Unidade 7. Integrais inde nidas. 7.1 Antiderivadas ou integrais inde nidas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Tamanho: px
Começar a partir da página:

Download "Unidade 7. Integrais inde nidas. 7.1 Antiderivadas ou integrais inde nidas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que"

Transcrição

1 Unidade 7 Integrais inde nidas 7. Antiderivadas ou integrais inde nidas Sendo f() e F () de nidas em um intervalo I ½, dizemos que ara todo I. F e umaantiderivada ou uma rimitiva de f, sef 0 () =f() f. Ou seja, F e antiderivada ou rimitiva de f se F e uma fun»c~ao cuja derivada e Como rimeiros eemlos, temos f() rimitiva de f() 3 3 e e sen cos Observa»c~ao 7. Se F e antiderivada de f em I, ec e uma constante, ent~ao F + c tamb em e uma antiderivada de f em I. De fato, se F 0 () =f(), aratodo I, ent~ao [F ()+c] 0 = F 0 () =f(), eortantof ()+c tamb em e uma antiderivada de f() em I. Assim, or eemlo 3, 3 +5e 3 s~ao rimitivas de 3. Proosi»c~ao 7. Se F e F s~ao antiderivadas de f, emi ½ (I um intervalo), ent~ao eiste c tal que F () =F () +c, aratodo I. 7

2 Semana 7. Integrais inde nidas. 7 De ni»c~ao 7. (Integral inde nida) Sendo F uma rimitiva de f no intervalo I, chama-se integral inde nida de f, no intervalo I, µa rimitiva gen erica de f em I, F () +C, sendo C uma constante real gen erica. Denotamos tal fato or f() d = F () +C Nesta nota»c~ao, omite-se o intervalo I. Sumarizando, f() d = F () +C () F 0 () =f() 7. Integrais inde nidas imediatas Coletaremos as rimeiras integrais inde nidas cujo c alculo e imediato. Proosi»c~ao 7.. d = + + C, se 6=. +. d =lnjj + C. 3. sen d= cos + C. 4. cos d =sen + C. 5. e d = e + C. 6. a d = a (a>0;a 6= ). ln a 7. sec d=tg + C. 8. cosec d= cotg + C. 9. sec tg d=sec + C. 0. cosec cotg d= cosec + C.. d =arctg + C. +. =arcsen + C.

3 Semana 7. Integrais inde nidas. 73 Para veri car a validade das integrais acima, basta veri car que a derivada (em rela»c~ao a ) do segundo membro, em cada igualdade, e a fun»c~ao que se encontra sob o sinal de integra»c~ao. Como eemlos, µ + 0 se 6=, =( +) =. (ln jj) 0 ==: se >0, (ln jj) 0 =(ln) 0 ==; se <0, (ln jj) 0 =(ln( )) 0 = ( )0 ==. µ a 0 (a ) 0 = a ln a, logo = a ln a ln a ln a = a. 7.3 Maniula»c~oes elementares de integrais Proosi»c~ao 7.3 Se f() d = F () +C e g() d = G() +C, ent~ao, sendo a; b, a 6= 0,. [f() +g()] d = f() d + g() d. k f() d = k f() d 3. f( + b) d = F ( + b) +C 4. f( b) d = F ( b) +C 5. f(b ) d = F (b ) +C 6. f(a) d = F (a) +C a 7. f(a + b) d = F (a + b) +C a 7.4 Eemlos elementares. cos d =sen + C. Logo, (a) cos 3d= sen 3 + C 3 (b) cos 3¼ d = sen 3¼ + C. e d = e + C. Logo, (a) e 5 d = e 5 + C

4 Semana 7. Integrais inde nidas. 74 (b) e d = e + C (c) e 5 d = 5 e5 + C 3. Calcular tg d. sec d =tg + C. Temos cos +sen =, logo +tg =sec. Logo, tg d = (sec ) d = sec d =tg + C 4. Calcular (5 cos +cos5) d. (5 cos +cos5) d =5 cos d+ cos 5d =5sen + sen 5 + C 5 5. Calcular sen cos d. Temos sen =sencos, logo sen cos = sen. Da ³ sen cos d = sen d = ( cos ) +C = cos + C Calcular d. Ã + d = +! d = d + d = = d + d = = = +lnjj + C = +lnjj + C 7.5 Integra»c~ao or mudan»ca de vari avel ou integra»c~ao or substitui»c~ao Suonhamos que f(u) du = F (u) +C (7.)

