2);s3(1) s3(2)])/s3(1)==0 s2=[e... -det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0]; %Constroi a linha s2 da tabela de Routh %Se o primeiro elemento for 0. else s2=[-det([s4(1) s4(2);s3(1) s3(2)])/s3(1)... -det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0] ; %Constroi a linha s2 da tabela de Routh %Se o primeiro elemento não for 0. end if -det([s3(1) s3(2);s2(1) s2(2)])/s2(1)==0 s1=[e... -det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0]; %Constroi a linha s1 da tabela de Routh %Se o primeiro elemento for 0. else s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1)... -det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0]; %Constroi a linha s1 da tabela de Routh %Se o primeiro elemento não for 0. end

5 s0=[-det([s2(1) s2(2); s1(1) s1(2)])/s1(1)... -det([s2(1) s2(3);s1(1) s1(3)])/s1(1) 0 0]; %Constroi a linha s0 da tabela de Routh 's3' s3=simplify(s3) pretty(s3) 's2' s2=simplify(s2) pretty(s2) 's1' s1=simplify(s1) pretty(s1) 's0' s0=simplify(s0) pretty(s0) Problema 02: O MATLAB pode calcular os polos de uma função de transferência para determinar a estabilidade. Para resolver para os polos de T(s) use o comando pole (T). Vamos ao problema: Determine o número de polos no semiplano da esquerda, no semiplano da direita e sobre o eixo jω para o sistema da figura abaixo: 'Estabilidade de sistemas' numg=1; deng=conv([1 0],[ ]); G=tf (numg,deng); 'T(s)' T=feedback (G,1) polos=pole(t) pause % Exibe o título. % Define o numerador de G(s). % Define o denominador de G(s). % Cria o objeto G(s). % Exibe o título. % Calcula o objeto em malha fechada % T(s). % Realimentação negativa é assumida % como padrão quando o parâmetro % sinal é omitido. % Obtém os polos de T(s).

6 Exercícios: 1. Determine o número de polos no semiplano da esquerda, no semiplano da direita e sobre o eixo jω para o sistema da figura abaixo: Figura 1 - Letra A Figura 2 - Letra B Figura 3 - Letra C 2. Utilize o MATLAB e a Symbolic Math Toolbox para gerar uma tabela de Routh para resolver a FT em malha aberta:

Critério de Estabilidade: Routh-Hurwitz

Critério de Estabilidade: Routh-Hurwitz Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

O Papel dos Pólos e Zeros

O Papel dos Pólos e Zeros Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva 1. K. Ogata: Engenharia de Controle Moderno, 5 Ed., Pearson, 2011 2.

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica. Sistemas de Controle Realimentados

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica. Sistemas de Controle Realimentados Critério de Estabilidade de Nyquist Introdução Princípio do Argumento Contorno de Nyquist Exemplos Problemas Propostos 1 Critério de Estabilidade de Nyquist { Estabilidade absoluta Estudo de Estabilidade

Leia mais

EES-49/2012 Resolução da Prova 3. 1 Dada a seguinte função de transferência em malha aberta: ( s 10)

EES-49/2012 Resolução da Prova 3. 1 Dada a seguinte função de transferência em malha aberta: ( s 10) EES-49/2012 Resolução da Prova 3 1 Dada a seguinte função de transferência em malha aberta: ( s 10) Gs () ss ( 10) a) Esboce o diagrama de Nyquist e analise a estabilidade do sistema em malha fechada com

Leia mais

Um resumo das regras gerais para a construção do lugar das raízes p. 1/43. Newton Maruyama

Um resumo das regras gerais para a construção do lugar das raízes p. 1/43. Newton Maruyama Um resumo das regras gerais para a construção do lugar das raízes p. 1/43 Um resumo das regras gerais para a construção do lugar das raízes Newton Maruyama Um resumo das regras gerais para a construção

Leia mais

Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1

Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro 2012. 1 / 48 Resumo 1 Introdução 2 Diagramas de Bode 3

Leia mais

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Estabilidade Carlos Alexandre Mello 1 Introdução Já vimos que existem três requisitos fundamentais para projetar um sistema de controle: Resposta Transiente Estabilidade Erros de Estado Estacionário Estabilidade

Leia mais

Processamento Digital de Sinais - ENG420

Processamento Digital de Sinais - ENG420 Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 24 de setembro de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 24 de setembro de 2016 1 / 19 1 Transformada Z - Conceito

Leia mais

Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II

Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II Recapitulando (da parte I): Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada, quando K varia.

