Prova 2 - Sistemas de Controle Projetos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prova 2 - Sistemas de Controle Projetos"

Transcrição

1 Prova - Sistemas de Controle Projetos Pedro Batista (887) - Paulo Victor Mocbel (887) - December 4, Projeto de Controlador PI ideal Desejamos adicionar um controlador proporcional integral, no sistema da Equação para levar a zero seu erro de regime, em resposta ao degrau unitário. Como foi dado do problema o sistema opera com coeficiente de amortecimento igual a.74. G(s) = () (s+)(s+)(s+) Para levar o erro de regime a zero, adicionamos um polo em zero, para que esse polo não influencie na resposta trasitória do sistema, adicionamos também um zero próximo a este., o ganho K também é adicionado ao o sistema, e esse se torna o mostrado na Equação. Para este plotamos o LGR e o coeficiente de amortecimento na Figura, podemos então definir o ganho do sistema. Simulamos o sistema sem o controlador, e o sistema controlado na Figura onde podemos observar que o erro de regime será levado a zero. K(s+.) G(s) = () s(s+)(s+)(s+) Para gerar o LGR o código utilizado no matlab é mostrado na Figura 3, onde utilizamosozpk pararepresentarosistema, eosgridparaplotarocoeficientede amortecimento. Já para simulação dos sitemas usamos o esquema do simulink mostrado na Figura 4. Projeto de Compensador por Atraso de Fase Devemos compensar o sistema da Equação 3, com um compensador por atraso de fase. Para isso desenvolvemos os códigos das Figuras 8, 9 e 7, onde calculamos primeiramente o ganho do sistema não controlado K = 6(Figura a). Simulamos e encontramos seu erro de regime (V r =.889) e dividimo-os por, para encontrar K pc = 89., com esse definimos que nosso novo polo deve estar em p c =.3, a partir do qual calculamos o novo zero z c =.443 e ganho K = (Figura b). Simulamos então o novo sistema, o resultado é mostrado na Figura 6, e a saída de execução do programa na Figura. G(s) = K s(s+)(s+)(s+) (3)

2 Root Locus.7 System: p_zpk Gain: 6 Pole: i Damping:.7 Overshoot (%): 7.8 Frequency (rad/sec): Figure : LGR para o sistema da Equação, com coeficiente de amortecimento igual a Projeto de um Controlador por Atraso de Fase Nosso objetivo aqui é projetar um compensador por atraso de fase que resulte em um k p =, com função de transferência da equação 4 sem alterar de forma brusca a localização o pólo dominante que produz um M p de %. Para isso primeiramente devemos encontrar o valor de ξ para podermos encontrar no k do sistema não compensado. Portanto usando a equação chegamos ao valor de ξ =.9. A partir desse valor podemos traçar o lgr do nosso sistema não compensado, como mostrado na figura, assim podendo encontra o valor de k = 4. Com o valor de k em mãos podemos calcular o valor de K p através da formula mostrada na equação 6. A parti desse valor usamos agora a equação 7, dela chegamos a equação 8 que é o valor de a relação entre zc e pc, para K pc =. Coloncando o valor pc =., encontramos zc =.34. Assim nosso compensador fica como mostrado na equação 9. Agora devemos saber qual é o valor do novo k para o sistema com o compensador, para tanto plotamos o seu lgr, como na figura e visualizamos k = 4.4. Observando a resposta sem e com o compensador, mostrada na figura 3 vemos que houve uma modificação considerável na resposta transitória do sistema com relação ao adicionamento do compensador. Isso ocorre pelo fato de termo adicionado um pólo que influênciou nosso pólo dominante,não obdecendo o critério de vezes afastado (o novo encontrasse em -7.9 e o outro em -). G(s) = k (s+)(s+4)(s+6) (4) M p = e πξ (πξ) ()

3 .4. com controlador pi sistema original Figure : Simulação para o sistema da Equação, e sua versão controlada (Equação com ganho K = 6. p_zpk=zpk([-.], [ - - -], ) rlocus(p_zpk) sgrid(.7, xi ) Figure 3: Código do MATLAB utilizado para plotar o LGR da Equação K p = 4 = (6) zc K pc = K p pc (7) zc pc = K pc K p =.3447 (8) G c (s) = k(s+.34) (s+.) (9) 4 Projeto de um Controlador PD Dada a função de transferência de ramo direto dada pela equação, queremos projetar um controlador PD reduzindo o tempo de estabilização a um fator de. Primeiramente vamos encontrar o valor de K correspondente a ξ =.77. Para isso plotamos o lgr do sistema não compensado, como mostrado na figura 4, de onde encontramos k = 6.3. Como queremos que o tempo de resposta 3

