2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro"

Transcrição

1 ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro 1. (G1 - cps 016) A erosão é o processo de desgaste, transporte e sedimentação das rochas e, principalmente, dos solos. Ela pode ocorrer por ação de fenômenos da natureza ou do ser humano. A imagem mostra uma fenda no solo, proveniente de erosão. Sabendo-se que BC = m, CD = m, DF = m e ED = 4, m, então, a distância entre os pontos A e B e, em metros, a) 6,. b) 6,0. c) 6,7. d) 7,. e) 7,7.. (Faculdade Albert Einstein 016) Na figura abaixo, ABCD é um retângulo tal que BC = 6 cm e M é ponto médio do lado AB. Se os semicírculos no interior do retângulo são dois a dois tangentes entre si, nos pontos M, P e R, então a área de ABCD, em centímetros quadrados, é Para determinar a distância entre os pontos A e B da fenda, pode-se utilizar o modelo matemático da figura. a) 6 b) 6 c) 18 d) 18. (Ita 016) Um triângulo está inscrito numa circunferência de raio 1cm. O seu maior lado mede cm. e sua área é de Na figura, tem-se: - os triângulos AFC e EFD; - o ponto E pertencente ao segmento AF; - o ponto D pertencente ao segmento CF; - os pontos C, D e F pertencentes ao terreno plano que margeia a borda da fenda; e - as retas AC e ED que são paralelas entre si. 1 cm. Então, o menor lado do triângulo, em cm, mede 1 a) 1. b). c) 1. d). 6 e). 6 Página 1 de 8

2 4. (Espcex (Aman) 016) Na figura abaixo, a circunferência de raio cm tangencia três lados do retângulo ABCD. Sabendo que a área deste retângulo é igual a 7 cm, a medida do segmento EF, em cm, é igual a: construção ainda prevê o plantio de grama na área restante, que corresponde a 48% do terreno. a) b) 6 c) 6 d) 1 e) 1. (Unicamp 016) A figura abaixo exibe um quadrilátero ABCD, onde AB = AD e BC = CD = cm. No projeto descrito, a área da superfície do lago, em m, será igual a a) 4,1. b) 4,. c),9. d) 4,0. e),8. 7. (G1 - ifsp 016) Em uma sala residencial será construído um jardim de inverno com formato retangular. Esse jardim de inverno terá comprimento igual ao dobro da sua largura e perímetro de 1 metros. Após a construção desse jardim sobrará, da sala residencial, uma área útil de 4, metros quadrados. Sendo assim, a área total útil da sala residencial, antes da construção desse jardim, é: a) 8 metros quadrados. b) metros quadrados. c) metros quadrados. d) 61 metros quadrados. e) 49 metros quadrados. A área do quadrilátero ABCD é igual a a) cm. b) cm. c) cm. d) cm. 8. (Unesp 016) Um cubo com aresta de medida igual a x centímetros foi seccionado, dando origem ao prisma indicado na figura 1. A figura indica a vista superior desse prisma, sendo que AEB é um triângulo equilátero. 6. (Unesp 016) Em um terreno retangular ABCD, de 0 m, serão construídos um deque e um lago, ambos de superfícies retangulares de mesma largura, com as medidas indicadas na figura. O projeto de Página de 8

3 Sabendo-se que o volume do prisma da figura 1 é igual a (4 )cm, x é igual a a) b) 7 c) d) e) quadrado MNPQ de lado de medida. Os pontos E e F pertencem ao segmento BD de modo que BE = FD =. 4 A área do quadrado MNPQ é igual a k vezes a área da superfície destacada em cinza. 9. (Ita 016) Sejam λ uma circunferência de raio 4 cm e PQ uma corda em λ de comprimento 4 cm. As tangentes a λ em P e em Q interceptam-se no ponto R exterior a λ. Então, a área do triângulo em PQR, em cm, é igual a a). b). c) 6. d). e) 4. Assim sendo, o valor de k é a). b) 4. c) (Fatec 016) Na figura, os pontos A, B, C e D são pontos médios dos lados do d) 8. e) (G1 - ifsp 016) Ana estava participando de uma gincana na escola em que estuda e uma das questões que ela tinha de responder era quanto vale a soma das medidas dos ângulos internos do polígono regular da figura? Para responder a essa pergunta, ela lembrou que seu professor ensinou que a soma das medidas dos ângulos internos de um triângulo é igual a 180º, e que todo Página de 8