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

AULA #12. Estabilidade de Sistemas de Controle por

AULA #12. Estabilidade de Sistemas de Controle por AULA #12 Estabilidade de Sistemas de Controle por Realimentação Estabilidade de Sistemas de Controle por Realimentação A presença de medidores, controladores e elementos finais de controle afetam as características

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14 Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES A função de transferência do circuito abaixo em malha fechada é: F(s) = C(s) = G(s)

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ1- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge Informação Papel Bode 1 3 Papel

Leia mais

Aula 18 Propriedades da Transformada Z Transformada Z inversa

Aula 18 Propriedades da Transformada Z Transformada Z inversa Processamento Digital de Sinais Aula 8 Professor Marcio Eisencraft abril 0 Aula 8 Propriedades da Transformada Z Transformada Z inversa Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, a

Leia mais

Professor Msc. Leonardo Henrique Gonsioroski

Professor Msc. Leonardo Henrique Gonsioroski Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça

Leia mais

ANÁLISE LINEAR DE SISTEMAS

ANÁLISE LINEAR DE SISTEMAS ANÁLISE LINEAR DE SISTEMAS JOSÉ C. GEROMEL DSCE / Faculdade de Engenharia Elétrica e de Computação UNICAMP, CP 6101, 13083-970, Campinas, SP, Brasil, geromel@dsce.fee.unicamp.br Campinas, Janeiro de 2007

Leia mais

Questões para Revisão Controle

Questões para Revisão Controle Questões para Revisão Controle 1. (PROVÃO-1999)A Figura 1 apresenta o diagrama de blocos de um sistema de controle, e a Figura 2, o seu lugar das raízes para K > 0. Com base nas duas figuras, resolva os

Leia mais

Função de Transferência do Amplificador re- alimentado

Função de Transferência do Amplificador re- alimentado p. 1/2 Resumo Efeito da Realimentação nos Pólos do Amplificador Amplificador só com um Pólo Amplificador com dois Pólos Amplificador com três ou mais Pólos Estabilidade usando Diagramas de Bode Compensação

Leia mais

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal

Leia mais

Capítulo 3. Função de transferência e dinâmicas dos sistemas

Capítulo 3. Função de transferência e dinâmicas dos sistemas DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas 3.1. Aplicação da transformada de Laplace às equações diferenciais A transformada de Laplace é

Leia mais

PÓLOS NA REPRESENTAÇÃO DO ESPAÇO DOS ESTADOS

PÓLOS NA REPRESENTAÇÃO DO ESPAÇO DOS ESTADOS PÓLOS NA REPRESENTAÇÃO DO ESPAÇO DOS ESTADOS. Motiação e necessidade Pólos de um sistema fornecem o comportamento dinâmico do sistema tempo de resposta, frequencia natural, coeficiente de amortecimento

Leia mais

Capítulo 6. Estabilidade. Adaptado de: 3a ed. Engenharia de Sistemas de Controle - Norman S. Nise

Capítulo 6. Estabilidade. Adaptado de: 3a ed. Engenharia de Sistemas de Controle - Norman S. Nise Capítulo 6 Estabilidade Adaptado de: 3a ed. Engenharia de Sistemas de Controle - Norman S. Nise Pólos em malha fechada e resposta: a. sistema estável; Plano s Pólos do sistema a malha fechada estáveis

Leia mais

Aprendendo a trabalhar com frações parciais

Aprendendo a trabalhar com frações parciais Parte 1: Aprendendo a trabalhar com frações parciais Para trabalhar com frações parciais em Matlab, você tem que conhecer o funcionamento das seguintes funções: roots, poly e residue. Os pontos abaixo

Leia mais

Diagramas de Bode. Introdução

Diagramas de Bode. Introdução Diagramas de Bode Introdução Sistemas e Sinais Diagramas de Bode Escala Logarítmica de Amplitude Escala Logarítmica de Frequência Análise dos Termos das Funções de Resposta em Frequência Composição do

Leia mais

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

ERRO EM REGIME PERMANENTE

ERRO EM REGIME PERMANENTE MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA ERRO EM REGIME PERMANENTE Inicialmente veja o sistema realimentado mostrado na figura

