QUESTÕES TRIÂNGULO RETÂNGULO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "QUESTÕES TRIÂNGULO RETÂNGULO"

Transcrição

1 QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais se cortam é a) 1. 8 b) 7. 8 c) d) e) (Fuvest 015) Na figura abaixo, a circunferência de centro em O e raio r tangencia o lado BC do triângulo ABC no ponto D e tangencia a reta AB no ponto E. Os pontos A, D e O são colineares, AD r e o ângulo ACO é reto. Determine, em função de r, a) a medida do lado AB do triângulo ABC; b) a medida do segmento CO. 3. (G1 - ifsp 014) Ao ligar, por segmentos de retas, os pontos médios dos lados de um quadrado de lado 60 cm, obtém-se um quadrilátero, cujo perímetro é, em centímetros, a) 30. b) 60. c) 90. d) 10. e) (Ita 014) Considere o triângulo ABC retângulo em A. Sejam AE e AD a altura e a mediana relativa à hipotenusa BC, respectivamente. Se a medida de BE é 1 cm e a medida de AD é 1 cm, então AC mede, em cm, a) 4 5. b) 3. c) 6. d) 3 1. e) (G1 - ifsp 013) Um instrumento musical é formado por 6 cordas paralelas de comprimentos diferentes as quais estão fixadas em duas hastes retas, sendo que uma delas está perpendicular às cordas. O comprimento da maior corda é de 50 cm, e o da menor é de 30 cm. Sabendo que a haste não perpendicular Página 1 de 1

2 às cordas possui 5 cm de comprimento da primeira à última corda, se todas as cordas são equidistantes, a distância entre duas cordas seguidas, em centímetros, é a) 1. b) 1,5. c). d),5. e) (Insper 01) Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 300 km de extensão. A 160 km de X, à beira da R101, fica a cidade Z, por onde passa a rodovia R10, também retilínea e perpendicular à R101. Está sendo construída uma nova rodovia retilínea, a R103, que ligará X à capital do estado. A nova rodovia interceptará a R10 no ponto P, distante 10 km da cidade Z. O governo está planejando, após a conclusão da obra, construir uma estrada ligando a cidade Y até a R103. A menor extensão, em quilômetros, que esta ligação poderá ter é a) 50. b) 40. c) 5. d) 00. e) (Fgv 01) As cordas AB e CD de um círculo são perpendiculares no ponto P, sendo que AP 6, PB 4 e CP. O raio desse círculo mede a) 5. b) 6. c) 3 3. d) 4. Página de 1

3 e) (Unesp 01) No futebol, um dos gols mais bonitos e raros de se ver é o chamado gol olímpico, marcado como resultado da cobrança direta de um escanteio. Suponha que neste tipo de gol: 1. A projeção da trajetória da bola descreva um arco de circunferência no plano do gramado;. A distância (d) entre o ponto da cobrança do escanteio e o ponto do campo em que a bola entra no gol seja 40 m; 3. A distância máxima (h) da projeção da trajetória da bola à linha de fundo do campo seja 1m. Determine o raio da circunferência (R), em metros, do arco descrito pela trajetória da bola, com uma casa decimal de aproximação. 9. (Espm 01) A figura mostra um quadrado, dois círculos claros de raios R e dois círculos escuros de raios r, tangentes entre si e aos lados do quadrado. A razão entre R e r é igual a: a) b) 3 c) 3 d) e) (Insper 01) A figura mostra parte de um campo de futebol, em que estão representados um dos gols e a marca do pênalti (ponto P). Página 3 de 1