4 polígono pode ser decomposto em um número mínimo de triângulos. Sendo assim, Ana respondeu corretamente à pergunta dizendo: a) 70 b) 900 c) 40 d) e) (Unesp 016) Uma mesa de passar roupa possui pernas articuladas AB e CD, conforme indica a figura. Sabe-se que AB = CD = 1 m, e que M é ponto médio dos segmentos coplanares AB e CD. Quando a mesa está armada, o tampo fica paralelo ao plano do chão e a medida do ângulo AMC ˆ é 60. d) 7 e) (Fatec 016) Nas competições olímpicas de Tiro com Arco, o alvo possui 1, m de diâmetro. Ele é formado por dez circunferências concêntricas pintadas sobre um mesmo plano e a uma distância constante de 6,1 cm entre si, como vemos no esquema. Podemos afirmar corretamente que a razão entre a área da região cinza e a área total do alvo, nessa ordem, é igual a a). 10 b). 1 Considerando-se desprezíveis as medidas dos pés e da espessura do tampo e adotando = 1, 7, a altura do tampo dessa mesa armada em relação ao plano do chão, em centímetros, está entre a) 96 e 99. b) 84 e 87. c) 80 e 8. d) 9 e 9. e) 88 e 91. c) 1. d) e) (Fuvest 016) Os pontos A, B e C são colineares, AB =, BC = e B está entre A e C. Os pontos C e D pertencem a uma circunferência com centro em A. Traça-se uma reta r perpendicular ao segmento BD passando pelo seu ponto médio. Chama-se de P a interseção de r com AD. Então, AP + BP vale a) 4 b) c) 6 Página 4 de 8

5 Gabarito: Resposta da questão 1: [A] Pode-se concluir também pelo enunciado que o lado CD do retângulo será igual a R. Assim, a área total do retângulo será: S = 6 S = 6 Resposta da questão : Como a medida do lado maior é igual a medida do diâmetro (cm), podemos afirmar que este triângulo é retângulo de catetos x e y. ΔFED ΔFAC 4, = + AB 10 + AB =, AB = 1, AB = 6, Resposta da questão : Considerando como r o raio das circunferências menores e R o raio da circunferência maior, unindo os centros das circunferências, tem-se: Temos, então o seguinte sistema. x + y = 4 x y 1 = Da segunda equação escrevemos que: y = x O triângulo destacado é um triângulo retângulo. Aplicando o Teorema de Pitágoras, tem-se: x = ou + y = (r + R) = r + 6 r + rr + R = r + 6 rr + R = 6 R(r + R) = 6 x = y = + Do enunciado, conclui-se que R = r, logo: Substituindo o resultado acima na primeira equação, encontramos: 4 x 4x + = 0 Resolvendo a equação e determinando o valor de y, encontramos: Portanto, o menor cateto do triângulo é R(r + R) = 6 R(R + R) = 6 R = 6 R = 18 R. = Resposta da questão 4: Página de 8

6 [D] Como AC é bissetriz de BAD e BCD, segue que os triângulos retângulos ABE e ADE são congruentes. Logo, podemos concluir que AE = cm. AD = BC = 6 cm CD 6 = 7 CD = AB = 1cm A resposta é dada por 1 1 (ABD) + (BCD) = BD AE + BC CD senbcd 1 = + = + = cm. Resposta da questão 6: No triângulo CDB, temos: [D] BD = BD = 6 Sabendo que o terreno é retangular e que Os triângulos MFO e CDB são sua área é de 0 m, pode-se deduzir semelhantes, portanto: suas medidas, sendo h o comprimento do MF = 6 MF = 6 MF = MF = terreno: MF = h = 0 h = 4 metros Logo: 1 EF = MF EF = Resposta da questão : Considere a figura. Se o terreno tem ao todo 4 metros de comprimento, então o lago terá comprimento igual a: 4 1 0, =, metros Sabendo a área total do terreno e considerando como x a largura do deque e do lago, pode-se escrever: grama + lago + deque = 0 m 0,48 0 +, x + 4 x = 0 6,x = 10,4 x = 1,6 metros Logo, a área do lago será igual a:, 1, 6 = 4 m Resposta da questão 7: [A] Seja a largura do jardim de inverno. Aplicando a Lei dos Cossenos no triângulo Logo, temos 6 = 1, ou seja, =, m. BCD, temos Daí, segue que a área do jardim de inverno é (,) = 1, m. Portanto, a área BD = BC + CD BC CD cosbcd BD = + pedida é igual a 4, + 1, = 8 m. BD = cm. Resposta da questão 8: [A] Com os dados do enunciado, pode-se Página 6 de 8