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

CAP. 2 RESPOSTA EM FREQÜÊNCIA

CAP. 2 RESPOSTA EM FREQÜÊNCIA CAP. 2 RESPOSTA EM FREQÜÊNCIA 1 2.1 PÓLOS, ZEROS E CURVAS DE BODE Função de transferência no domínio s: T s V o s V i s T s a m sm a m 1 s m 1 a 0 b n s n b n 1 s n 1 b 0 Coeficientes a, b são reais m

Leia mais

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Saulo Dornellas Universidade Federal do Vale do São Francisco Juazeiro - BA Dornellas (UNIVASF) Juazeiro - BA 1 / 44 Análise do

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

Métodos Matemáticos para Engenharia

Métodos Matemáticos para Engenharia Métodos Matemáticos para Engenharia Transformada de Laplace Docentes: > Prof. Fabiano Araujo Soares, Dr. Introdução Muitos parâmetros em nosso universo interagem através de equações diferenciais; Por exemplo,

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG437 Sistemas de Controle Digitais Projeto de Controladores Digitais no Planoz Utilizando Lugar das

Leia mais

Cálculo A. José Carlos de Souza Junior.

Cálculo A. José Carlos de Souza Junior. Cálculo A José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc_jc Universidade Federal de Alfenas - Instituto de Ciências Exatas Abril - 2014 O que é o GeoGebra? GeoGebra é um software

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID)

Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID) Sistemas Realimentados Regulação e Tipo de sistema: Entrada de referência Entrada de distúrbio Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID) Fernando

Leia mais

2 Declarando e usando variáveis

2 Declarando e usando variáveis 1 Básico Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica ENG04450 - Sistemas de Controle Laboratório I - Introdução ao Matlab Profs. João Manoel Gomes da Silva e Romeu Reginatto

Leia mais

MATLAB EM VIBRAÇÕES MECÂNICAS

MATLAB EM VIBRAÇÕES MECÂNICAS MATLAB EM VIBRAÇÕES MECÂNICAS O QUE É O MATLAB? O MATLAB ( MATrix LABoratory ) é um pacote de programas computacionais que pode ser usado para a resolução de uma variedade de problemas científicos e de

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

INEQUAÇÕES : Conceito:

INEQUAÇÕES : Conceito: INEQUAÇÕES : Conceito: Toda inequação é uma desigualdade aberta, o que significa que ela contém ao menos uma incógnita Trabalharemos a seguir com inequações de º e de º graus com uma só incógnita, e para

Leia mais

Aula 13 Análise no domínio da frequência

Aula 13 Análise no domínio da frequência Aula 13 Análise no domínio da frequência A resposta em frequência é a resposta do sistema em estado estacionário (ou em regime permanente) quando a entrada do sistema é sinusoidal. Métodos de análise de

Leia mais

Introdução ao Scilab 3.0 Parte 2

Introdução ao Scilab 3.0 Parte 2 Introdução ao Scilab 3.0 Parte 2 Paulo S. Motta Pires pmotta@dca.ufrn.br Departamento de Engenharia de Computação e Automação Universidade Federal do Rio Grande do Norte NATAL - RN Paulo Motta (DCA-UFRN)

Leia mais

Realimentação. gerados tanto por os componentes do circuito como interferências externas. (continua) p. 2/2

Realimentação. gerados tanto por os componentes do circuito como interferências externas. (continua) p. 2/2 p. 1/2 Resumo Realimentação Dessensibilização do Ganho Extensão de Largura de Banda Redução de Ruído Redução de Distorção não Linear As quatro tipologias básicas Amplificadores de Tensão Amplificadores

Leia mais

Planificação do 1º Período

Planificação do 1º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

LISTA /1. a) Quanto maior o tempo morto, maior deverá ser a ação b) Quanto maior o ganho do processo menor deverá ser o ganho do controlador.

LISTA /1. a) Quanto maior o tempo morto, maior deverá ser a ação b) Quanto maior o ganho do processo menor deverá ser o ganho do controlador. LISTA 006/ ) (005/, PARTE A) Um sistema dinâmico é modelado por função de transferência de primeira ordem com tempo morto. Comente sobre as seguintes afirmativas: a) Quanto maior o tempo morto, maior deverá

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

Processamento Simbólico Polinómios e Equações Gráficos

Processamento Simbólico Polinómios e Equações Gráficos Matlab Processamento Simbólico Polinómios e Equações Gráficos Matlab Eercício. Iniciar o programa Matlab. Há duas formas: Fazer duplo-clique sobre o atalho, eistente no ambiente de trabalho do Windows

Leia mais

Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015

Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015 Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015 1) Projete um filtro FIR passa baixas de 3 etapas com frequência de corte

Leia mais

Revisão: Potenciação e propriedades. Prof. Valderi Nunes.

Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo

Leia mais

INTRODUÇÃO AO SCILAB

INTRODUÇÃO AO SCILAB INTRODUÇÃO AO SCILAB O programa SCILAB é um ambiente apropriado ao desenvolvimento de software para computação numérica. Esse programa foi concebido e é mantido pelo Institut de Recherche em Informatique

Leia mais

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A resistências & lei de Ohm R A V R 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série Paralelo corrente Rsérie R R Rparalelo R R2 2 SÉREigual corrente

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Experiência 5. Projeto e Simulação do Controle no Espaço de Estados de um Pêndulo Invertido sobre Carro

Experiência 5. Projeto e Simulação do Controle no Espaço de Estados de um Pêndulo Invertido sobre Carro Experiência 5 Projeto e Simulação do Controle no Espaço de Estados de um Pêndulo Invertido sobre Carro Professores: Adolfo Bauchspiess e Geovany A. Borges O objetivo deste experimento é projetar e simular

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Trabalho de Processamento Digital de Sinais usando MATLAB R

Trabalho de Processamento Digital de Sinais usando MATLAB R Trabalho de Processamento Digital de Sinais usando MATLAB R Prof. Marcelo de Oliveira Rosa Universidade Federal do Paraná 21 de maio de 2007 1 Introdução Este trabalho permitirá que o aluno realize operações

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

MATEMÁTICA PARA CEF PROFESSOR: GUILHERME NEVES

MATEMÁTICA PARA CEF PROFESSOR: GUILHERME NEVES Aula 4 Parte 2 1 Análise de Investimentos... 2 1.1 Conceito... 2 1.2 Valor Presente Líquido (VPL)... 3 1.3 Taxa Interna de Retorno (TIR)... 3 1.4 Payback Descontado... 3 1.5 Exercícios Resolvidos... 4

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear

Leia mais

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa. Universidade de Brasília (UnB) Departamento de Engenharia Elétrica (ENE)

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa. Universidade de Brasília (UnB) Departamento de Engenharia Elétrica (ENE) Circuitos Elétricos 2 Circuitos Elétricos Aplicados Prof. Dr.-Ing. João Paulo C. Lustosa da Costa (UnB) Departamento de Engenharia Elétrica (ENE) Caixa Postal 4386 CEP 70.919-970, Brasília - DF Homepage:

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

CADERNO DE EXERCÍCIOS 1B

CADERNO DE EXERCÍCIOS 1B CADERNO DE EXERCÍCIOS B Ensino Médio Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H2 H22 2 Teorema de Pitágoras H6 Aceleração média H2 Impulso H2 . A produção

Leia mais

PRINCÍPIOS DE CONTROLE E SERVOMECANISMO

PRINCÍPIOS DE CONTROLE E SERVOMECANISMO PRINCÍPIOS DE CONTROLE E SERVOMECANISMO JOSÉ C. GEROMEL e RUBENS H. KOROGUI DSCE / Faculdade de Engenharia Elétrica e de Computação UNICAMP, CP 6101, 13083-970, Campinas, SP, Brasil, geromel@dsce.fee.unicamp.br

Leia mais

GUIA DE EXPERIMENTOS

GUIA DE EXPERIMENTOS ESCOLA POLITÉCNICA DA UNIVESIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3 - LABOATÓIO DE CICUITOS ELÉTICOS GUIA DE EXPEIMENTOS EXPEIÊNCIA 06 - SIMULAÇÃO DE CICUITOS ELÉTICOS

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...

Leia mais

Aula 1. e o conjunto dos inteiros é :

Aula 1. e o conjunto dos inteiros é : Aula 1 1. Números reais O conjunto dos números reais, R, pode ser visto como o conjunto dos pontos da linha real, que serão em geral denotados por letras minúsculas: x, y, s, t, u, etc. R é munido de quatro

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

MÓDULO XI. INEQUAÇÕES 2x 20

MÓDULO XI. INEQUAÇÕES 2x 20 MÓDULO XI. Inequação INEQUAÇÕES < Logo, o conjunto solução será S. Vamos supor que, na nossa escola, a média mínima para aprovação automática seja 6 e que essa média, em cada matéria, seja calculada pela