4 Considere que a marca do pênalti equidista das duas traves do gol, que são perpendiculares ao plano do campo, além das medidas a seguir, que foram aproximadas para facilitar as contas. Distância da marca do pênalti até a linha do gol: 11 metros. Largura do gol: 8 metros. Altura do gol:,5 metros. Um atacante chuta a bola da marca do pênalti e ela, seguindo uma trajetória reta, choca-se contra a junção da trave esquerda com o travessão (ponto T). Nessa situação, a bola terá percorrido, do momento do chute até o choque, uma distância, em metros, aproximadamente igual a a) 1. b) 14. c) 16. d) 18. e) (Unicamp 01) A planta de um cômodo que tem,7 m de altura é mostrada abaixo. a) Por norma, em cômodos residenciais com área superior a 6 m², deve-se instalar uma tomada para cada 5 m ou fração (de 5 m) de perímetro de parede, incluindo a largura da porta. Determine o número mínimo de tomadas do cômodo representado ao lado e o espaçamento entre as tomadas, supondo que elas serão distribuídas uniformemente pelo perímetro do cômodo. b) Um eletricista deseja instalar um fio para conectar uma lâmpada, localizada no centro do teto do cômodo, ao interruptor, situado a 1,0 m do chão, e a 1,0 m do canto do cômodo, como está indicado na figura. Supondo que o fio subirá verticalmente pela parede, e desprezando a espessura da parede e do teto, determine o comprimento mínimo de fio necessário para conectar o interruptor à lâmpada. 1. (Ita 011) Seja ABC um triângulo retângulo cujos catetos AB e BC medem 8 cm e 6 cm, respectivamente. Se D e um ponto sobre AB e o triângulo ADC e isósceles, a medida do segmento AD, em cm, é igual a a) 3 4 b) 15 6 c) 15 4 Página 4 de 1

5 d) 5 4 e) (Unicamp 010) Um artesão precisa recortar um retângulo de couro com 10 cm x,5 cm. Os dois retalhos de couro disponíveis para a obtenção dessa tira são mostrados nas figuras a seguir. a) O retalho semicircular pode ser usado para a obtenção da tira? Justifique. b) O retalho triangular pode ser usado para a obtenção da tira? Justifique. 14. (Espm 010) Uma folha de papel retangular foi dobrada como mostra a figura abaixo. De acordo com as medidas fornecidas, a região sombreada, que é a parte visível do verso da folha, tem área igual a: a) 4 cm b) 5 cm c) 8 cm d) 35 cm e) 36 cm Página 5 de 1

6 Gabarito: Resposta da questão 1: [E] No Δ ABD, temos: BD 9 15 BD 1 15 EM 45 ΔBEM ΔADB EM Portanto, a distância pedida é Resposta da questão : Δ a) No AOE : AE r 3r AE 8r AE r AB r 3 r 3 r ΔADB ~ ΔAEO AB AB 3r r b) No Δ ACO, temos: CO (r r) r CO 3 r CO r 3 Resposta da questão 3: [D] Página 6 de 1

7 x x 1800 x 30 Logo, o perímetro P será dado por: P 4 30 P 10 cm. Resposta da questão 4: [C] No triângulo ABC, temos: AD BD CD 1 AB 1 e AC AB AC 4 ( 1) AC 6 Resposta da questão 5: [E] Página 7 de 1

8 5 = 0 + (5x) 65 = x 5x = 5 x = 9 x = 3 Resposta da questão 6: [E] Determinando o valor de k no triângulo XZP: K = K = 00 km. ΔXZP Δ XDY d 360 d 180km 300 d Resposta da questão 7: [E] Considerando: O = centro da circunferência, R = medida do raio, M = ponto médio de AB e N = ponto médio de AD Temos: Página 8 de 1

9 PD 6 4 PD AM 5 1 OM 5 Logo, R 5 5 R 5. Resposta da questão 8: Aplicando o teorema de Pitágoras no triângulo assinalado, temos: R = (R 1) + 0 R = R R R = 401 R = 00,5 m. Resposta da questão 9: [C] Observando a figura, podemos escrever que Página 9 de 1

10 R r R R r R.R.r r R 4R 4Rr r 4R 6.Rr 0 R 3 R 0(não convém) ou r Resposta da questão 10: [A] Considerando x a distância pedida, temos: y = y = 137 x = y +,5 x = ,5 x = 143,5 x 1m Resposta da questão 11: a) Perímetro do quarto = 10,8 m =,5 m + 0,8 m. 3 tomadas espaçadas a cada 10,8 3,6m. 3 b) Na figura tem-se x = 1, + 0,5. x = 1,69. x = 1,3 m. Logo, o comprimento do fio será: 1,3 m + (,7 1) = 3 m. Página 10 de 1

11 Resposta da questão 1: [D] x =(8 x) + 6 x = 64 16x + x x = x 16x 5 x 4 Resposta da questão 13: a) No semicírculo x 5 6 x 11 (maior que 3) Logo o retalho semicircular poderá ser usado para a obtenção da tira. b) no triângulo. 6 x 10 x,5 (menor que,5) 6 16 Logo o retalho triangular não poderá ser usado para a obtenção da tira. Resposta da questão 14: [B] Página 11 de 1

12 y + 6 = 10 y = 8 x = (8 x) + 4 x = A = 5 Página 1 de 1

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

Triângulo Retângulo. Relações Métrica e Teorema de Pitágoras

Triângulo Retângulo. Relações Métrica e Teorema de Pitágoras Triângulo Retângulo Relações Métrica e Teorema de Pitágoras 1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI 01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120

Leia mais

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1 A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade O quadrilátero ABCD,

Leia mais

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura.