7 calcular: x Resposta da questão 11: Vprisma = 4 ( ) = x x 4 x x Sendo o polígono da figura um heptágono, Vprisma = ( 4 ) = ( 4 ) = x = 8 x = 4 4 a resposta é 180 (7 ) = 900. Resposta da questão 9: [E] Resposta da questão 1: Se M é o ponto médio dos segmentos e se AMC é 60, então os triângulos formados ( AMC e DMB) são equiláteros com lado igual a = 0,. Logo, a altura da mesa em relação ao chão será igual a h, sendo h a altura de um dos triângulos equiláteros. Ou seja: 0, 1,7 h = = = 0,4 h = 0,8 m = 8 cm Resposta da questão 1: [D] Considere a figura, em que M é o ponto médio de BD. OPR ˆ = = 0 No triângulo PMR, temos: h h tg0 = = h = cm Logo, a área do triângulo PQR será dada por: 1 4 A = 4 A = Resposta da questão 10: Calculando: ADF = CDF = CBE = ABE 4 1 ADF = = ADF = 8 16 Acinza = 4 Acinza = 16 4 A = MNPQ A MNPQ 4 AMNPQ = = = 4 A cinza Acinza 4 Os triângulos BPM e DPM são congruentes por LAL, pois MB = MD, MP é lado comum e BMP DMP. Daí, temos BP = DP e, portanto, AP + BP = AC = + = 7. Resposta da questão 14: [C] Calculando: Página 7 de 8

8 1 Atotal = π Atotal 61 = π Acinza = π ( 6,1) Acinza = π 1, Acinza π 1, 1, 1 Acinza 1 = = A total π = = Atotal Página 8 de 8

SEMELHANÇA DE TRIÂNGULOS / ÁREA DE FIGURAS PLANAS / POLÍGONOS

SEMELHANÇA DE TRIÂNGULOS / ÁREA DE FIGURAS PLANAS / POLÍGONOS SEMELHANÇA DE TRIÂNGULOS / ÁREA DE FIGURAS PLANAS / POLÍGONOS - 016 1. (Fuvest 016) São dadas três circunferências de raio r, duas a duas tangentes. Os pontos de tangência são P, 1 P e P. Calcule, em função

Leia mais

2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro

2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro 1. (G1 - cps 016) A erosão é o processo de desgaste, transporte e sedimentação das rochas e, principalmente, dos solos. Ela pode ocorrer

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

GEOMETRIA ESPACIAL

GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

QUESTÕES TRIÂNGULO RETÂNGULO

QUESTÕES TRIÂNGULO RETÂNGULO QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais

Leia mais

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

Problemas OBM - 1 Fase

Problemas OBM - 1 Fase Programa Olímpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo Pinheiro Aula 5 Problemas OBM - 1 Fase Problema 1. A figura a seguir representa um Tangram, quebra-cabeças chinês formado por

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Matemática: Geometria Plana Vestibulares UNICAMP

Matemática: Geometria Plana Vestibulares UNICAMP Matemática: Geometria Plana Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y. Para cada número real t tal que 0 t, considere o triângulo T de vértices em (0, 0),

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº

3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA

MATEMÁTICA 3 GEOMETRIA PLANA MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 13 Circunferência e Círculo Circunferência é o lugar geométrico dos pontos do plano cujas distâncias a um ponto fixo (centro) são iguais a uma