5 Semana 7. Integrais inde nidas. 75 Podemos substituir u = '() na eress~ao 7., fazendo du = ' 0 () d, ou seja, de 7. obtemos f('()) ' 0 () d = F ('()) + C (7.) Sumariando o que dissemos acima, f(u) du = F (u) +C =) f('()) ' 0 () d = F ('()) + C ela mudan»ca de vari avel u = '(), tomando-se du = ' 0 () d. Na r atica, quando calculamos f('())' 0 () d, tendo-se as considera»c~oes acima, fazemos u = '(), du = ' 0 () d, e assamos ela seqäu^encia de igualdades: f('())' 0 () d = f(u) du = F (u) +C = F ('()) + C Eemlo 7. Calcular 3 d. Solu»c~ao. Come»camos fazendo a substitui»c~ao u =3. Ent~ao du = du d d =(3 )0 d = d. Portanto d = du. Assim, temos 3 d = Eemlo 7. Calcular tg d. µ du = u u = du = u =+ + + C = u = + C = u + C = 3 + C sen Solu»c~ao. tg d= cos d. Como (cos ) 0 = sen, tomamos u =cos, e teremos du = (cos ) 0 d = sen d. Assim, sen tg d= cos d = du = ln juj + C = ln j cos j + C u

6 Semana 7. Integrais inde nidas. 76 Eemlo 7.3 Calcular +5 d. Solu»c~ao. Note que ( +5) 0 =. Isto sugere fazermos u = +5, de onde du =d,ouseja,d= du. Temos ent~ao +5 d = u du = u = du = u = + C = +5+C 7.5. Uma tabela mais comleta de integrais imediatas Tabela 7.. Tabela de integrais inde nidas (nas ultimas linhas, a > 0, e 6= 0). u du = u C, ( 6= ) du =lnjuj + C u sen udu = cos u + C cos udu =senu + C e u du = e u + C a u du = au ln a (a>0;a 6= ) sec udu =tgu + C cosec udu= cotg u + C sec u tg udu =secu + C cosec u cotg udu= cosec u + C sec udu =lnj sec u +tguj + C cosec udu = ln j cosec u +cotguj + C tg udu = ln j cos uj + C cotg udu =lnj sen uj + C du =arctgu + C +u du a + u = a arc tg u a + C du a u =arcsenu a + C du =arcsenu + C u du a u = a ln a + u a u + C. du u + =lnju + u + j + C

7 Semana 7. Integrais inde nidas Problemas Calcule as seguintes integrais inde nidas, utilizando, quando necess ario, mudan»ca de vari aveis. Fa»ca uso da tabela de integrais inde nidas da tabela 7... ( + ) d. esosta C. ³ + 3 d. esosta C 3. cos a sen a d. esosta. + C a 4. ln d. esosta. ln + C. Sugest~ao. Fa»ca u = ln 5. d. esosta. ln j3 7j + C tg d. esosta. ln j cos j + C 7. cotg 3 d. esosta. 3lnj sen 3 j + C 8. tg ' sec 'd'. esosta. tg ' + C. Sugest~ao. Fa»ca u =tg' 9. sen cos d. esosta. sen3 3 + C. Sugest~ao. Fa»ca u = sen 0. cos 3 sen d. esosta. cos4 4 + C. d. esosta. +3+C. Sugest~ao. Fa»ca u = ( +) 4 d. esosta. ( +) 5 3. e d. esosta. e + C 5 + C. Sugest~ao. Fa»ca u = + 4. e d. esosta. e + C. Sugest~ao. u = 5. e 3+4e d. esosta. 4 ln(3 + 4e )+C. Sugest~ao. u =3+4e 6. d +. esosta. arc tg( ) +C. Sugest~ao. =( ), u = 7. d 3. esosta. 3 arc sen( 3) +C