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas

Leia mais

Simulação de Sistemas Dinâmicos Lineares Visão Geral do Matlab

Simulação de Sistemas Dinâmicos Lineares Visão Geral do Matlab Universidade de Brasília Laboratório de Análise Dinâmica Linear Experimento 01 - primeira parte Simulação de Sistemas Dinâmicos Lineares Visão Geral do Matlab Lab ADL (Experimento 01-1a parte) Simulação

Leia mais

REVISÃO DE ALGUMAS MATÉRIAS

REVISÃO DE ALGUMAS MATÉRIAS Análise Matemática MIEC /4 REVISÃO DE ALGUMAS MATÉRIAS INEQUAÇÕES Uma das propriedades das inequações mais vezes ignorada é a que decorre da multiplicação de ambos os membros por um valor negativo. No

Leia mais

a matriz aumentada será e por aplicação da eliminação ascendente e descendente chegamos a:

a matriz aumentada será e por aplicação da eliminação ascendente e descendente chegamos a: INVERSÃO DE MATRIZES Para o cálculo da inversa de uma dada matriz [A] quadrada, temos de relembrar que a sua matriz inversa, [A] -1 (tambem quadrada), deverá respeitar a seguinte condição: [A][A] -1 =[A]

Leia mais

Função Definida Por Várias Sentenças

Função Definida Por Várias Sentenças Ministrante Profª. Drª. Patrícia Aparecida Manholi Material elaborado pela Profª. Drª. Patrícia Aparecida Manholi SUMÁRIO Função Definida Por Várias Sentenças Lembrando... Dados dois conjuntos não vazios

Leia mais

Mestrado Integrado em Engenharia Electrotécnica e de Computadores - MEEC CONTROLO. 1º semestre Introdução ao Matlab e Simulink

Mestrado Integrado em Engenharia Electrotécnica e de Computadores - MEEC CONTROLO. 1º semestre Introdução ao Matlab e Simulink Mestrado Integrado em Engenharia Electrotécnica e de Computadores - MEEC CONTROLO º semestre 0-0 Introdução ao Matlab e Simulink - Ensaios a realizar durante a sessão de Laboratório Objectivo: Familiarização

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU :

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU : IFSP - EAD _nº 5 FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES : FUNÇÃO CONSTANTE : Uma função f: R R é chamada constante se puder ser escrita na forma y = f() = a, onde a é um número real

Leia mais

Minicurso de MATLAB. Programa de Educação Tutorial de Engenharia Elétrica 28/03/15. lmax Rodrigues. lcaroline Pereira.

Minicurso de MATLAB. Programa de Educação Tutorial de Engenharia Elétrica 28/03/15. lmax Rodrigues. lcaroline Pereira. Minicurso de MATLAB Programa de Educação Tutorial de Engenharia Elétrica lmax Rodrigues lcaroline Pereira lnayara Medeiros 28/03/15 Conteúdo a ser abordado na aula Declaração e manipulação de vetores ;

Leia mais

LUDMILLA REIS PINHEIRO DOS SANTOS

LUDMILLA REIS PINHEIRO DOS SANTOS UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE COMPUTAÇÃO GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO TÉCNICAS DE PROJETO DE SISTEMAS DE CONTROLE LUDMILLA REIS PINHEIRO DOS SANTOS DEZEMBRO 2008 UNIVERSIDADE

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (18 de setembro a 17 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

2004/2005 PROBLEMAS. (c) Se ainda restarem raízes complexas, reduza o polinómio e calcule essas raízes pela fórmula resolvente.

2004/2005 PROBLEMAS. (c) Se ainda restarem raízes complexas, reduza o polinómio e calcule essas raízes pela fórmula resolvente. Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 2004/2005 Raízes de Polinómios PROBLEMAS 1 Considere o polinómio P (x) =x x +1. (a) Quantas raízes reais (positivas e negativas)

Leia mais

Prof. MSc. David Roza José 1/26

Prof. MSc. David Roza José 1/26 1/26 Inversão de Matrizes Objetivos: Saber determinar a inversa de uma matriz de maneira eficiente, baseada na fatoração LU; Compreender como a inversa de uma matriz pode ser utilizada para analisar características

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

Métodos Matemáticos para Gestão da Informação

Métodos Matemáticos para Gestão da Informação Métodos Matemáticos para Gestão da Informação Aula 04 Taxas de variação e função lineares II Dalton Martins dmartins@gmail.com Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação

Leia mais