4 (a) Esquema utilizado para o sistema não con-(btrolado (Equação ). lado (Equação Esquema utilizado para o sistema contro- ). Figure 4: Esquemas montados no simulink para simular os sistemas do Problema seja reduzido temos que encontrar primeiramente o tempo de estabilização do sistema através da equação. Reduzindo o mesmo a metade como descrito na equação. Agora podemos calcular as partes real e imaginária do polo dominante. Fazemos isso nas equações 3, 4 e. Feito isso devemos projetar a localização o zero do nosso compensador através da equação 6, assim encontraremos os valores dos ângulos como na equação 7. De posse desse valores e usando a relação descrita em 8 encontramos θ = Agora podemos calcular o valor exato do zero do nosso compensador como descrito na equação 9. Com esse valor em mãos podemos finalmente plotar nosso lgr do sistema compensado, mostrado na figura, de onde encontramos k =. As reposta sem e com o compensador estão na figura 6 G(s) = k (s+)(s+)(s+3)(s+6) () T s = 4 ρ = 4 = 3.89 ().4 T s = 3.89 =.94 () ρ = 4 =.8.94 (3) ρ = ξ W n W n =.8 = (4) W d = w n ξ =. () G c = s+zc (6) θ = 7.43,θ 3 = 9.4,θ 4 = 67,θ 4 = 7.96 (7) θ θ θ3 θ4 θ = 8 (8) tan(8 3.73) =.8 zc =.693 (9).8 zc 4

5 Projeto de um Controlador PID Para a função de transferência da Equação, desejas-se para o degrau unitário um instante de pico T p em.47 segundos e um coeficiente de amortecimento ξ =.8. G(s) = O roteiro do laboratório mostra que: K (s+)(s+4) π T p = w n ξ Podemos então definir w n como segue w n = π T = π p ξ.47.8 =.9 A partir das notas de aula encontramos: () w d = w n q ξ = 3. σ = w n ξ =.9.8 = 4.7 s = σ ±w d = 4.7±3. Usamos então a condição de ângulo para calcular a posição requerida do zero do compensador, os cálculos são mostrados na Figura 7 onde foi definido que o novo zero deve estar em Com esses dados calculamos o ganho do sistema k = 3. (Figura 8). A nova função de transferência de malha aberta do sistema é: G(s) = 3.(s ) (s+)(s+4) Podemos encontrar a função de transferência de malha fechada de acordo com fórmula: G f (s) = G(s) +G(s) = (s+7)(s+4)(s+) (s+)(s+4)(s +6s+) Desta forma observamos que os polos desta equação são.±.88, e 4. Observamos então que dentro do intervalo de. = 7. ( vezes o polo dominante) temos dois polos, caracterizando um sistema de terceira ordem que não pode ser aproximado por um sistema de segunda ordem.

6 Root Locus.74 System: q Gain: 6 Pole: i Damping:.74 Overshoot (%): 7.4 Frequency (rad/sec): (a) LGR para o sistema da Equação 3 não controlado. Root Locus.74 System: q Gain: Pole: i Damping:.74 Overshoot (%): 7.4 Frequency (rad/sec): (b) LGR para o sistema da Equação 3 controlado, com zero em.443 e polo em.3. Figure : LGR para solução do Problema 6

7 .4. sistema sem controlador sistema controlado X: 6.6 Y:.889 X: 9.7 Y: Figure 6: Resultado da simulação do sistema da Equação 3 original e controlado conforme Problema. Figure 7: Sistema do simulink utilizado no programa da Figura 9 function [newgain] = lgrgain(zeros, poles, gain, q, figureid); figure(figureid); q = zpk(zeros, poles, gain) rlocus(q); sgrid(q, ); k = input( ganho? ); newgain = k; end Figure 8: Função para gerar o LGR e solicitar o ganho para o usuário o ganho do sistema. 7

8 simname= q_sim figureini = ; desiredvalue = ; q=.74; k=; poles = [- - -]; zeros = []; k = lgrgain(zeros, poles, k, q, figureini + ); sim(simname); figure(figureini); plot(scopedata.time, ScopeData.signals.values(:,)); legend( sistema sem controlador ); simlen = length(scopedata.time); finalvalue = ScopeData.signals.values(simLen,); userfinalvalue = input([ regime " numstr(finalvalue) "? [New] ]); if not(isempty(userfinalvalue)) finalvalue = userfinalvalue; end err = desiredvalue - finalvalue; newerr = err / ; %equaç~oes da apostila pg 76 kp = (-err) / err; kpc = (-newerr) / newerr polevalue = input( Valor do novo polo? ); %equaç~ao apostila pg 77 zerovalue = (kpc/kp)*polevalue; disp([ Novo zero " numstr(zerovalue) " ]); zeros = horzcat(zeros, zerovalue); poles = horzcat(poles, polevalue); k = lgrgain(zeros, poles,, q, figureini+); sim(simname) figure(figureini); hold; plot(scopedata.time, ScopeData.signals.values(:,), r ); hold; %legend( sistema sem controlador ); 8 Figure 9: Função para resolver o problema da Seção

9 simname = q_sim Zero/pole/gain: (s+) (s+) (s+) ganho? 6 regime ".889"? [New] Valor do novo polo? -.3 Novo zero "-.443" Zero/pole/gain: (s+.44) (s+) (s+) (s+) (s+.3) ganho? Current plot held Current plot released Figure : Saída da execução do programa da Figura. Root Locus System: a Gain: 4 Pole:.3 +.7i Damping:.94 Overshoot (%): 9.8 Frequency (rad/sec): Figure : lgr do sistema não compensado da Seção 3. 9

10 Root Locus.9 System: a Gain: 4.4 Pole: i Damping:.93 Overshoot (%): 9.9 Frequency (rad/sec): Figure : lgr do sistema compensado da Seção 3..9 sem com o controlador.8 resposta ao degrau unitã rio tempo(s) Figure 3: Resposta do sistema compensado Seção 3.