Leia mais

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida

Leia mais

Programa Olímpico de Treinamento. Aula 5. Curso de Geometria - Nível 2. Problemas OBM - 1 Fase. Prof. Rodrigo Pinheiro

Programa Olímpico de Treinamento. Aula 5. Curso de Geometria - Nível 2. Problemas OBM - 1 Fase. Prof. Rodrigo Pinheiro Programa Olímpico de Treinamento Curso de Geometria - Nível 2 Prof. Rodrigo Pinheiro Aula 5 Problemas OBM - 1 Fase Problema 1. Dois espelhos formam um ângulo de 0 no ponto V. Um raio de luz, vindo de uma

Leia mais

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 1 GABARITO COMENTADO 1) OBS: Dado um trapézio, quando traçamos as diagonais, o mesmo fica decomposto em triângulos

Leia mais

Geometria Plana 2015

Geometria Plana 2015 Geometria Plana 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o trapézio é isósceles, então BC = AD, pelo que também

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Prof. (a): Heloísa Andréia LRR MATEMÁTICA III 2º TRIMESTRE Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): SÉRIE 3ª TURMA DATA: / /2017

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,

Leia mais

ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS

ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS 1 MATEMÁTICA III º ANO ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS 1. Após assistir ao programa Ecoprático, da TV Cultura, em que foi abordado o tema do aproveitamento da iluminação e da ventilação

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema

Leia mais

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Polígonos. 1

Leia mais

GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015

GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015 Colégio Providência Avaliação por Área Matemática e suas tecnologias 2ª ETAPA Data: 31/08/2015 1ª SÉRIE ENSINO MÉDIO GABARITO PROVA A A B C D 1 XXXX xxxxx xxxxx xxxxx 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

Geometria Plana. Parte I. Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a

Geometria Plana. Parte I.  Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a Geometria Plana Parte I 1. (Fuvest 014) Uma circunferência de raio 3 cm está inscrita no triângulo isósceles ABC, no qual AB= AC. A altura relativa ao lado BC mede 8 cm. O comprimento de BC é, portanto,

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.

Leia mais

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano)

Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano) Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano) Polígonos 1. Calcule o número de diagonais de um icoságono (20 lados). 2. Determine o polígono cujo número de diagonais é o triplo do número

Leia mais

MA13 Geometria AV1 2014

MA13 Geometria AV1 2014 MA13 Geometria AV1 2014 Questão 1 [ 2,0 pt ] Considere um paralelogramo ABCD e sejam M o centro da circunferência definida pelos vértices A, B e C N o centro da circunferência definida pelos vértices B,

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

2. (Insper 2012) A figura mostra parte de um campo de futebol, em que estão representados um dos gols e a marca do pênalti (ponto P).

2. (Insper 2012) A figura mostra parte de um campo de futebol, em que estão representados um dos gols e a marca do pênalti (ponto P). 1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a distância entre a bicicleta e o hidrante passou a ser: a) 8

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como M é o ponto médio da corda [], temos que AM = MB, e assim Logo, substituindo

Leia mais

Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Quadriláteros Inscritos e Circunscritos 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Quadriláteros Incritos e Circunscritos Exercício 5. Determine o valor de x

Leia mais

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02 Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

Aula prática. S = a p = 3a. a2 b2 4. 2p = b 2a S = bh 2. 1).- Exercícios didáticos

Aula prática. S = a p = 3a. a2 b2 4. 2p = b 2a S = bh 2. 1).- Exercícios didáticos 1 Aula prática 1).- Exercícios didáticos É um tanto surpreendente que, em cada triângulo, as três cevianas de um dado tipo se interceptam num mesmo ponto. Essa característica é ilustrada nas figuras abaixo,

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

Disciplina: Matemática Data da entrega: 31/03/2015.