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que Aula 5 Integrais inde nidas 5. Antiderivadas Sendo f() e F () de nidas em um intervalo I ½, dizemos que F e umaantiderivada ou uma rimitiva de f, emi, sef 0 () =f() ara todo I. Ou seja, F e antiderivada

Leia mais

Derivando fun»c~oes trigonom etricas

Derivando fun»c~oes trigonom etricas Aula 1 Derivando fun»c~oes trigonom etricas Nesta aula estaremos deduzindo derivadas de fun»c~oes trigonom etricas. Estaremos tamb em aresentando as fun»c~oes trigonom etricas inversas e deduzindo suas

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

Ampliando o repert orio de t ecnicas de integra»c~ao

Ampliando o repert orio de t ecnicas de integra»c~ao Aula Amliando o reert orio de t ecnicas de integra»c~ao. Comletando quadrados Da nossa tabela amliada de integrais imediatas, tabela 5., agina 35, temos as integrais da tabela. abaixo. Tabela.. (a>0, 6

Leia mais

Resoluções da Lista de 0 de MAT2455 Cálculo III para Engenharia 2015 POLI-USP Erros na lista e sugestões:

Resoluções da Lista de 0 de MAT2455 Cálculo III para Engenharia 2015 POLI-USP Erros na lista e sugestões: Resoluções da Lista de 0 de MAT455 Cálculo III para Engenharia 05 POLI-USP Erros na lista e sugestões: estudospoli@gmail.com. 7 + + d= 5 d +d + 6 d= 6 +. e d = eu du = e (com u= d= du ). cos(7 )d= cos(u)

Leia mais

Unidade 6. Fun»c~oes trigonom etricas Regras de L'Hopital. 6.1 Pequena revis~ao de trigonometria Trigonometria geom etrica

Unidade 6. Fun»c~oes trigonom etricas Regras de L'Hopital. 6.1 Pequena revis~ao de trigonometria Trigonometria geom etrica Unidade 6 Fun»c~oes trigonom etricas Regras de L'Hopital Agora estaremos fazendo uma pequena revis~ao de fun»c~oes trigonom etricas e apresentando suas derivadas. Estaremos estudando tamb em um m etodo

Leia mais

2 5 3 x 3 1. x 5 x 2

2 5 3 x 3 1. x 5 x 2 4 rimitivação 4. rimitivação Soluções. a + 4 4, b + ln, > 0, + c = + = 5 5 + = 5 +, 5 d + 4, e 4 = + = +, f e, g ln +, h, e i + ln, j 4 cosh/4, k cos, l tg, m cotg, n arctg, o arctg/, p = = 4 arcsen, q

Leia mais

7.1 Mudança de Variável (método de substituição)

7.1 Mudança de Variável (método de substituição) 7. Mudança de Variável (método de substituição) 0. 0. 0. 05. 07. 08. 0... e 5 (res. e 5 =5 + C) sen a (res. a cos a + C; a 6= 0) sen () 7 (res. cotg + C) (res. jln 7j + C) tan (res. ln jcos j + C) cot

Leia mais

Capítulo 6 - Integral Inde nida

Capítulo 6 - Integral Inde nida Caítulo - Integral Inde nida. Calcule as integrais inde nidas abaio usando integração imediata ou o método da substituição. e d (j) e d d e ( ) (k) d d arctan (l) ( ) d d sec tg (m) d ln d e (n) ( e )

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte II Cálclo Diferencial e Integral II Página Universidade de Mogi das Crzes UMC Campos Villa Lobos Cálclo Diferencial e Integral II Parte II Engenharia Civil Engenharia Mecânica marilia@mc.br º semestre de

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Aula 16. Integra»c~ao por partes

Aula 16. Integra»c~ao por partes Aula 16 Integra»c~ao or artes H a essencialmente dois m etodos emregados no c alculo de integrais inde nidas (rimitivas) de fun»c~oes elementares. Um deles e a integra»c~ao or substitui»c~ao, elorada na

