4 Teoria da Probabilidade

Tamanho: px
Começar a partir da página:

Download "4 Teoria da Probabilidade"

Transcrição

1 48 4 Teoria da Probabilidade Apresetam-se este capítulo coceitos de probabilidade e de estimação de fuções desidade de probabilidade ecessários ao desevolvimeto e compreesão do modelo proposto (capítulo 5). A probabilidade é uma medida de icerteza associada ao resultado futuro de um sorteio aleatório. É importate perceber que, uma vez ocorrido o sorteio, do poto de vista probabilístico ão há mais dúvida sobre o resultado e, portato, o valor da probabilidade tem um valor preciso [25]. Por exemplo, quado uma moeda é laçada, devido ao cohecimeto parcial sobre sua estrutura física e suas codições iiciais, ão é possível prever com exatidão se o resultado será cara ou coroa. Porém, uma vez pousada, ão há mais dúvida quato ao resultado: ou é cara ou é coroa. 4.. Defiição Seja o uiverso Ω de todos os possíveis evetos elemetares; por defiição, a probabilidade P de um eveto E, deotada por P(E), deve seguir os 3 axiomas de Kolmogorov [26]: i) Para qualquer eveto E, tem-se P ( E) 0. Isto é, a probabilidade de um eveto é um úmero real ão egativo. ii) P ( Ω) : a probabilidade de todos os evetos possíveis é um; ou mais iii) especificamete, ão há eveto elemetar fora do uiverso Ω. Todo cojuto de evetos icompatíveis eumeráveis E, E2,..., satisfaz a P E E K ) P( E ). Ou seja, a probabilidade de um cojuto de ( 2 i evetos formado a partir da uião de evetos disjutos é a soma das probabilidades destes evetos. Este axioma também é cohecido como a propriedade da aditividade.

2 49 A partir destes axiomas, são euciadas as seguites propriedades: Para qualquer eveto E, tem-se 0 P ( E). Ou seja, a probabilidade é um úmero etre 0 e. Para qualquer eveto E, defie-se o eveto cotrário, E, por P( E ) P( E). P ( ) 0. Para quaisquer dois evetos A e B, tem-se P( A B) P( A) + P( B) P( A B) Distribuição de probabilidade Uma fução distribuição de probabilidade é uma fução que associa probabilidades a evetos e pode ser classificada em discreta ou cotíua. No primeiro caso, a fução é defiida para um cojuto discreto e cotável, tal como um subcojuto dos úmeros iteiros; o segudo caso, a distribuição possui uma fução defiida para um cojuto cotíuo, como, por exemplo, um subcojuto dos úmeros reais. Uma forma de defiir uma fução distribuição de probabilidade, F(, é por meio de uma fução desidade de probabilidade (pdf), f(, coforme o exemplo da equação (4.) para o caso cotíuo: x [ X x] F ( Pr f ( X ) dx (4.) A partir da fução desidade de probabilidade, também é possível expressar a probabilidade de obter um valor o itervalo [c, d]: d c P [ c, d] f ( dx (4.2) A Distribuição Normal Etre as diversas distribuições de probabilidade cotíuas, a distribuição Normal se destaca por modelar vários feômeos aturais, etre os quais a icerteza de medição [3]. A distribuição Normal é defiida para < x < + por sua pdf:

3 50 2 ( x µ ) f ( exp 2 (4.3) σ 2π 2σ ode µ represeta a média e σ 2 a variâcia Itervalo de Cofiaça No caso da icerteza de medição, é comum que ela seja dada, simplesmete, como um itervalo em toro do resultado de uma medição, com o qual se espera abrager uma grade fração da distribuição de valores, que poderiam razoavelmete ser atribuídos ao mesurado [3]. Sedo assim, a icerteza de medição ão é, ecessariamete, dada como um múltiplo de um desvio padrão. Para uma gradeza z descrita por uma distribuição ormal, com média µ z e desvio padrão σ, o fator de abragêcia p forece o itervalo µ z p ± σ que correspode ao itervalo de cofiaça com um ível de cofiaça p. Valores típicos para íveis de cofiaça são 90, 95 e 99 por ceto, com fatores de abragêcia,64;,96 e 2,58; respectivamete [3]. É comum que o ível de cofiaça seja expresso pelo valor ( - α) (ode este valor é um úmero fixo, positivo e meor do que ), correspodete à probabilidade associada com um itervalo de cofiaça Métodos de Estimação de Probabilidade Quado a fução desidade de uma quatidade aleatória x ão é cohecida, uma estimativa desta desidade pode ser obtida utilizado-se amostras proveietes de observações x, K, x } de x. Os métodos de estimação podem ser classificados como { paramétricos ou ão-paramétricos: o primeiro caso, um vetor de parâmetros de uma fução é estimado, equato que, o segudo caso, a fução p( é estimada sem que ehum modelo específico seja adotado. A Figura 4 apreseta a taxoomia dos métodos de estimação de fuções de desidade de probabilidade. A estimação da desidade de probabilidade através de métodos paramétricos supõe que as formas das fuções de desidade de probabilidade estudadas são cohecidas.