11 Root Locus System: a Gain: 6.3 Pole:. +.3i Damping:.7 Overshoot (%): 4.8 Frequency (rad/sec): Figure 4: lgr do sistema não compensado da Seção 4. Root Locus.77 System: a Gain: Pole:.6 +.9i Damping:.73 Overshoot (%): 4.48 Frequency (rad/sec): Figure : lgr do sistema compensado Seção 4.

12 .3.3 sem com o controlador resposta ao degrau unitã rio tempo(s) Figure 6: Resposta do sistema com e sem compensador Seção 4. Figure 7: Calculo da condição de ângulo para projetar o compensador para o problema da Seção.

13 Root Locus System: g Gain: 3. Pole: 4 + 3i Damping:.8 Overshoot (%):. Frequency (rad/sec): Figure 8: LGR para o sistema da Equação, com um novo zero em

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I

Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Aula 11 Root Locus LGR (Lugar Geométrico das Raízes) parte I Sistema de malha fechada G(s) G(s) G(s) Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada,

Leia mais

Sistemas a Tempo Discreto - Projeto

Sistemas a Tempo Discreto - Projeto Sistemas a Tempo Discreto - Projeto 1. Especificações de Projeto no domínio discreto 2. Projeto via Emulação 2.1 Controladores Equivalentes Discretos 2.2 Mapeamento pólo-zero 2.3 Avaliação do projeto pag.1

Leia mais

CONTROLO DE SISTEMAS

CONTROLO DE SISTEMAS UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS Lugar Geométrico das Raízes PROJECTO E ANÁLISE DA RESPOSTA TRANSITÓRIA E ESTABILIDADE Parte 1/3 - Compensação

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva Controlador Proporcional Controlador PI A Relação entre a saída e o

Leia mais

Laboratório de Projeto por Intermédio do Root Locus

Laboratório de Projeto por Intermédio do Root Locus Laboratório de Projeto por Intermédio do Root Locus Revisão Revisão Entrada Expressão do erro estacionário Degrau, Rampa, Parábola, Dado o sistema: Método do Lugar das Raízes Exercício 1 - Controlador

Leia mais

Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Controle de Sistemas O Método do Lugar das Raízes Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Introdução No projeto de um sistema de controle, é fundamental se determinar

Leia mais

Função de Transferência de Malha Fechada

Função de Transferência de Malha Fechada Função de Transferência de Malha Fechada R(s) B(s) + - E(s) Controlador Gc(S) U(s) Sensor G(S) Planta C(s) C(s)=G(s)*U(s) H(S) C(s)=G(s)*Gc(s)*E(s) C(s)=G(s)*Gc(s)*[ R(s)-B(s) ] C(s)=G(s)*Gc(s)*[ R(s)-H(s)*C(s)

Leia mais

Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade

Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade Baseado no trabalho Controlo de Velocidade de um motor DC de E. Morgado, F. Garcia e J. Gaspar João Miguel Raposo Sanches 1 o

Leia mais

Sessão Prática: Simulação e Controle com LabVIEW

Sessão Prática: Simulação e Controle com LabVIEW Sessão Prática: Simulação e Controle com LabVIEW 1 Visão geral Este tutorial mostra as características dos controles proporcional (P), integral (I) e derivativo (D), e como utilizálos para obter a resposta

Leia mais

Métodos de Sintonização de Controladores PID

Métodos de Sintonização de Controladores PID 3ª Aula de Controlo Inteligente Controlo PI iscreto Métodos de Sintonização de Controladores PI Os controladores PI são muito utilizados em aplicações industrias. A função de transferência que define o

Leia mais

RELATÓRIO FINAL PROJETO DESAFIO CONTROLE DE POSIÇÃO ATRAVÉS DE MOTOR DE CORRENTE CONTÍNUA

RELATÓRIO FINAL PROJETO DESAFIO CONTROLE DE POSIÇÃO ATRAVÉS DE MOTOR DE CORRENTE CONTÍNUA RELATÓRIO FINAL PROJETO DESAFIO CONTROLE DE POSIÇÃO ATRAVÉS DE MOTOR DE CORRENTE CONTÍNUA Laboratório De Controle I (LECI) Professor: Reinaldo Martinez Palhares Integrantes : Antônio J. R. Chaves, Marcelo

Leia mais

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Laboratório da Disciplina CTA-147 Controle I Análise da Resposta Transitória (Este laboratório foi uma adaptação

Leia mais

Laboratório de Projeto de Avanço e Atraso

Laboratório de Projeto de Avanço e Atraso Laboratório de Projeto de Avanço e Atraso Revisão Entrada Expressão do erro estacionário Degrau, Rampa, Parábola, Dado o sistema: Exercício 1 - Controlador de Atraso No Matlab projete um compensador P

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;