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura. 1 Projeto Jovem Nota 10 1. (Uerj 2004) No triângulo ABC abaixo, os lados BC, AC e AB medem, respectivamente, a, b e c. As medianas AE e BD relativas aos lados BC e AC interceptam-se ortogonalmente no ponto

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

Geometria Plana. Parte I. Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a

Geometria Plana. Parte I.  Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a Geometria Plana Parte I 1. (Fuvest 014) Uma circunferência de raio 3 cm está inscrita no triângulo isósceles ABC, no qual AB= AC. A altura relativa ao lado BC mede 8 cm. O comprimento de BC é, portanto,

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB

Leia mais

Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que

Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que Resposta da questão 1: [B] A figura apresenta um arco de circunferência com um quadrado inscrito e um triângulo retângulo em um de seus lados. O lado do quadrado é igual a hipotenusa do triângulo. Pelo

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo

Leia mais

A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d)

A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d) 1 Para confeccionar uma bandeirinha de festa junina, utilizou-se um pedaço de papel com 10 cm de largura e 15 cm de comprimento, obedecendo-se às instruções abaixo 1 Dobrar o papel ao meio, Dobrar a ponta

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

GEOMETRIA ESPACIAL

GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109 LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um

Leia mais

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria. 3. O retângulo ABCD está inscrito no retângulo WXYZ, como mostra a figura.

Professor Alexandre Assis. Lista de exercícios de Geometria. 3. O retângulo ABCD está inscrito no retângulo WXYZ, como mostra a figura. 3. O retângulo ABCD está inscrito no retângulo WXYZ, 1. PA é bissetriz do triângulo ABC. Determine x, y, z, t. como mostra a figura. Sabendo que åæ=2 e åî=1, determine o ângulo š para que a área de WXYZ

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

01 - (UNICAMP SP/2013/1ª Fase) O segmento AB é o diâmetro de um semicírculo e a base de um triângulo isósceles ABC, conforme a figura abaixo.

01 - (UNICAMP SP/2013/1ª Fase) O segmento AB é o diâmetro de um semicírculo e a base de um triângulo isósceles ABC, conforme a figura abaixo. 01 - (UNICAMP SP/01/1ª Fase) O segmento AB é o diâmetro de um semicírculo e a base de um triângulo isósceles ABC, conforme a figura abaixo. Denotando as áreas das regiões semicircular e triangular, respectivamente,

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

MAT-230 Diurno 1ª Folha de Exercícios

MAT-230 Diurno 1ª Folha de Exercícios MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Matemática: Trigonometria Vestibulares UNICAMP

Matemática: Trigonometria Vestibulares UNICAMP Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ

Leia mais

Grupo de exercícios II.2 - Geometria plana- Professor Xanchão

Grupo de exercícios II.2 - Geometria plana- Professor Xanchão Grupo de exercícios II. - Geometria plana- Professor Xanchão 1. (Pucrj 015) A medida da área, em círculo de raio igual a 5 cm é? a) 0 b) 5 c) 5 d) 50 e) 50 cm, de um quadrado que pode ser inscrito em um.

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA A A` r B B` s C C` t A B P C S t r 1 r 2 x 6-5 15 3 r 3 B a β b ka B β kb A α c γ C A α kc γ C B B A C A C B a ka B A c C A kc C B B kc ka c

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST

Leia mais

Média, Mediana e Distância entre dois pontos

Média, Mediana e Distância entre dois pontos Média, Mediana e Distância entre dois pontos 1. (Pucrj 01) Se os pontos A = ( 1, 0), B = (1, 0) e C = (, ) são vértices de um triângulo equilátero, então a distância entre A e C é a) 1 b) c) 4 d) e). (Ufrgs

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 09 EXERCÍCIOS 01) Uma sala retangular medindo m por 4,25 m deve ser ladrilhada com ladrilhos quadrados iguais.

Leia mais

Aula prática. S = a p = 3a. a2 b2 4. 2p = b 2a S = bh 2. 1).- Exercícios didáticos

Aula prática. S = a p = 3a. a2 b2 4. 2p = b 2a S = bh 2. 1).- Exercícios didáticos 1 Aula prática 1).- Exercícios didáticos É um tanto surpreendente que, em cada triângulo, as três cevianas de um dado tipo se interceptam num mesmo ponto. Essa característica é ilustrada nas figuras abaixo,

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web POLÍGONOS REGULARES 1. No estudo da distribuição de torres em uma rede de telefonia celular, é comum se encontrar um modelo no qual as torres de transmissão estão localizadas nos centros de hexágonos regulares,

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

Sólidos de Revolução

Sólidos de Revolução Sólidos de Revolução 1. (Cefet MG 015) Na figura a seguir, ABCD é um retângulo inscrito em um setor circular de raio R com AB R. O volume do sólido de revolução gerado pela rotação desse retângulo em torno

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 4 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados

Leia mais

Fonte: Livro: CRESCER EM SABEDORIA - Matemática 8º ano - Sistema Mackenzie de Ensino

Fonte: Livro: CRESCER EM SABEDORIA - Matemática 8º ano - Sistema Mackenzie de Ensino Atividade extra aula 26 e 29 (módulo 01) 8º ano Prof.ª Adriana/Madalena (matemática 02) Objetivo: promover uma maior compreensão de algumas propriedades de quadriláteros e interpretação de enunciados mais

Leia mais

Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Quadriláteros Inscritos e Circunscritos 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Quadriláteros Incritos e Circunscritos Exercício 5. Determine o valor de x

Leia mais

GEOMETRIA: POLÍGONOS

GEOMETRIA: POLÍGONOS Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / 0 / 01 Assunto: Triângulos, quadriláteros e outros polígonos Lição nº _ e _ Um Quadrilátero é um polígono com quatro lados. Os quadriláteros

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

LISTA DE EXERCÍCIOS Goiânia, de de 2015.

LISTA DE EXERCÍCIOS Goiânia, de de 2015. largura x do rio. Demonstre que a distância do vértice B ao baricentro M de um triângulo é o dobro da distância do ponto E ao baricentro M. LISTA DE EXERCÍCIOS Goiânia, de de 01. Série: º ano Aluno(: Disciplina:

Leia mais

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação)

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) 1. (Utfpr) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base. Se em um triângulo

Leia mais

Unidade 6 Geometria: polígonos e circunferências

Unidade 6 Geometria: polígonos e circunferências Sugestões de atividades Unidade 6 Geometria: polígonos e circunferências 9 MATEMÁTICA Matemática. Considere um decágono regular dividido em 0 triângulos isósceles congruentes, conforme a figura a seguir..

Leia mais

1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.

1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. A AVALIAÇÃO UNIDADE I -06 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 (Bahiana 05.) Os efeitos de um terremoto ocorrido em uma região

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO N 10 cm 10 cm M 10 cm 1 rad 2 cm 1 cm 2 cm θ a c α C 4 5 B 3 α A Como pode cair no enem F 1 (ENEM) Um balão atmosférico, lançado em Bauru

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Polígonos. 1

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15.

1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15. 1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15. 2. (Espm) Na figura abaixo, ABCD é um quadrado, BDE é um triângulo

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

LISTA DE EXERCÍCIO GEOMETRIA PLANA

LISTA DE EXERCÍCIO GEOMETRIA PLANA QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados um cilindro e um prisma quadrangular regular [ ] de bases []

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Polígonos Regulares. 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero.

Polígonos Regulares. 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero. Polígonos Regulares 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero. Sabendo que o perímetro do polígono ABCDE é 456 cm e CD mede 68 cm, qual é a medida do lado

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Ita 2003) Quatro esferas de mesmo raio R > 0 são tangentes externamente duas a duas, de forma que seus centros formam um tetraedro regular com arestas de comprimento 2 R. Determine, em função de R,

Leia mais

Cone (sem outras figuras misturadas)

Cone (sem outras figuras misturadas) Cone (sem outras figuras misturadas) 1. (Pucrj 01) De um disco circular, de raio medindo 6 e centro C, cortamos um setor cujo arco mede 1. Usando o pedaço maior, fazemos um cone reto juntando os lados

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções: EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS

Leia mais