4 5 Cotudo, as fórmulas paramétricas usuais em sempre se ajustam as desidades ecotradas a prática. Além disso, a maioria das desidades paramétricas clássicas é uimodal (têm um úico máximo), equato que muitos dos problemas práticos evolvem desidades multimodais. Por outro lado, métodos ão-paramétricos podem ser utilizados com distribuições arbitrárias e sem a suposição que as formas das desidades estudadas sejam cohecidas. observações {x,..., x } de x Estimação ão-paramétrica Estimação paramétrica Não supõe ehum modelo específico Supõe um modelo para a pdf e estima seus parâmetros Utiliza os dados como estão Discretização dos dados em itervalos p ˆ( V p ˆ( x ) V Jaela com largura e posição fixas Histograma Jaela fixa variável Jaela de Parze Jaela variável fixo -vizihos mais próximos Figura 4 - Classificação dos métodos de estimação de desidade de probabilidade 4.4. Métodos de Estimação Não-Paramétricos Defiição As técicas ão-paramétricas fudametais se baseiam o fato de que a probabilidade P de que um vetor x perteça à região R é dada pela equação:

5 52 P p( dx (4.4) R Coseqüetemete P é uma versão suavizada da fução de desidade p( e assim é possível estimar este valor suavizado de p através da estimação da probabilidade P. Sejam amostras D x, K, x } idepedetes e ideticamete distribuídas de { acordo com a distribuição p(. A probabilidade de que das amostras caiam a região R é dada pela lei biomial: P P ) ( P (4.5) cujo valor esperado de é E [ ] P e a melhor estimativa para P é P ˆ. Cosiderado que p( é cotíua e que a região R é suficietemete pequea de modo que p( ão varia muito detro dela, pode-se escrever: p( dx p( V (4.6) R ode x é um poto detro de R e V é o volume da região R. Combiado as equações (4.4), (4.5) e (4.6), a estimativa para p( é: p(x ) (4.7) V Histograma O histograma é o estimador de desidade mais atigo e mais utilizado para represetar e observar dados uidimesioais. A costrução de um histograma cosiste em dividir um itervalo de referêcia Ω x mi, x ] em K células (ou compartimetos) C e [ max cotar o úmero a de observações pertecetes a cada célula C. O úmero a é o acumulador associado à célula C. Seja χ C a fução característica de C :

6 53 a i χ ( x ) C i Quado todas as células do histograma têm a mesma largura, é dito que o histograma é uiforme ou regular. A largura de cada célula,, mais comum é: x max K x mi Uma probabilidade empírica P(C ) pode ser associada a cada célula C : P( C ) a Tomado-se como hipótese que a probabilidade é uiforme em cada célula, uma estimativa p ˆ( da fução de desidade de probabilidade estudada, p(, para qualquer valor real do itervalo Ω, pode ser avaliada por: pˆ ( a χ a χ ( (4.8) K K C ( C que correspode à equação (4.7), ode represeta o volume V e o úmero de amostras em cada célula é K a χ (. C Cotudo, esta estimativa possui algumas fraquezas que fazem com que ela seja raramete utilizada como uma ferrameta estatística. Primeiramete, a aproximação p ˆ(, defiida a equação (4.8), é uma fução ão-cotíua cuja estimação é limitada pela dualidade precisão/cofiaça. Esta dualidade reside o fato de que, quato meor for a distâcia desejada etre p ˆ( e p(, meor deve ser a largura ; porém, como é um úmero fiito, também meor será o valor do acumulador de cada célula e coseqüetemete meor será a covergêcia local de p ˆ( em p(. Por outro lado, quato maior for a largura da célula, meor é a habilidade da desidade estimada de respoder apropriadamete a variações de p(.