Leia mais

Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle

Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle Laboratórios 9, 10 e 11: Projeto de Controladores pelo Lugar das Raízes DAS5317 Sistemas de Controle Hector Bessa Silveira e Daniel Coutinho 2012/2 1 Objetivos Neste próximos laboratórios, utilizar-se-á

Leia mais

Toolbox de Sistemas de Controle MATLAB

Toolbox de Sistemas de Controle MATLAB Toolbox de Sistemas de Controle MATLAB Control System Toolbox Grupo PET Engenharia Elétrica UFMS Campo Grande MS Junho - 2003 2 Índice Índice 3 1. Introdução 4 2. Representação dos Sistemas 5 2.1. Representação

Leia mais

ESCOLA NAVAL DIRETORIA DE ENSINO DA MARINHA DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski

ESCOLA NAVAL DIRETORIA DE ENSINO DA MARINHA DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski ESCOLA NAVAL DIRETORIA DE ENSINO DA MARINHA DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Na aula passada vimos Compensação de sistemas Efeitos da Adição de pólos e zeros Compensadores de Avanço de Fase

Leia mais

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica Aula 11 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução - Lugar das Raízes

Leia mais

Ajuste de Controle PID utilizando Algoritmo Genético

Ajuste de Controle PID utilizando Algoritmo Genético Centro Universitário de Brasília UniCEUB FACULDADE DE TECNOLOGIA E CIÊNCIAS SOCIAIS APLICADAS - FATECS Curso de Engenharia da Computação Hugo de Souza Santos Ajuste de Controle PID utilizando Algoritmo

Leia mais

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006. Controlo de velocidade de um motor D.C.

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006. Controlo de velocidade de um motor D.C. Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Controlo 2005/2006 Controlo de velocidade de um motor D.C. Elaborado por E. Morgado 1 e F. M. Garcia 2 Reformulado

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

TRABALHO: CONTROLE DE UM SISTEMA PÊNDULO-CARRO

TRABALHO: CONTROLE DE UM SISTEMA PÊNDULO-CARRO TRABALHO: CONTROLE DE UM SISTEMA PÊNDULO-CARRO Professor: Tiago Dezuo 1 Objetivos Desenvolver técnicas de controle por variáveis de estado clássicas e ótimas, realizando comparações de desempenho entre

Leia mais

Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional

Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Ações Básicas de Controle e Controle Proporcional Aula

Leia mais

Me todos de Ajuste de Controladores

Me todos de Ajuste de Controladores Me todos de Ajuste de Controladores Recapitulando aulas passadas Vimos algumas indicações para a escolha do tipo de controlador feedback dependendo da malha de controle que está sendo projetada. Vimos

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica Apostila de Automação Industrial Elaborada pelo Professor M.Eng. Rodrigo Cardozo Fuentes Prof. Rodrigo

Leia mais

Capítulo 3 Sistemas de Controle com Realimentação

Capítulo 3 Sistemas de Controle com Realimentação Capítulo 3 Sistemas de Controle com Realimentação Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Sistemas de Controle com

Leia mais

UNIVERSIDADE DE MOGI DAS CRUZES - ENGENHARIA ELÉTRICA Prof. José Roberto Marques CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA

UNIVERSIDADE DE MOGI DAS CRUZES - ENGENHARIA ELÉTRICA Prof. José Roberto Marques CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA Exp. 1 (Simulação) LABORATÓRIO DE SIMULAÇÂO DE FONTES CHAVEADAS O objetivo deste laboratório é simular fontes chaveadas Buck (abaixadora de potencial)

Leia mais

Controle II. Estudo e sintonia de controladores industriais

Controle II. Estudo e sintonia de controladores industriais Controle II Estudo e sintonia de controladores industriais Introdução A introdução de controladores visa modificar o comportamento de um dado sistema, o objetivo é, normalmente, fazer com que a resposta

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG437 Sistemas de Controle Digitais Introdução Controladores PID Prof. Walter Fetter Lages 2 de maio

Leia mais

SISTEMAS DE CONTROLE II

SISTEMAS DE CONTROLE II SISTEMAS DE CONTROLE II - Algumas situações com desempenho problemático 1) Resposta muito oscilatória 2) Resposta muito lenta 3) Resposta com erro em regime permanente 4) Resposta pouco robusta a perturbações

Leia mais

TG-01-2012-EL. e-mail 1 : diego190103@gmail.com; e-mail 2 : ffpuccia@uol.com.br; e-mail 3 : peleggi@ig.com.br;

TG-01-2012-EL. e-mail 1 : diego190103@gmail.com; e-mail 2 : ffpuccia@uol.com.br; e-mail 3 : peleggi@ig.com.br; Controle de ângulos de azimute e de elevação num sistema Aeroestabilizador Diego Amorim 1 ; Filipe Puccia 2 & Regis Peleggi 3. Orientador: Alexandre Brincalepe Campo. TG-01-2012-EL 1, 2,3 Graduandos do

Leia mais

CAPÍTULO 12. Projeto de controladores discretos

CAPÍTULO 12. Projeto de controladores discretos CAPÍULO 2 Projeto de controladores discretos 2. Introdução O projeto de controladores discretos pode ser realizado por emulaçào, onde um controlador contínuo é projetado, usando as mesmas técnicas vistas

Leia mais

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes

Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Análise e Projeto de Sistemas de Controle pelo Método do Lugar das Raízes Saulo Dornellas Universidade Federal do Vale do São Francisco Juazeiro - BA Dornellas (UNIVASF) Juazeiro - BA 1 / 44 Análise do

Leia mais

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).

Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s). 2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()

Leia mais

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO João Baptista Bayão Ribeiro USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE AVANÇO Rio de Janeiro 2014 2 ÍNDICE USO DO SCILAB PARA REALIZAÇÃO...1 EM COMPUTADOR DE UM PROJETO...1

Leia mais

PRINCÍPIOS DE CONTROLE E SERVOMECANISMO

PRINCÍPIOS DE CONTROLE E SERVOMECANISMO PRINCÍPIOS DE CONTROLE E SERVOMECANISMO JOSÉ C. GEROMEL e RUBENS H. KOROGUI DSCE / Faculdade de Engenharia Elétrica e de Computação UNICAMP, CP 6101, 13083-970, Campinas, SP, Brasil, geromel@dsce.fee.unicamp.br

Leia mais

Projeto de sistemas de controle

Projeto de sistemas de controle Projeto de sistemas de controle Os controladores clássicos encontrados na literatura podem ser classificados como: Controladores de duas posições (ou on-off). Controladores proporcionais. Controladores

Leia mais

ELEMENTOS DE MÁQUINAS I

ELEMENTOS DE MÁQUINAS I UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA ELEMENTOS DE MÁQUINAS I APOSTILA PARA O CURSO 2 o Semestre de 2001 Molas Helicoidais e Planas AUTOR: P ROF. DR. AUTELIANO A NTUNES DOS

Leia mais

Universidade Presbiteriana Mackenzie. Controle II

Universidade Presbiteriana Mackenzie. Controle II Universidade Presbiteriana Mackenzie Curso de Engenharia Elétrica Controle II Notas de Aula Prof. Marcio Eisencraft Segundo semestre de 004 Universidade Presbiteriana Mackenzie Curso de Engenharia Elétrica

Leia mais

CONTROLE DE SISTEMA VIA SOFTWARE

CONTROLE DE SISTEMA VIA SOFTWARE UNICEUB CENTRO UNIVERSITÁRIO DE BRASÍLIA FAET - FACULDADE DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE ENGENHARIA DA COMPUTAÇÃO CONTROLE DE SISTEMA VIA SOFTWARE BRASÍLIA DF 2004 UNICEUB CENTRO UNIVERSITÁRIO

Leia mais

Controle por Computador Parte II. 22 de novembro de 2011

Controle por Computador Parte II. 22 de novembro de 2011 Controle por Computador Parte II 22 de novembro de 2011 Outline 1 Exemplo de Projeto 2 Controladores PID 3 Projeto de Controle em Tempo Discreto Exemplo de Projeto Exemplo de Projeto: Controle de azimute

Leia mais

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID AÇÕES E CONTROLE Açõe de Controle Relação Controlador/Planta Controlador roorcional Efeito integral Efeito derivativo Controlador PI Controle de Sitema Mecânico - MC - UNICAMP Açõe comun de controle Ação

Leia mais

Desempenho de Sistemas de Controle Realimentados

Desempenho de Sistemas de Controle Realimentados Desempenho de Sistemas de Controle Realimentados. Erro em estado estacionário de sistemas de controle realimentados 2. Erro em estado estacionário de sistemas com realimentação não-unitária 3. Índice de

Leia mais

1 A Integral por Partes

1 A Integral por Partes Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos. Prof. Cassiano Rech cassiano@ieee.org

Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos. Prof. Cassiano Rech cassiano@ieee.org Controle de Conversores Estáticos Retroação de estados: Projeto por alocação de pólos cassiano@ieee.org 1 Projeto por alocação de pólos Na abordagem convencional, usando por exemplo o método do lugar das

Leia mais

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem Aula 07 Aálise o domíio do tempo Parte II Sistemas de ª ordem Aálise o domíio do tempo - Sistemas de ª ordem iput S output Sistema de seguda ordem do tipo α G(s) as + bs + c Aálise o domíio do tempo -

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

5. Diagramas de blocos

5. Diagramas de blocos 5. Diagramas de blocos Um sistema de controlo pode ser constituído por vários componentes. O diagrama de blocos é uma representação por meio de símbolos das funções desempenhadas por cada componente e

Leia mais

A função de transferência do processo, considerando um sistema de primeira ordem com atraso e invariante no tempo, é a seguinte:

A função de transferência do processo, considerando um sistema de primeira ordem com atraso e invariante no tempo, é a seguinte: Processo A função de transferência do processo, considerando um sistema de primeira ordem com atraso e invariante no tempo, é a seguinte: K=26.4 Ganho L=203 Atraso em ms τ=334 Constante de tempo em ms.