Leia mais

5 Cálculo Diferencial Primitivação (Soluções)

5 Cálculo Diferencial Primitivação (Soluções) 5 Cálculo Diferencial rimitivação Soluções. a + 4 4, b + log, > 0, + c = + = 5 5 + = 5 +, d 4, 5 4 + e = + = +, f 5 5 6 6, g 4 log + 4, h log + e, i log + sen, j sen sen cos cos, k = = log + sen, + sen

Leia mais

2 5 3 x 3 1. x 5 x 2

2 5 3 x 3 1. x 5 x 2 4 rimitivação Soluções. a 3 3 + 3 4 4, b + log, > 0, + c = 3 + = 5 5 3 3 + = 5 3 +, 5 3 d 3 3 3 + 4, e 4 3 = 3 + 3 3 = + 3, 3 f 5 6 5 6, g 4 log3 + 4, h log + e, i log + sen, j tg, k e tg, l sen +, m cose,

Leia mais

Fun»c~oes trigonom etricas e o \primeiro limite fundamental"

Fun»c~oes trigonom etricas e o \primeiro limite fundamental Aula Fun»c~oes trigonom etricas e o \primeiro ite fundamental" Nesta aula estaremos fazendo uma pequena revis~ao de fun»c~oes trigonom etricas e apresentando um ite que lhes determina suas derivadas..

Leia mais

OUTRAS TÉCNICAS DE INTEGRAÇÃO

OUTRAS TÉCNICAS DE INTEGRAÇÃO 8 OUTRAS TÉCNICAS DE INTEGRAÇÃO Gil da Costa Marques 8. Integração por partes 8. Integrais de funções trigonométricas 8.3 Uso de funções trigonométricas 8.4 Integração de Quociente de Polinômios 8.5 Alguns

Leia mais

AT4-1 - Unidade 4. Integrais 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação. 1 Versão com 14 páginas

AT4-1 - Unidade 4. Integrais 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação. 1 Versão com 14 páginas AT4-1 - Unidade 4 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 14 páginas 1 / 14 Tópicos de AT4-1 1 2 / 14 Tópicos de AT4-1 1 3 / 14 Relação entre funções

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

Limites. Uma introdu»c~ao intuitiva

Limites. Uma introdu»c~ao intuitiva Aula 4 Limites. Uma introdu»c~ao intuitiva Nos cap ³tulos anteriores, zemos uso de um ite especial para calcular derivadas: f 0 f(+ ) f() () =.!0 Neste cap ³tulo veremos os ites como ferramentas de estudo

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x)

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x) 7. Regras Básicas e Derivação 0. regra a soma: [f () + g ()] 0 = f 0 () + g 0 () 0. regra a iferença [f () g ()] 0 = f 0 () g 0 () 0. regra o routo [f () :g ()] 0 = f () g 0 () + f 0 () g () 04. regra

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta

Leia mais

Lista 6 Funções de Uma Variável

Lista 6 Funções de Uma Variável Lista 6 Funções de Ua Variável Integral II Use o Teorea Fundaental do Cálculo para achar a derivada das seguintes funções: a) + tdt f) g) h) ln(t)dt cos(t )dt cos() e (t + cos(t)dt (t + cos(t))dt e cos

Leia mais

Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 06/11/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES.

Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 06/11/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 6// Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno: Matrícula Nota: : :. (3 pontos) Calcule as integrais inde nidas (i) + d (ii) +

Leia mais

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata CAPITULO I PRIMITIVAS. Generalidades. Primitivação imediata e quase imediata Sendo f () uma função real de variável real definida no intervalo não degenerado I, chama-se primitiva de f () em I a qualquer

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda.perticarrari@unesp.br Generalidades Aplicação: integrais cujos integrandos são compostos de: produtos; funções trigonométricas;

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma Cálculo Diferencial e Integral I 07/II a Lista de Integrais (07//07 Faça a antidiferenciação. Verifique o resultado, calculando a