7 54 Além da dificuldade a escolha apropriada da largura da célula, a escolha do itervalo de referêcia Ω também pode iflueciar o resultado ecotrado. A Figura 5 ilustra o efeito da traslação do itervalo de referêcia a forma dos histogramas costruídos a partir de 00 amostras obtidas de uma desidade ormal N(0, ) Figura 5 - Depedêcia da forma do histograma em fução da escolha da origem das células. Outro proto fraco dos histogramas é a ecessidade de um alto úmero de amostras. Esta deficiêcia fica aida mais em evidêcia em problemas com espaços em alta dimesão, já que o úmero de células aumeta e coseqüetemete muitas observações são ecessárias para evitar que a estimativa seja ula em uma grade região Métodos de Kerel Os métodos de erel tetam solucioar o problema da escolha da posição iicial das células e ao mesmo tempo obter uma fução cotíua. Para isso, diferetemete dos histogramas que utilizam células com volumes fixos (com largura ) e posições prédetermiadas, o volume V das células varia em fução do úmero de amostras e cada célula é cetrada em cada amostra. Re-escrevedo a estimativa dada pelas eqs. (4.6) e (4.7), ota-se que ela também correspode a uma média espacial de p(:

8 55 P V R p( dx dx R (4.9) Para obter uma estimativa para p(, e ão de valores médios, V deve se aproximar de zero. No etato, se o úmero de amostras é fixo e V tede a zero, o volume da região pode evetualmete ficar pequeo demais e assim pode ão coter ehuma amostra, levado a estimativa p ( 0 a ser iútil. Do poto de vista prático, o úmero de amostras é sempre fiito e será ecessário cosiderar algum ível de suavização a estimativa de p( e aceitar alguma variâcia a razão. Do poto de vista teórico, pode-se cosiderar um úmero ifiito de amostras. Para estimar a desidade p( em x, costrói-se a seqüêcia de regiões R, R 2,..., cotedo x, ode a primeira região cotém uma amostra, a seguda duas, e assim adiate. Seja V o volume da região R que cotém amostras, e seja p ( a -ésima estimativa para p( dada por: p ( (4.0) V Pode-se provar que p ( coverge para p(, ou seja lim ( p(, se as três codições abaixo forem satisfeitas [27]: i) lim V 0 p ii) iii) lim lim 0 A primeira codição assegura que a média espacial P V coverge para p(. A seguda garate que a razão de freqüêcia (em probabilidade) coverge para a probabilidade P. A terceira codição afirma que o úmero de amostras caido a região

9 56 R é sempre uma pequea parcela desprezível do úmero total de amostras. Ela é ecessária para que p ( defiida pela eq. (4.0) covirja. Um dos camihos para se obter seqüêcias de regiões que satisfazem estas codições é, a partir de um volume iicial, ecolhê-lo à medida que aumeta; por exemplo: V. É em seguida ecessário mostrar que e têm comportameto apropriado para que p ( p(. Este é basicamete o método cohecido como Jaela de Parze [27], que será examiado a seguir Jaela de Parze Supodo que a região R é um hipercubo d-dimesioal com lado igual a h, o seu volume é dado por d V h. Seja a fução que assume para os potos detro do hipercubo uitário cetrado a origem e 0 para os potos exteros; esta fução é chamada de fução de jaela e é defiida por: u j 2 j, K, d ϕ ( u) (4.) 0 caso cotrário Coseqüetemete, ϕ (( x x i ) / h ) será igual a se x i estiver detro do hipercubo de volume V cetrado em x, e zero caso cotrário. Portato, o úmero de amostras detro deste hipercubo é dado por: i x xi ϕ (4.2) h Substituido a eq. (4.0), obtém-se: x xi p ( ϕ (4.3) V i V h A estimativa p ( defiida acima é uma média de fuções (de jaela). Tipicamete a fução de jaela tem seu máximo a origem e seus valores caem à medida