Leia mais

2.17 Matlab em Sistemas de Controle

2.17 Matlab em Sistemas de Controle 46 CAPÍTULO 2. INTRODUÇÃO AO MATLAB 2.17 Matlab em Sistemas de Controle Nesta seção, os comandos básicos do CONTROL SYSTEM Toolbox do MATLAB são introduzidos. O comando helpcontrol fornece uma lista das

Leia mais

Teoria do Controlo. Síntese de controladores. Controladores PID MIEEC

Teoria do Controlo. Síntese de controladores. Controladores PID MIEEC Teoria do Controlo Síntese de controladores Controladores PID MIEEC! Esquema de controlo r - G c (s) G p (s) y TCON 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Controlador com pura ação proporcional

Leia mais

Controle de Conversores Estáticos Controladores baseados no princípio do modelo interno. Prof. Cassiano Rech cassiano@ieee.org

Controle de Conversores Estáticos Controladores baseados no princípio do modelo interno. Prof. Cassiano Rech cassiano@ieee.org Controle de Conversores Estáticos Controladores baseados no princípio do modelo interno cassiano@ieee.org 1 Objetivos da aula Projeto de um controlador PID para o controle da tensão de saída de um inversor

Leia mais

Sistemas Embarcados. Controladores PI, PD e PID

Sistemas Embarcados. Controladores PI, PD e PID Sistemas Embarcados Controladores PI, PD e PID Controladores PI, PD e PID O que são os controladores PI, PD e PID? Aplicações dos controladores Implementação analógica dos controladores Implementação digital

Leia mais

Laboratório 7 Circuito RC *

Laboratório 7 Circuito RC * Laboratório 7 Circuito RC * Objetivo Observar o comportamento de um capacitor associado em série com um resistor e determinar a constante de tempo do circuito. Material utilizado Gerador de função Osciloscópio

Leia mais

RELATÓRIO FINAL: PROJETO DESAFIO CONTROLE DE POSIÇÃO DE UMA VÁLVULA

RELATÓRIO FINAL: PROJETO DESAFIO CONTROLE DE POSIÇÃO DE UMA VÁLVULA RELATÓRIO FINAL: PROJETO DESAFIO CONTROLE DE POSIÇÃO DE UMA VÁLVULA Laboratório de Controle e Automação 1 ( LECI 1 ) Professor: Reinaldo Martinez Palhares Integrantes: Henrique Goseling Araújo, Hugo Montalvão

Leia mais

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO

USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO João Baptista Bayão Ribeiro USO DO SCILAB PARA REALIZAÇÃO EM COMPUTADOR DE UM PROJETO DE UM COMPENSADOR DE ATRASO-AVANÇO EXEMPLO 7.04 DO OGATA Rio de Janeiro 2014 2 ÍNDICE USO DO SCILAB PARA REALIZAÇÃO...1

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

HandsOn Session. Especificação, Modelação e Projecto de Sistemas Embutidos. Simulink - introdução. Paulo Pedreiras, Luís Almeida {pbrp,lda}@ua.

HandsOn Session. Especificação, Modelação e Projecto de Sistemas Embutidos. Simulink - introdução. Paulo Pedreiras, Luís Almeida {pbrp,lda}@ua. Especificação, Modelação e Projecto de Sistemas Embutidos Simulink - introdução HandsOn Session Paulo Pedreiras, Luís Almeida {pbrp,lda}@ua.pt Departamento de Electrónica, Telecomunicações e Informática

Leia mais

Aula 8 Controladores do tipo Proporcional, Integral e Diferencial

Aula 8 Controladores do tipo Proporcional, Integral e Diferencial Aula 8 Controladores do tipo Proporcional, Integral e Diferencial Introdução Estrutura do Controlador PID Efeito da Ação Proporcional Efeito da Ação Integral Efeito da Ação Derivativa Sintonia de Controladores

Leia mais

Métodos de Resposta em Freqüência

Métodos de Resposta em Freqüência Métodos de Resposta em Freqüência 1. Sistemas de fase mínima 2. Exemplo de traçado do diagrama de Bode 3. Medidas da resposta em freqüência 4. Especificações de desempenho no domínio da freqüência pag.1

Leia mais

CONCURSO PETROBRAS DRAFT. Pesquisa Operacional, TI, Probabilidade e Estatística. Questões Resolvidas. Produzido por Exatas Concursos www.exatas.com.

CONCURSO PETROBRAS DRAFT. Pesquisa Operacional, TI, Probabilidade e Estatística. Questões Resolvidas. Produzido por Exatas Concursos www.exatas.com. CONCURSO PETROBRAS ENGENHEIRO(A) DE PRODUÇÃO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PRODUÇÃO Pesquisa Operacional, TI, Probabilidade e Estatística Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21 Aula 1 Ondas sonoras harmônicas Na aula passada deduzimos a equação de onda para ondas sonoras propagando-se em uma dimensão. Vimos que ela pode ser escrita em termos de três variáveis medidas em relação

Leia mais

LABORATÓRIO DE CONTROLE I ESTUDO DE COMPENSADORES DE FASE

LABORATÓRIO DE CONTROLE I ESTUDO DE COMPENSADORES DE FASE UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 4: ESTUDO DE COMPENSADORES DE FASE COLEGIADO DE ENGENHARIA ELÉTRICA DISCENTES: Lucas

Leia mais

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS.

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. 1 CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

Estudo do sistema de IHM para automação de sistema de renovação de água dos chillers em processo de abate de aves.