Leia mais

5 Cálculo Diferencial Primitivação

5 Cálculo Diferencial Primitivação 5 Cálculo Diferencial Primitivação. Determine uma primitiva de cada uma das funções: a) + 3 3, b) + +, c) +, d) 3 3 +, e) 3, f) 5, 3 e g) h) 3 + 4 + e, i) cos + sen, sen() j) sen(), k) + sen, l) cos, m)

Leia mais

Exercícios Complementares 3.4

Exercícios Complementares 3.4 Eercícios Complementares 3.4 3.4A Falso ou Verdadeiro? Justi que. (a) se jc n j é convergente, então c n n é absolutamente convergente no intervalo [ ; ] ; (b) se uma série de potências é absolutamente

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

1 + tg x. 3 sen 16x sen 2x + cos 4x. cos x cotg x (x) 1 + x2 + 1 (z) sec x cos x. (j) f(x) = 1 t. (n) f(x) = x 2 arctan(2x) + tan 3 (4x) sec 4 (x 2 )

1 + tg x. 3 sen 16x sen 2x + cos 4x. cos x cotg x (x) 1 + x2 + 1 (z) sec x cos x. (j) f(x) = 1 t. (n) f(x) = x 2 arctan(2x) + tan 3 (4x) sec 4 (x 2 ) Lista de Eercicios de Cálculo I () Calcule, utilizando a denic~ao, a derivada das seguintes func~oes: (a) f() = 5 (b) f() = + (c) f() = k (d) f() = (e) f() = (f) f() = (g) f() = (h) f() = n ara n (i) f()

Leia mais

Primitivação. A primitivação é a operação inversa da derivação.

Primitivação. A primitivação é a operação inversa da derivação. Primitivação A primitivação é a operação inversa da derivação. Definição: Seja f uma função definida num intervalo I. Qualquer função F definida e diferenciável em I tal que F x fx, para todo o x I, diz-se

Leia mais

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f(x) e F(x) definidas em um intervalo I R, para todo x I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F (x) = f(x) Exemplos: F(x) = x é uma antiderivada

Leia mais

MAT Aula 21/ Segunda 26/05/2014. Sylvain Bonnot (IME-USP)

MAT Aula 21/ Segunda 26/05/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 21/ Segunda 26/05/2014 Sylvain Bonnot (IME-USP) 2014 1 Teorema fundamental do cálculo Teorema (Teorema fundamental do cálculo, parte 1) Se f for contínua em [a, b] então a função g definida

Leia mais

Deriva»c~ao em cadeia e deriva»c~ao impl ³cita

Deriva»c~ao em cadeia e deriva»c~ao impl ³cita Aula 3 Deriva»c~ao em cadeia e deriva»c~ao impl ³cita A regradacadeia e umaregradederiva»c~ao que nos permite calcular a derivada de uma composi»c~ao (ou um encadeamento) de fun»c~oes, tais como f(g(x))

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

Cálculo de primitivas ou de antiderivadas

Cálculo de primitivas ou de antiderivadas Aula 0 Cálculo de primitivas ou de antiderivadas Objetivos Calcular primitivas de funções usando regras elementares de primitivação. Calcular primitivas de funções pelo método da substituição. Calcular

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ FICHA 11 - SOLUÇÕES Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem 06/7 - LEAN, MEMat, MEQ FICHA - SOLUÇÕES Teorema Fundamental do Cálculo Regra de Barrow Integração por partes

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEA, LEM, LEAN, MEAer, MEMec o Semestre de 006/007 6 a Aula Prática Soluções e algumas resoluções abreviadas. a) Como e é crescente, com contradomínio ]0, + [, o contradomínio

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Técnicas de Integração - Continuação Aula 34 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o. Semestre de - a. Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. e. cos 7 4. tg 7 sen 5. 6.