10 57 que se distaciam da origem. Desta forma, cada amostra está cotribuido com a estimativa coforme sua distâcia de x. Para que a estimativa p ( seja uma fução de desidade legítima, isto é, que seja ão-egativa e itegre em, as três codições abaixo devem ser atedidas: i) ϕ ( u) 0 (4.4) ii) ϕ ( u) du (4.5) iii) d V h (4.6) Uma escolha comum para a fução de jaela é a Normal de média x i e variâcia h : T ϕ ( u) exp[ 0,5u u] d 2 (2π ) que produz a estimativa: p ( 2 x xi exp 2 d 2 2 (2π h ) 2h i (4.7) É importate observar que, se h for muito grade, potos muito afastados da amostra x i serão afetados de maeira importate pela jaela. Assim a estimativa será composta pela superposição de fuções letas, ficado suave demais e com uma visão fora de foco da desidade de probabilidade. Por outro lado, se h for muito pequeo, apeas os potos muitos próximos a x i serão afetados de maeira importate pela jaela. Neste caso a estimativa será uma superposição de picos agudos cetrados as amostras e p ( será muito ruidosa. Na prática, deve ser procurada uma cocessão aceitável, já que o úmero de amostras é sempre limitado. É comum escolher um valor para h e defiir h h. Ifelizmete, a escolha do valor de h pode ser problemática. A Figura 6 ilustra 3 estimativas, com jaelas de Parze com diferetes larguras, a partir de 00 amostras geradas através de uma mistura de duas distribuições do tipo

11 58 Normal. Percebe-se claramete a ifluêcia da largura da jaela a estimação: para h, a jaela é estreita demais e a estimativa é muito ruidosa, apresetado vários picos; para h 6, a jaela é larga demais e praticamete ão são otados os dois picos da distribuição origial; e h 4 parece ser um valor adequado, sem grades ruídos em suavizado em excesso, sedo a qualidade de sua estimação comprometida pelo baixo úmero de amostras h h 4 h 6 dist. origial 0.25 p( x Figura 6 Ifluêcia da largura da jaela a estimativa por Jaela de Parze

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

Aula 5. Aula de hoje. Aula passada. Limitante da união Método do primeiro momento Lei dos grandes números (fraca e forte) Erro e confiança

Aula 5. Aula de hoje. Aula passada. Limitante da união Método do primeiro momento Lei dos grandes números (fraca e forte) Erro e confiança Aula 5 Aula passada Valor esperado codicioal Espaço amostral cotíuo, fução desidade Limitates para probabilidade Desigualdades de Markov, Chebyshev, Cheroff with high probability Aula de hoje Limitate

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas

Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas . ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação

Lista de Exercícios #6 Assunto: Propriedade dos Estimadores e Métodos de Estimação Assuto: Propriedade dos Estimadores e Métodos de Estimação. ANPEC 08 - Questão 6 Por regulametação, a cocetração de um produto químico ão pode ultrapassar 0 ppm. Uma fábrica utiliza esse produto e sabe

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Egeharia e Iformática Pedro Alberto Barbetta / Marcelo Meezes Reis / Atoio Cezar Boria São Paulo: Atlas, 004 Cap. 7 - DistribuiçõesAmostrais e Estimaçãode deparâmetros APOIO:

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

5 Teoria dos Valores Extremos

5 Teoria dos Valores Extremos Teoria dos Valores Extremos 57 5 Teoria dos Valores Extremos A Teoria dos Valores Extremos vem sedo bastate utilizada em campos ligados a evetos raros. Sua estatística é aplicada a estimação de evetos

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CESPE/UB FUB/0 fa 5 4 CONHECIMENTOS ESPECÍFICOS 60 As distribuições B e C possuem os mesmos valores para os quartis Q e Q, e o quartil superior em B correspode ao quartil cetral (Q ) da distribuição A.

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Sequências Reais e Seus Limites

Sequências Reais e Seus Limites Sequêcias Reais e Seus Limites Sumário. Itrodução....................... 2.2 Sequêcias de Números Reais............ 3.3 Exercícios........................ 8.4 Limites de Sequêcias de Números Reais......

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Estacionariedade e correlação temporal em dados financeiros

Estacionariedade e correlação temporal em dados financeiros Estacioariedade e correlação temporal em dados fiaceiros Hoje em dia há uma quatidade imesa de dados fiaceiros sedo armazeados, egócio a egócio, pelo mudo afora. Gratuitamete, é possível coseguir facilmete

Leia mais

Comparação entre duas populações

Comparação entre duas populações Comparação etre duas populações AMOSTRAS INDEPENDENTES Comparação etre duas médias 3 Itrodução Em aplicações práticas é comum que o iteresse seja comparar as médias de duas diferetes populações (ambas

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

A DESIGUALDADE DE CHEBYCHEV

A DESIGUALDADE DE CHEBYCHEV A DESIGUALDADE DE CHEBYCHEV Quado se pretede calcular a probabilidade de poder ocorrer determiado acotecimeto e se cohece a distribuição probabilística que está em causa o problema, ão se colocam dificuldades