Estudo do sistema de IHM para automação de sistema de renovação de água dos chillers em processo de abate de aves. Estudo do sistema de IHM para automação de sistema de renovação de água dos chillers em processo de abate de aves. TIAGO NELSON ESTECECHEN tiago_cascavel@hotmail.com UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ

Leia mais

Guião do Trabalho Laboratorial Nº 3 Análise do Comportamento de uma Suspensão de Automóvel

Guião do Trabalho Laboratorial Nº 3 Análise do Comportamento de uma Suspensão de Automóvel SISEL Sistemas Electromecânicos Guião do Trabalho Laboratorial Nº 3 Análise do Comportamento de uma Suspensão de Automóvel GRIS Group of Robotics and Intelligent Systems Homepage: http://www.dee.isep.ipp.pt/~gris

Leia mais

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #A22 (1) O circuito a seguir amplifica a diferença de

Leia mais

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 5: APLICAÇÃO DE COMPENSADORES DE FASE DE 1ª ORDEM E DE 2ª ORDEM COLEGIADO DE ENGENHARIA

Leia mais

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada.

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada. Compenadore 0.1 Introdução Controle 1 - DAELN - UTFPR Prof. Paulo Roberto Brero de Campo O compenadore ão utilizado para alterar alguma caracterítica do itema em malha fechada. 1. Avanço de fae (lead):

Leia mais

SCILAB. Software livre para cálculo numérico e simulação de sistemas físicos Utilizado nas áreas de:

SCILAB. Software livre para cálculo numérico e simulação de sistemas físicos Utilizado nas áreas de: SCILAB Software livre para cálculo numérico e simulação de sistemas físicos Utilizado nas áreas de: Controle e processamento de sinais Automação industrial Computação gráfica Matemática Física Entre outras.

Leia mais

Controlador digital para sistemas de 1 a ordem

Controlador digital para sistemas de 1 a ordem Controlador digital para sistemas de 1 a ordem Um sistema de 1 a ordem, possui uma resposta temporal ao degrau do tipo exponencial decrescente, dada pela seguinte equação: PV (t)=k (CV CV 0 )(1 e ( t τ

Leia mais

Resposta em Frequência de Amplificadores. Aula 10 Prof. Nobuo Oki

Resposta em Frequência de Amplificadores. Aula 10 Prof. Nobuo Oki Resposta em Frequência de Amplificadores Aula 10 Prof. Nobuo Oki Considerações Gerais (1) Polo Simples Efeito Miller Multiplicador do capacitor usando efeito Miller Considerações Gerais (2) Aplicabilidade

Leia mais

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Estabilidade Carlos Alexandre Mello 1 Introdução Já vimos que existem três requisitos fundamentais para projetar um sistema de controle: Resposta Transiente Estabilidade Erros de Estado Estacionário Estabilidade

Leia mais

MICROMASTER MM4. Usando o Controle de Malha Fechada (PID) Edição 08.2002. IND 1 Drives technology Suporte Técnico Drives Hotline

MICROMASTER MM4. Usando o Controle de Malha Fechada (PID) Edição 08.2002. IND 1 Drives technology Suporte Técnico Drives Hotline s MICROMASTER MM4 Usando o Controle de Malha Fechada (PID) Edição 08.2002 IND 1 Drives technology Suporte Técnico Drives Hotline USANDO O CONTROLE DE MALHA FECHADA NO MM4 O que é controle de malha fechada

Leia mais

fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms

fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms O uso da Calculadora Científica (Casio fx) fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms Prof. Ms. Renato Francisco Merli 2013 1 Sumário 1. Antes de Começar... 2 2. Cálculos Básicos... 8 3. Cálculos

Leia mais

Estabilizador de Tensão Alternada

Estabilizador de Tensão Alternada Universidade Federal do Ceará PET Engenharia Elétrica Fortaleza CE, Brasil, Abril, 2013 Universidade Federal do Ceará Departamento de Engenharia Elétrica PET Engenharia Elétrica UFC Estabilizador de Tensão

Leia mais

KIT DIDÁTICO PARA CONTROLE DE NÍVEL DE LÍQUIDOS

KIT DIDÁTICO PARA CONTROLE DE NÍVEL DE LÍQUIDOS KIT DIDÁTICO PARA CONTROLE DE NÍVEL DE LÍQUIDOS Emiliana Margotti - emiliana.margotti@gmail.com Instituto Federal de Santa Catarina - Curso Superior em Tecnologia de Mecatrônica Industrial Avenida Mauro

Leia mais

Projeto básico de controladores

Projeto básico de controladores Projeto básico de controladores l l l l Definição das margens Diagramas de Bode Diagramas de Nyquist Exemplos de projetos Margem de ganho Conhecido o máximo ganho (K m ) que assegure a estabilidade para

Leia mais

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE CONTROLADORES A SISTEMAS DE 1ªORDEM E 2º ORDEM

LABORATÓRIO DE CONTROLE I APLICAÇÃO DE CONTROLADORES A SISTEMAS DE 1ªORDEM E 2º ORDEM UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 3: APLICAÇÃO DE CONTROLADORES A SISTEMAS DE 1ªORDEM E 2º ORDEM COLEGIADO DE ENGENHARIA