Leia mais

REVISÃO DE TRIGONOMETRIA

REVISÃO DE TRIGONOMETRIA UNIVERSIDADE CATÓLICA DO SALVADOR CURSO: INFORMÁTICA DISCIPLINA: CÁLCULO II PROFESSOR: ATAUALPA MAGNO FERRAZ DE NOVAES PRIMEIRO SEMESTRE DE 006 Prezados Alunos, sejam bem-vindos ao nosso curso de Cálculo

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Primitivas e a integral de Riemann Aula 26

Primitivas e a integral de Riemann Aula 26 Primitivas e a integral de Riemann Aula 26 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Instituto Superior Técnico - o Semestre 006/007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec a Ficha de eercícios para as aulas práticas 3-4 Novembro de 006. Determine os

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 00/0 Ficha Prática nº Parte III Função Eponencial Função Logaritmo Funções trigonométricas directas e inversas

Leia mais

INTEGRAIS INTEGRAL INDEFINIDA

INTEGRAIS INTEGRAL INDEFINIDA INTEGRAIS INTEGRAL INDEFINIDA A integração indefinida ou anti-derivação é a operação inversa da derivação, da mesma forma que a subtração é a operação inversa da adição ou a divisão é a operação inversa

Leia mais

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

Derivando fun»c~oes exponenciais e logar ³tmicas

Derivando fun»c~oes exponenciais e logar ³tmicas Aula 0 Derivando fun»c~oes eponenciais e logar ³tmicas Nesta aula estaremos deduzindo as derivadas das fun»c~oes f() =a e g() =log a, sendo a uma constante real, a>0 e a 6=. O que faz do n umero e uma

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

MAT Lista de exercícios para a 3 a prova

MAT Lista de exercícios para a 3 a prova Universidade de São Paulo Instituto de Matemática e Estatística MAT - Lista de eercícios para a a prova Valentin Ferenczi de maio de 9. Estude a função dada com relação a máimos e mínimos locais e globais.

Leia mais

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M,

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M, Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I - o Sem 07/8 - LEGM, MEC FICHA - SOLUÇÕES a = f/; b = f; c / = f/ Começe por aplicar o Teorema de Weierstrass a f

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

Lista de exercícios sobre integrais

Lista de exercícios sobre integrais Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas ICEB Departamento de Matemática DEMAT Cálculo Diferencial e Integral A Lista de exercícios sobre integrais Questão : Em nossa

Leia mais

Limites (c alculo e signi cado)

Limites (c alculo e signi cado) Unidade 3 Limites c alculo e signi cado) C alculos de ites s~ao importantes ferramentas auxiliares no estudo de fun»c~oes e seus gr a cos. A de ni»c~ao formal de ite e matematicamente so sticada. Faremos

Leia mais

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18)

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) UFPR - Universidade Federal do Paraná Departamento de Matemática CM4 - Cálculo I a. Lista de Eercícios Integrais definidas. Calcule as integrais definidas abaio: () (4) (7) () () (6) (9) () (5) (8) /4

Leia mais

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7.

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7. Gabarito Sistemas numéricos. Números naturais.. N. Infinito.. Infinito. 5. Não. Contra-eemplo: número 7. 6. Não, pois sempre é possível encontrar um número maior, bastando somar mais uma unidade. 7. 0

Leia mais

Opera»c~oes Bin arias

Opera»c~oes Bin arias 3 Opera»c~oes Bin arias Neste cap ³tulo, faremos mais preciso o conceito de opera»c~ao bin aria, (ou simplesmente opera»c~ao), e introduziremos tamb em a nomenclatura j a consolidada de propriedades not

Leia mais

MAT Aula 24/ Quarta 04/06/2014. Sylvain Bonnot (IME-USP)

MAT Aula 24/ Quarta 04/06/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 24/ Quarta 04/06/2014 Sylvain Bonnot (IME-USP) 2014 1 Volumes Ideia: cortar o objeto em cilindros de base A(x) e altura dx, e depois fazer a soma b A(x)dx, onde A(x) é a área da secção transversal.