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico dessa

Leia mais

Teoria da Estimação 1

Teoria da Estimação 1 Teoria da Estimação 1 Um dos pricipais objetivos da estatística iferecial cosiste em estimar os valores de parâmetros populacioais descohecidos (estimação de parâmetros) utilizado dados amostrais. Etão,

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2

MAE Introdução à Probabilidade e Estatística II Resolução Lista 2 MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ NOTAS DE AULA PROFa. SONIA MÜLLER

UNIVERSIDADE FEDERAL DO PARANÁ NOTAS DE AULA PROFa. SONIA MÜLLER PROBABILIDADE. DEFINIÇÕES BÁSICAS:.- INTRODUÇÃO: UNIVERSIDADE FEDERAL DO PARANÁ NOTAS DE AULA PROFa. SONIA MÜLLER PROBABILIDADE POPULAÇÃO AMOSTRA ESTATÍSTICA Uiverso : Ω ou U Vazio: Uião: A B Itersecção:

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA) 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

Sumário. 2 Índice Remissivo 17

Sumário. 2 Índice Remissivo 17 i Sumário 1 Itrodução à Iferêcia Estatística 1 1.1 Defiições Básicas................................... 1 1.2 Amostragem....................................... 2 1.2.1 Tipos de Amostragem.............................

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Notas do Curso Inferência em Processos Estocásticos. 1 Estimação de máxima verossimilhança para cadeias de Markov de ordem k

Notas do Curso Inferência em Processos Estocásticos. 1 Estimação de máxima verossimilhança para cadeias de Markov de ordem k Notas do Curso Iferêcia em Processos Estocásticos Prof. Atoio Galves Trascrita por Karia Yuriko Yagiuma 1 Estimação de máxima verossimilhaça para cadeias de Markov de ordem k Seja (X ) =0,1,,... uma cadeia

Leia mais

TRANSPORTES. Sessão Prática 4 Amostragem de escalares

TRANSPORTES. Sessão Prática 4 Amostragem de escalares Mestrado Itegrado em Egeharia Civil TRNPORTE Prof. Resposável: Luis Picado atos essão Prática 4 mostragem de escalares Istituto uperior Técico / Mestrado Itegrado Egeharia Civil Trasportes ulas Práticas

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teste de Hipótese

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teste de Hipótese Estatística: Aplicação ao Sesoriameto Remoto SER 4 - ANO 18 Teste de Hipótese Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Estimação de Parâmetros Como já foi visto,

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

; 2N 2N.! " j %.(1 & q)2 N & j.q j. j!(2n & j)!

; 2N 2N.!  j %.(1 & q)2 N & j.q j. j!(2n & j)! DERIVA GENÉTICA Seja uma população de tamaho fiito N, costate ao logo das gerações; sejam aida p e q as freqüêcias dos alelos A e a de um loco autossômico a geração ; como o tamaho da população é costate,

Leia mais

Distribuições Amostrais

Distribuições Amostrais 7/3/07 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/07/07 09:3 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Teste de Hipóteses Paramétricos

Teste de Hipóteses Paramétricos Teste de Hipóteses Paramétricos Como costruir testes de hipóteses para difereças etre duas médias. Como costruir testes de hipóteses para difereças etre duas proporções. Como costruir testes de hipóteses

Leia mais

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS CAPÍTULO 6 Itrodução Uma variável aleatória é caracterizada ou descrita pela sua distribuição de probabilidade. ETIMATIVA DE PARÂMETRO URG Em aplicações idustriais, as distribuições de probabilidade são

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Notas de aula de Probabilidade Avançada

Notas de aula de Probabilidade Avançada Notas de aula de Probabilidade Avaçada Adilso Simois (professor) Tássio Naia dos Satos (aluo) primeiro semestre de 2012 compilado 2 de abril de 2012 Notas de aula de Tássio Naia dos Satos, aluo do curso

Leia mais

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17)

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17) Capítulo 5- Itrodução à Iferêcia estatística. (Versão: para o maual a partir de 2016/17) 1.1) Itrodução.(222)(Vídeo 39) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar

Leia mais

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina predizagem de Máquia Modelos de Mistura lgoritmo EM Estimação semi-paramétrica de desidade abordagem paramétrica para estimação de desidade supõe que a amostra X é extraída de uma distribuição que segue

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Teoria da amostragem Estatística: Aplicação ao Sesoriameto Remoto SER 04 - ANO 017 Teoria da amostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Algumas Cosiderações... É importate ter