Leia mais

EA616B Análise Linear de Sistemas Resposta em Frequência

EA616B Análise Linear de Sistemas Resposta em Frequência EA616B Análise Linear de Sistemas Resposta em Frequência Prof. Pedro L. D. Peres Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre 2013 Resposta em Frequência

Leia mais

Análise de Erro Estacionário

Análise de Erro Estacionário Análise de Erro Estacionário Sistema de controle pode apresentar erro estacionário devido a certos tipos de entrada. Um sistema pode não apresentar erro estacionário a uma determinada entrada, mas apresentar

Leia mais

Circuito RC: Processo de Carga e Descarga de Capacitores

Circuito RC: Processo de Carga e Descarga de Capacitores Departamento de Física - IE - UFJF As tarefas desta prática têm valor de prova! Leia além deste roteiro também os comentários sobre elaboração de gráficos e principalmente sobre determinação de inclinações

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge 5.A. Traçado das Assíntotas Traçado

Leia mais

A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada.

A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada. Aplicações da lei de Gauss A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada. De maneira genérica, a lei de Gauss diz que: Fluxo elétrico sobre

Leia mais

Newton Maruyama. Projeto de Controladores No Domínio Da Freqüência p. 1/4

Newton Maruyama. Projeto de Controladores No Domínio Da Freqüência p. 1/4 Projeto de Controladores No Domínio Da Freqüência Newton Maruyama Projeto de Controladores No Domínio Da Freqüência p. 1/4 Compensação por avanço de fase Função de Transferência: H(s)=K c α Ts+ 1 αts+

Leia mais

EQE-594 Controle e Instrumentação de Processos Profa. Ofélia de Q.F. Araújo EQ/UFRJ CONTROLE SELETIVO e OVERRIDE

EQE-594 Controle e Instrumentação de Processos Profa. Ofélia de Q.F. Araújo EQ/UFRJ CONTROLE SELETIVO e OVERRIDE CONTROLE SELETIVO e OVERRIDE Nas estratégias de controle, pode surgir a necessidade de aplicar lógica seletora de sinais. Define-se, para tal, chaves seletoras de sinais: (1) Chave Seletora de Valor Alto

Leia mais

A INFLUÊNCIA DO RUÍDO NA DETERMINAÇÃO DA DIMENSÃO DE CORRELAÇÃO EM SISTEMAS CAÓTICOS

A INFLUÊNCIA DO RUÍDO NA DETERMINAÇÃO DA DIMENSÃO DE CORRELAÇÃO EM SISTEMAS CAÓTICOS A INFLUÊNCIA DO RUÍDO NA DETERMINAÇÃO DA DIMENSÃO DE CORRELAÇÃO EM SISTEMAS CAÓTICOS Valdirene de Souza (Centro Universitário de Franca) Antônio Carlos da Silva Filho (Centro Universitário de Franca) 1

Leia mais

APOSTILA DE EXEMPLO (Esta é só uma reprodução parcial do conteúdo)

APOSTILA DE EXEMPLO (Esta é só uma reprodução parcial do conteúdo) APOSTILA DE EXEMPLO (Esta é só uma reprodução parcial do conteúdo) 1 Índice Aula 1...3 Introdução... 3 Formatações de tabela... 4 Função HOJE... 6 Função SE... 6 Exercícios... 7 Exercício de Fixação...

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

LABORATÓRIO 3 Análise dinâmica do controle do motor PARTE 1. ANÁLISE DO CONTROLE DE VELOCIDADE

LABORATÓRIO 3 Análise dinâmica do controle do motor PARTE 1. ANÁLISE DO CONTROLE DE VELOCIDADE LABORATÓRIO 3 Análise dinâmica do controle do motor OBJETIVOS: - analisar a resposta transitória a mudanças degrau pelas variações de ganho, pela inclusão de atraso e pelo aumento do momento de inércia;

Leia mais

Modelamento de Saturação em Transformadores

Modelamento de Saturação em Transformadores Modelamento de Saturação em Transformadores O Circuito Equivalente do Transformador na Figura 1 pode ser modificado para incluir os efeitos não-lineares da característica do núcleo. Esta modificação pode

Leia mais

Manual. IntraWeb - Aluno. JR Sistemas e Tecnologia Ltda www.jrsistemas.net

Manual. IntraWeb - Aluno. JR Sistemas e Tecnologia Ltda www.jrsistemas.net Manual IntraWeb - Aluno JR Sistemas e Tecnologia Ltda www.jrsistemas.net Sumário Conhecendo a IntraWeb Aluno... 6 Login... 9 Dados Cadastrais... 11 Alterar senha... 12 Menu Secretaria... 13 Extrato de

Leia mais

Processamento Digital de Sinais Aula 05 Professor Marcio Eisencraft fevereiro 2012

Processamento Digital de Sinais Aula 05 Professor Marcio Eisencraft fevereiro 2012 Aula 05 - Sistemas de tempo discreto Classificação Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010. ISBN 9788576055044. Páginas 25-36. HAYKIN, S. S.; VAN VEEN,

Leia mais