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial MTDI I - 7/8 - Comlementos de Cálculo Diferencial 34 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste caítulo retende-se relembrar algumas de nições e

Leia mais

Limites indeterminados e as regras de L'Hopital

Limites indeterminados e as regras de L'Hopital Aula 3 Limites indeterminados e as regras de L'Hopital Nesta aula, estaremos apresentando as regras de L'Hopital, regras para calcular ites indeterminados, da forma 0=0 ou =, usando derivadas. Estaremos

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Universidade do Estado de Santa Catarina Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Cálculo Diferencial e Integral I t = f ( ) Q s = f ( ) = f ( ) 0 0 P 0 Home

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x 1 x 1. 1 sen x 1 (x 2 1) 2 (x 2 1) 2 sen UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA EL Nome Legível RG CPF Respostas sem justificativas

Leia mais

MAT111 - Cálculo I - IO

MAT111 - Cálculo I - IO II - Integrais Indefinidas MAT - Cálculo I - IO - 0 a Lista de Eercícios Calcule as integrais indefinidas abaio: 7 + +. d.. tg d. 7. 0.. 6. 9... 8... 7. 0. sen cos d 8. d. + d. +d 7. d (arcsen) 0. e d.

Leia mais

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação.

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação. RIMITIVS Definições No caítulo anterior, centramos a nossa atenção no seguinte roblema: dada uma função, determinar a sua função derivada Neste caítulo, vamos considerar o roblema inverso, ou seja, determinar

Leia mais

3.6 EXERCÍCIOS. o x2 sen 1 x2, V x O. =0. Multiplicando a desigualdade por x2, temos

3.6 EXERCÍCIOS. o x2 sen 1 x2, V x O. =0. Multiplicando a desigualdade por x2, temos 86 Cálculo A - Funções, Limite, Derivação, Integração 0 < sen 1 1, V O. Multiplicando a desigualdade por 2, temos o 2 sen 1 2, V O. Como lim 0 = O e lim 2 = O, pela proposição 3.5.3 concluímos que ->I3

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B33 Limites e Derivadas Prof a. Graça Luzia Dominguez Santos

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B33 Limites e Derivadas Prof a. Graça Luzia Dominguez Santos UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivadas Prof a Graça Luzia Dominguez Santos LISTA DE EXERCÍCIOS( Questões de Provas a UNIDADE) Derivada

Leia mais

Apostila de. Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT

Apostila de. Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Home page: http://www.joinville.udesc.br/portal/professores/eliane/ Apostila editada pela Profa. Eliane Bihuna de Azevedo,

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Universidade do Estado de Santa Catarina Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Cálculo Diferencial e Integral I t = f ( ) Q s = f ( ) = f ( ) 0 0 P 0 Home

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x

CÁLCULO I. Iniciaremos com o seguinte exemplo: u 2 du = cos x + u3 3 + C = cos3 x CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aulas n o 9: Técnicas de Integração II - Integrais Trigonométricas e Substituição Trigonométrica Objetivos da Aula Calcular integrais de potências

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites 3.A Em cada caso abaio calcule o ite de f (), quando! a (a) f () = 2 + 5; a = 7 (b) f () = 3 3 + + ; a = 0 (c) f () = 2 + 3 0 ; a = 5 (d) f () = 2 4 + 5 3 + 2 2 ; a = 2 (e) f () =

Leia mais

CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo:

CÁLCULO I. Calcular integrais envolvendo funções trigonométricas; Apresentar a substituição trigonométrica. Iniciaremos com o seguinte exemplo: CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 8: Integrais Trigonométricas. Substituição Trigonométrica. Objetivos da Aula Calcular

Leia mais

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

Matemática 2 Engenharia Eletrotécnica e de Computadores

Matemática 2 Engenharia Eletrotécnica e de Computadores Matemática Engenharia Eletrotécnica e de Computadores Eercícios Compilados por: Alzira Faria Ana Cristina Meira Ana Júlia Viamonte Carla Pinto Jorge Mendonça Teórico-prática. Indique o domínio das funções:

Leia mais

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL:

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL: 5. EDO DE PRIMEIRA ORDEM SÉRIES & EDO - 2017.2 5.1. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas

Leia mais

Capítulo 5 Integrais Múltiplas

Capítulo 5 Integrais Múltiplas Capítulo 5 Integrais Múltiplas 1. Revisão de Integral de Funções a uma Variável 1.1. Integral Indefinida Definição: Uma função será chamada de antiderivada ou primitiva de uma função num intervalo I se

Leia mais