Disciplina: Matemática Data da entrega: 31/03/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Fuvest 99) Considere uma caixa sem tampa com a forma de um paralelepípedo reto de altura 8 m e base quadrada de lado 6 m. Apoiada na base, encontra-se uma pirâmide sólida reta de altura 8m e base quadrada

Leia mais

EXERCÍCIOS DE REVISÃO 3º ANO PROVA MENSAL 3º TRIMESTRE. A quantidade de números inteiros x que satisfaz simultaneamente às duas desigualdades é:

EXERCÍCIOS DE REVISÃO 3º ANO PROVA MENSAL 3º TRIMESTRE. A quantidade de números inteiros x que satisfaz simultaneamente às duas desigualdades é: EXERCÍCIOS DE REVISÃO º ANO PROVA MENSAL º TRIMESTRE 1. (G1 - ifba 01) Considere estas desigualdades 5x 7x 5 x 6 1 4 A quantidade de números inteiros x que satisfaz simultaneamente às duas desigualdades

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

RECUPERAÇÃO FINAL DE MATEMÁTICA PROFESSOR GILMAR BORNATTO

RECUPERAÇÃO FINAL DE MATEMÁTICA PROFESSOR GILMAR BORNATTO 1. (Unesp) Seja A = [a Œ] a matriz 2 x 2 real definida por a Œ = 1 se i j e a Œ = -1 se i > j. Calcule A. 2. (Unesp) Seja A=[a Œ] a matriz real 2 x 2 definida por a Œ=1 se i j e a Œ=-1 se i>j. Calcule

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 9 RECORDAR É VIVER. é igual a:

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 9 RECORDAR É VIVER. é igual a: INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF Estudante: Turma: LISTA 9 RECORDAR É VIVER POTENCIAÇÃO E RADICIAÇÃO (SEÇÃO OPCIONAL)

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Quadriláteros. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Quadriláteros. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte 3 Quadriláteros. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte 3. Quadriláteros. 1 Exercícios Introdutórios Exercício

Leia mais

150 x 100. x 100. # & = 4 2p = 84cm. 2 4, AB = 22,5 2AB = 12,5 AB = 6,25

150 x 100. x 100. # & = 4 2p = 84cm. 2 4, AB = 22,5 2AB = 12,5 AB = 6,25 Resposta da questão 1: [B] Seja p o perímetro desejado. Como os triângulos são semelhantes e o perímetro do primeiro triângulo é igual a 13 + 14 + 15 = 4cm, temos! p $ # & = 336 " 4% 84! p $ # & = 4 p

Leia mais

Exercícios de Geometria Plana Tchê Concursos Prof. Diego

Exercícios de Geometria Plana Tchê Concursos Prof. Diego (001). Se a diferença entre o número de diagonais de dois polígonos convexos é 30 e um deles tem 5 lados a mais que o outro, então o número de lados de cada um dos polígonos é: (A) 5 e 10 (B) 6 e 11 (C)

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 25 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

GEOMETRIA ANALÍTICA. λ x y 4x 0 e o ponto P 1, 3. Se a reta t é tangente a λ no ponto P, então a abscissa do ponto de

GEOMETRIA ANALÍTICA. λ x y 4x 0 e o ponto P 1, 3. Se a reta t é tangente a λ no ponto P, então a abscissa do ponto de ENSINO MÉDIO - 2012 LISTA DE EXERCÍCIOS 3ª SÉRIE - 3º TRIM PROF. MARCELO DISCIPLINA : GEOMETRIA GEOMETRIA ANALÍTICA 1) Espcex (Aman) 2013) Considere a circunferência 2 2 λ x y 4x 0 e o ponto P 1, 3. Se

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI 01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120

Leia mais

30's Volume 9 Matemática

30's Volume 9 Matemática 30's Volume 9 Matemática www.cursomentor.com 20 de janeiro de 201 Q1. Uma pessoa adulta possui aproximadamente litros de sangue. Em uma pessoa saudável, 1 mm 3 de sangue possui, aproximadamente: milhões

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web POLÍGONOS REGULARES 1. No estudo da distribuição de torres em uma rede de telefonia celular, é comum se encontrar um modelo no qual as torres de transmissão estão localizadas nos centros de hexágonos regulares,

Leia mais

Unidade 6 Geometria: polígonos e circunferências

Unidade 6 Geometria: polígonos e circunferências Sugestões de atividades Unidade 6 Geometria: polígonos e circunferências 9 MATEMÁTICA Matemática. Considere um decágono regular dividido em 0 triângulos isósceles congruentes, conforme a figura a seguir..

Leia mais