Leia mais

ESTATÍSTICA NÃO-PARAMÉTRICA

ESTATÍSTICA NÃO-PARAMÉTRICA ESTATÍSTICA NÃO-PARAMÉTRICA Prof. Dr. Edmilso Rodrigues Pito Faculdade de Matemática - UFU edmilso@famat.ufu.br 1 Programa Itrodução - Plao de curso, sistema de avaliação - Coceitos básicos de iferêcia

Leia mais

NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA

NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA NOTAS DE AULA: DISTRIBUIÇÃO AMOSTRAL E INTERVALOS DE CONFIANÇA Objetivos da aula: Compreeder que um estimador é uma variável aleatória e, portato, pode-se estabelecer sua distribuição probabilística; Estabelecer

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA Capítulo 5. CASO 5: EQUAÇÃO DE POISSON No presete capítulo, é abordado um problema difusivo uidimesioal com absorção de calor (Icropera e DeWitt, 199, o que resulta uma equação de Poisso, que é uma equação

Leia mais

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy Viziho Próximo ógica Fuzzy Métodos de Classificação dos Objetos Segmetados(IAR) objeto REGRA CASSE Fuzzy Cohecimeto Miima Distâcia Viziho Próximo O método do viziho próximo é baseado o método da míima

Leia mais

MQI 2003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE Teste 2 07/07/2008 Nome: PROBLEMA 1 Sejam X e Y v.a. contínuas com densidade conjunta:

MQI 2003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE Teste 2 07/07/2008 Nome: PROBLEMA 1 Sejam X e Y v.a. contínuas com densidade conjunta: MQI 003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 07/07/008 Nome: PROBLEMA Sejam X e Y v.a. cotíuas com desidade cojuta: f xy cy xy x y (, ) = + 3 ode 0 e 0 a) Ecotre a costate c que faz desta

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros População p Amostra X S pˆ (parâmetros:

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

Estatística para Economia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS

Estatística para Economia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS Estatística para Ecoomia e Gestão REVISÕES SOBRE VARIÁVEIS ALEATÓRIAS DISCRETAS E CONTÍNUAS Primavera 008/009 Variável Aleatória: Defiição: uma variável aleatória é uma fução que atribui a cada elemeto

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 0 Estimação de parâmetros populacioais 9.. Itrodução Aqui estudaremos o problema de avaliar certas características dos elemetos da população (parâmetros), com base em operações com os dados de uma

Leia mais

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere AUTO AVALIAÇÃO CAPÍTULO I. Assiale com V as proposições que cosidere verdadeiras e com F as que cosidere falsas : a. Sedo A e B cojutos disjutos, ambos majorados, os respectivos supremos ão podem coicidir

Leia mais

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Ap A r p e r n e d n i d z i a z ge g m e m Es E t s a t tí t s í t s i t c i a c de d e Dado d s Francisco Carvalho

Ap A r p e r n e d n i d z i a z ge g m e m Es E t s a t tí t s í t s i t c i a c de d e Dado d s Francisco Carvalho Apredizagem Estatística de Dados Fracisco Carvalho Avaliação e Comparação de Classificadores Existem poucos estudos aalíticos sobre o comportameto de algoritmos de apredizagem. A aálise de classificadores

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

6. Testes de Hipóteses Conceitos Gerais

6. Testes de Hipóteses Conceitos Gerais 6. Testes de Hipóteses Coceitos Gerais Este capitulo itrodutório, pretede apresetar todas as defiições e todo o vocabulário utilizado em testes de hipóteses. Em um primeiro mometo, talvez você fique um

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS Acerca dos coceitos de estatística e dos parâmetros estatísticos, julgue os ites seguites. CONHECIMENTOS ESPECÍFICOS CESPE/UB STM 67 A partir do histograma mostrado a figura abaixo, é correto iferir que

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Probabilidade 2 - ME310 - Lista 5

Probabilidade 2 - ME310 - Lista 5 Probabilidade - ME30 - Lista 5 November 3, 0 Lembrado:. Covergêcia de sequêcias em L p (também chamada de covergêcia em média): se lim E( X X 0 p ) 0 quado, etão a sequêcia deida por X é dita covergete

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer Cojutos Ifiitos Teorema (Cator) Se A é cojuto qualquer, #A #P(A). Mais precisamete, qualquer f : A P(A) ão é sobrejetora. Cosequêcia. Existe uma herarquia de cojutos ifiitos. Obs. Existe uma bijeção etre

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais