Geometria Plana. Parte I. Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "Geometria Plana. Parte I. Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a"

Transcrição

1 Geometria Plana Parte I 1. (Fuvest 014) Uma circunferência de raio 3 cm está inscrita no triângulo isósceles ABC, no qual AB= AC. A altura relativa ao lado BC mede 8 cm. O comprimento de BC é, portanto, igual a a) 4 cm b) 13 cm c) 1 cm 9 cm e) 7 cm. (Insper 014) Considere o retângulo ABCD da figura, de dimensões AB= b e AD = h, que foi dividido em três regiões de áreas iguais pelos segmentos EF e GH. Assinale a alternativa que mais se aproxima da área da piscina. a) m b) m c).000 m.00 m e).400 m 4. (Fuvest 014) O triângulo AOB é isósceles, com OA = OB, e ABCD é um quadrado. Sendo θ a medida do ângulo AOB, ˆ pode-se garantir que a área do quadrado é maior do que a área do triângulo se As retas EF,BD e GH são paralelas. Dessa forma, sendo AE= x e AF= y, a razão x b é igual a a). 3 b) c). 3. Dados os valores aproximados: tg 14 0,493, tg 15 0,679 tg 0 0,3640, tg 8 0,5317 a) 14 < θ< 8 b) 15 < θ< 60 c) 0 < θ< 90 5 < θ< 10 e) 30 < θ< (Insper 014) As disputas de MMA (Mixed Martial Arts) ocorrem em ringues com a forma de octógonos regulares com lados medindo um pouco menos de 4 metros, conhecidos como Octógonos. Medindo o comprimento exato de seus lados, pode-se calcular a área de um Octógono decompondo-o, como mostra a figura a seguir, em um quadrado, quatro retângulos e quatro triângulos retângulos e isósceles. e) (Fuvest 014) Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos regulares congruentes, justapostos, de modo que cada par de hexágonos tem um lado em comum, conforme representado na figura abaixo. A distância entre lados paralelos de cada hexágono é de 5 metros. Página 1

2 A medida do lado do quadrado destacado no centro da figura é igual à medida a do lado do Octógono. Se a área desse quadrado é S, então a área do Octógono vale a) S( + 1). b) S( + ). c) S( + 1). S( + ). e) 4S( + 1). 6. (Insper 014) Um retângulo tem comprimento X e largura Y, sendo X e Y números positivos menores do que 100. Se o comprimento do retângulo aumentar Y% e a largura aumentar X%, então a sua área aumentará XY a) X+ Y + %. 100 X+ Y b) XY + %. 100 X+ Y+ XY c) %. 100 (X+ Y)%. e) (XY)%. 7. (Insper 014) Um polígono regular possui n lados, sendo n um número par maior ou igual a 4. Uma pessoa uniu dois vértices desse polígono por meio de um segmento de reta, dividindo-o em dois polígonos convexos P 1 e P, congruentes entre si. O número de lados do polígono P 1 é igual a a) n. + b) n 1. + c) n. n 1. e) n. 8. (Fgv 013) Na figura, AC e BD são diagonais do quadrado ABCD de lado x, M e N são pontos médios de AB e BC, respectivamente. a) Calcule a área da região sombreada na figura, em função de x. b) Calcule o perímetro do quadrilátero PQRS, em função de x. 9. (Fgv 013) Um funcionário do setor de planejamento da Editora Progresso verificou que as livrarias dos três clientes mais importantes estão localizadas nos pontos A 0,0,B 1,7 e C 8,6, sendo que as unidades estão ( ) ( ) ( ) em quilômetros. a) Em que ponto P( x,y ) deve ser instalado um depósito para que as distâncias do depósito às três livrarias sejam iguais? b) Qual é a área do quadrado inscrito na circunferência que contém os pontos A,B e C? 10. (Enem 013) Um programa de edição de imagens possibilita transformar figuras em outras mais complexas. Deseja-se construir uma nova figura a partir da original. A nova figura deve apresentar simetria em relação ao ponto O. A imagem que representa a nova figura é: a) b) c) e) Página

3 11. (Ita 013) Em um triângulo de vértices A, B e C, a altura, a bissetriz e a mediana, relativamente ao vértice C, dividem o ângulo BCA ˆ em quatro ângulos iguais. Se l é a medida do lado oposto ao vértice C, calcule: a) A medida da mediana em função de l. b) Os ângulos CAB, ˆ ABC ˆ e BCA. ˆ 1. (Espm 013) Na figura abaixo, ABCD é um quadrado, BDE é um triângulo equilátero e BDF é um triângulo isósceles, onde AF = AB. A medida do ângulo α é: 14. (Enem 013) O dono de um sítio pretende colocar uma haste de sustentação para melhor firmar dois postes de comprimentos iguais a 6m e 4m. A figura representa a situação real na qual os postes são descritos pelos segmentos AC e BD e a haste é representada pelo EF, todos perpendiculares ao solo, que é indicado pelo segmento de reta AB. Os segmentos AD e BC representam cabos de aço que serão instalados. a) 10 b) 135 c) 17,5 1,5 e) 110,5 13. (Fgv 013) Na figura, ABCD é um quadrado de lado 4 cm, e M é ponto médio de CD. Sabe-se ainda que BD é arco de circunferência de centro A e raio 4 cm, e CD é arco de circunferência de centro M e raio cm, sendo P e D pontos de intersecção desses arcos. Qual deve ser o valor do comprimento da haste EF? a) 1m b) m c),4m 3m e) 6m 15. (Unesp 013) Uma semicircunferência de centro O e raio r está inscrita em um setor circular de centro C e raio R, conforme a figura. O ponto D é de tangência de BC com a semicircunferência. Se AB = s, demonstre que R s= R r+ r s. A distância de P até CB, em centímetros, é igual a a) (Unesp 013) A figura, fora de escala, representa o terreno plano onde foi construída uma casa. b) 19 5 c) e) Página 3

4 Sabe-se do quadrilátero ABEF que: Seus ângulos ABEe ˆ AFE ˆ são retos. AF mede 9 m e BE mede 13 m. o lado EF é m maior que o lado AB. Nessas condições, quais são as medidas, em metros, dos lados AB e EF? Parte II 1. (Uerj 014) Considere uma placa retangular ABCD de acrílico, cuja diagonal AC mede 40cm. Um estudante, para construir um par de esquadros, fez dois cortes retos nessa placa nas direções AE e AC, de modo que DAE ˆ = 45 e BAC ˆ = 30, conforme ilustrado a seguir: comprimentos dos dentes de ambas têm valores desprezíveis. A medida, em centímetros, do raio da engrenagem menor equivale a: a),5 b) 3,0 c) 3,5 4,0 TEXTO PARA A PRÓXIMA QUESTÃO: Após serem medidas as alturas dos alunos de uma turma, elaborou-se o seguinte histograma: Após isso, o estudante descartou a parte triangular CAE, restando os dois esquadros. Admitindo que a espessura do acrílico seja desprezível e que 3 = 1,7, a área, em cm, do triângulo CAE equivale a: a) 80 b) 100 c) (Uerj 014) Uma máquina possui duas engrenagens circulares, sendo a distância entre seus centros A e B igual a 11cm, como mostra o esquema: 3. (Uerj 014) Sabe-se que, em um histograma, se uma reta vertical de equação x= x0 divide ao meio a área do polígono formado pelas barras retangulares, o valor de x 0 corresponde à mediana da distribuição dos dados representados. Calcule a mediana das alturas dos alunos representadas no histograma. 4. (Pucrj 013) De uma folha de papelão de lados de medidas 3 e 14 foram retirados, dos quatro cantos, quadrados de lado de medida 3 para construir uma caixa (sem tampa) dobrando o papelão nas linhas pontilhadas. Sabe-se que a engrenagem menor dá 1000 voltas no mesmo tempo em que a maior dá 375 voltas, e que os a) Determine o perímetro da folha de papelão após a retirada dos quatro cantos. b) Determine a área da folha de papelão após a retirada dos quatro cantos. c) Determine o volume da caixa formada. 5. (G1 - cftrj 013) Considerando que, na figura a seguir, o quadrado ABDE e o triângulo isósceles BCD (BC=CD) têm o Página 4

5 mesmo perímetro e que o polígono ABCDE tem 7cm de perímetro, qual é a medida de BC? por dois triângulos isósceles congruentes, AMN e BMN, e por um parafuso acionado por uma manivela, de modo que o comprimento da base MN possa ser alterado pelo acionamento desse parafuso. Observe a figura: a) 15,5cm b) 16cm c) 17,4cm 18cm 6. (Ime 013) Seja um triângulo ABC. AH é a altura relativa de BC, com H localizado entre B e C. Seja BM a mediana relativa de AC. Sabendo que BH= AM= 4, a soma dos possíveis valores inteiros de BM é a) 11 b) 13 c) 18 1 e) 6 7. (Pucrj 013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Considere as seguintes medidas: AM= AN= BM= BN= 4dm; MN= xdm; AB= ydm. O valor, em decímetros, de y em função de x corresponde a: a) b) c) 16 4x 64 x 16 4x 64 x 9. (Uerj 013) Dois terrenos, A e B, ambos com a forma de trapézio, têm as frentes de mesmo comprimento voltadas para a Rua Alfa. Os fundos dos dois terrenos estão voltados para a Rua Beta. Observe o esquema: As áreas de A e B são, respectivamente, proporcionais a 1 e, e a lateral menor do terreno A mede 0 m. Calcule o comprimento x, em metros, da lateral maior do terreno B. Assumindo DE = GF = 1, EF = DG = 8 e AB = 15, a altura do triângulo ABC é: a) 35 4 b) Parte III: como cai da UFJF 1. (Ufjf 01) Em um trapézio ABCD, com lados AB e CD paralelos, sejam M o ponto médio do segmento CD e S 1 a área do triângulo BMC. c) e) (Uerj 013) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta a) Considere P o ponto de interseção do segmento AM com BD. Sabendo que a área do triângulo DPM é um quarto da área do triângulo BMC, deduza a relação existente entre a altura H do triângulo BMC relativa à base MC e altura h do triângulo DPM relativa à base MD. b) Sabendo que CD= e AB = 6, calcule a área do trapézio em função da altura H do triângulo BMC. Página 5

6 . (Ufjf 011) No retângulo ABCDmostrado na figura abaixo, E pertence ao segmento DC, M e N são os pontos médios dos segmentos AD e BC, respectivamente, F e G são os pontos de interseção do segmento MN com os segmentos EA e EB, respectivamente. 4. (Ufjf 007) Considere o paralelogramo ABCD, a seguir, de área 4 cm. Sejam M o ponto médio do segmento CD, E o ponto de interseção entre os segmentos AC e BM e AB = 8 cm. Sabendo que a área do triângulo EFG mede 5 cm e que H é um ponto do segmento MN, qual é a medida da área do triângulo ABH? a) 5 cm 15 b) cm c) 10 cm 5 5 cm e) 15 cm 3. (Ufjf 007) Na figura a seguir, encontra-se representado um trapézio retângulo ABCD de bases AB e CD, onde ADN = NDC = ACB = â. a) Calcule a altura do paralelogramo com relação à base CD. b) Encontre a área da figura plana hachurada em cinza. 5. (Ufjf 006) Seja o triângulo de base igual a 10 m e altura igual a 5 m com um quadrado inscrito, tendo um lado contido na base do triângulo. O lado do quadrado é, em metros, igual a: a) 10/3. b) 5/. c) 0/7. 15/4. e) 15/. 6. (Ufjf 006) Uma mesquita possui uma abóboda semiesférica de 4 m de raio, cujo centro dista 7 m do chão e 5 m das paredes laterais. A figura a seguir representa um corte em perfil, em que um menino, afastado 6 m da parede lateral, mirando em A, vê o ponto B na abóboda. Considere as seguintes afirmativas: I. AD NC = AN CD II. AB DN = BC AN III. DN BC = AC AD As afirmativas corretas são: a) todas. b) somente I e II. c) somente I e III. somente II e III. e) nenhuma. Considerando-se os olhos do menino a 1 m do chão e desprezando-se a espessura das paredes para o cálculo, a altura do ponto B ao chão é: (1 7) a) m. (19 7) b) m. Página 6

7 (17 7) c) m. (8 + 7) m. e) 8 m. 7. (Ufjf 006) Testes efetuados em um pneu de corrida constataram que, a partir de voltas, ele passa a se deteriorar, podendo causar riscos à segurança do piloto. Sabendo que o diâmetro do pneu é de 0,5 m, ele poderá percorrer, sem riscos para o piloto, aproximadamente: a) 93 km. b) 196 km. c) 366 km. 59 km. e) 91 km. a) 70. b) 60. c) e) (Ufjf 00) Uma janela foi construída com a parte inferior retangular e a parte superior no formato de um semicírculo, como mostra a figura a seguir. Se a base da janela mede 1, metros e a altura total 1,5 metros, dentre os valores adiante, o que melhor aproxima a área total da janela, em metros quadrados, é: 8. (Ufjf 00) Na figura a seguir, as retas r e s são perpendiculares e as retas m e n são paralelas. Então, a medida do ângulo α, em graus, é igual a: a) 1,40. b) 1,65. c) 1,85.,1. e),6. Página 7

Geometria Plana. Parte I. Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a

Geometria Plana. Parte I.  Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a Geometria Plana Parte I 1. (Fuvest 014) Uma circunferência de raio 3 cm está inscrita no triângulo isósceles ABC, no qual AB= AC. A altura relativa ao lado BC mede 8 cm. O comprimento de BC é, portanto,

Leia mais

2. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Utilize 1,7 como aproximação para 3.

2. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Utilize 1,7 como aproximação para 3. 1. A soma das medidas dos ângulos internos de um triângulo é 180º. A soma das medidas dos ângulos internos de um hexágono é: a) 180º b) 360º c) 540º d) 70º e) 900º 4. (Enem 013) Em um sistema de dutos,

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

EPUFABC Geometria I Profa. Natália Rodrigues. Lista 3 Aulas 7, 8, 9, 10.

EPUFABC Geometria I Profa. Natália Rodrigues. Lista 3 Aulas 7, 8, 9, 10. EPUFABC Geometria I Profa. Natália Rodrigues Lista 3 Aulas 7, 8, 9, 10. 1) Sabendo que a, b e c são paralelas, resolva: A. B. C D a b 2) No desenho Ao lado, as frentes para a rua A dos quarteirões I e

Leia mais

Exercícios de Revisão

Exercícios de Revisão Exercícios de Revisão Lista de Exercícios 14.05.015 1. A cerâmica constitui-se em um artefato bastante presente na história da humanidade. Uma de suas várias propriedades é a retração (contração), que

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

MATEMÁTICA. 3 o Série Prof. Tiago. Aluno (a): Nº. a) 50,24 m² b) 25,12 m² c) 12,56 m² d) 100,48 m² e) 200,96 m². a) 50m 2

MATEMÁTICA. 3 o Série Prof. Tiago. Aluno (a): Nº. a) 50,24 m² b) 25,12 m² c) 12,56 m² d) 100,48 m² e) 200,96 m². a) 50m 2 p s MATEMÁTICA o Série Prof. Tiago Lista: 01 Data: 16 / 07 / 019 Aluno (: Nº A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central. Para = 60º,

Leia mais

LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) (Eear) Duas cordas se cruzam num ponto distinto do centro da circunferência, conforme esboço. A partir do conceito de ângulo excêntrico interior, a

Leia mais

Semelhança de triângulos. 3 Exercícios para aula. 2 Casos de semelhança. 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p )

Semelhança de triângulos. 3 Exercícios para aula. 2 Casos de semelhança. 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p ) Semelhança de triângulos 1 Definição 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p ) Dois triângulos são semelhantes se os ângulos internos forem ordenadamente congruentes e

Leia mais

Matemática. 9º ano BD. Lista Extra Professor Luan Lista Extra 01 (Semelhança de triângulos)

Matemática. 9º ano BD. Lista Extra Professor Luan Lista Extra 01 (Semelhança de triângulos) 9º ano Matemática Lista Extra Professor Luan Lista Extra 01 (Semelhança de triângulos) 06. Considerando a figura abaixo, determine a medida x indicada. 01. Determine as medidas dos elementos indicados

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,

Leia mais

Grupo de exercícios II.2 - Geometria plana- Professor Xanchão

Grupo de exercícios II.2 - Geometria plana- Professor Xanchão Grupo de exercícios II. - Geometria plana- Professor Xanchão 1. (Pucrj 015) A medida da área, em círculo de raio igual a 5 cm é? a) 0 b) 5 c) 5 d) 50 e) 50 cm, de um quadrado que pode ser inscrito em um.

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188 MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA

Leia mais

DETERMINANTE Geometria Plana Lista 4 1. Considere um triângulo ABC retângulo em A, onde AB 21 e AC 20.

DETERMINANTE Geometria Plana Lista 4 1. Considere um triângulo ABC retângulo em A, onde AB 21 e AC 20. 1. Considere um triângulo ABC retângulo em A, onde AB 21 e AC 20. BD é a bissetriz do ângulo ABC. ˆ Quanto mede AD? a) 42 5 b) 21 20 c) 20 21 d) 9 e) 8 2. Pedro está construindo uma fogueira representada

Leia mais

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura.

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura. 1 Projeto Jovem Nota 10 1. (Uerj 2004) No triângulo ABC abaixo, os lados BC, AC e AB medem, respectivamente, a, b e c. As medianas AE e BD relativas aos lados BC e AC interceptam-se ortogonalmente no ponto

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o trapézio é isósceles, então BC = AD, pelo que também

Leia mais

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188 MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à 88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI 01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

2. (Ita 2016) Um triângulo está inscrito numa circunferência de raio 1cm. O seu maior

2. (Ita 2016) Um triângulo está inscrito numa circunferência de raio 1cm. O seu maior DEPARTAMENTO DE MATEMÁTICA ALUNO (A): TURMA: Nº: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 1- I UNIDADE GEOMETRIA PLANA 1. (Espcex (Aman) 016) Na figura abaixo, a circunferência de raio cm tangencia três

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

SEMELHANÇA DE TRIÂNGULOS

SEMELHANÇA DE TRIÂNGULOS SEMELHANÇA DE TRIÂNGULOS 01. Na figura as retas r, s, t e u são paralelas. Sabendo que AB = 8; BC = 9; CD = 10; CG = x; CF = y e EF = k (x + y), determine k. a) 19 8 b) 19 9 c) 1 17 d) 7 7 8 0. Na figura,

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo

Leia mais

Matemática Professor Diego. Tarefas 09 e 10

Matemática Professor Diego. Tarefas 09 e 10 Matemática Professor Diego Tarefas 09 e 10 01. (UFMA/2003) Na figura abaixo, A, B, C e D são quadrados. O perímetro do quadrado A vale 16 m e o perímetro o quadrado B vale 24 m. Calcule o perímetro do

Leia mais

a) 64. b) 32. c) 16. d) 8. e) 4.

a) 64. b) 32. c) 16. d) 8. e) 4. GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)

Leia mais

2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro

2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro 1. (G1 - cps 016) A erosão é o processo de desgaste, transporte e sedimentação das rochas e, principalmente, dos solos. Ela pode ocorrer

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro

2ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro ª. Lista de Revisão Geometria Plana Prof. Kátia Curso SER - Poliedro 1. (G1 - cps 016) A erosão é o processo de desgaste, transporte e sedimentação das rochas e, principalmente, dos solos. Ela pode ocorrer

Leia mais

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE

LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE 1) Na figura, a circunferência de centro O está inscrita no triângulo ABC. A medida do ângulo inscrito x é: A) 126º B) 63º C) 62º D) 54º E) 108º 2) O triângulo

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

Congruência de triângulos

Congruência de triângulos Congruência de triângulos 1 o Caso: Se dois triângulos têm ordenadamente congruentes dois lados e o ângulo compreendido, então eles são congruentes. (LAL) 2 o Caso: Se dois triângulos têm ordenadamente

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe

Leia mais

QUESTÕES TRIÂNGULO RETÂNGULO

QUESTÕES TRIÂNGULO RETÂNGULO QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Programa Olímpico de Treinamento. Aula 5. Curso de Geometria - Nível 2. Problemas OBM - 1 Fase. Prof. Rodrigo Pinheiro

Programa Olímpico de Treinamento. Aula 5. Curso de Geometria - Nível 2. Problemas OBM - 1 Fase. Prof. Rodrigo Pinheiro Programa Olímpico de Treinamento Curso de Geometria - Nível 2 Prof. Rodrigo Pinheiro Aula 5 Problemas OBM - 1 Fase Problema 1. Dois espelhos formam um ângulo de 0 no ponto V. Um raio de luz, vindo de uma

Leia mais

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação)

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) 1. (Utfpr) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base. Se em um triângulo

Leia mais

PA = 1,2 m. Após uma tacada na bola, ela se

PA = 1,2 m. Após uma tacada na bola, ela se 1. (Unifor 014) Sobre uma rampa de m de comprimento e inclinação de 0 com a horizontal, devem-se construir degraus de altura 0cm. Quantos degraus devem ser construídos? a) 4 b) c) 6 d) 7 e) 8. (Efomm 016)

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a 13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a

Leia mais

MATEMÁTICA. Módulo 19. Frente IV -Caderno 05. Áreas dos Polígonos Regulares. Página 167

MATEMÁTICA. Módulo 19. Frente IV -Caderno 05. Áreas dos Polígonos Regulares. Página 167 MATEMÁTICA Frente IV -Caderno 05 Módulo 19 Áreas dos Polígonos Regulares Página 167 APÓTEMA apótema édefinido como a distância entre o centro de um polígono regular e o ponto médio de qualquer lado, ou

Leia mais

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1 A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade O quadrilátero ABCD,

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 09 EXERCÍCIOS 01) Uma sala retangular medindo m por 4,25 m deve ser ladrilhada com ladrilhos quadrados iguais.

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida

Leia mais

Apresente suas soluções de forma clara, indicando, em cada caso, o raciocínio que conduziu à resposta. Exercício 1. Exercício 2. Exercício 3.

Apresente suas soluções de forma clara, indicando, em cada caso, o raciocínio que conduziu à resposta. Exercício 1. Exercício 2. Exercício 3. OBMEP na Escola 2017 Polo CPII Campus Niterói Professor Fábio Vinícius Lista de Exercícios do Encontro 1 da 2ª semana do Ciclo 3 Nível 3 Geometria Conteúdo: Ângulo, triângulo, quadrilátero (paralelogramos

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

20/12/2017 ATIVIDADE DE AVALIAÇÃO FINAL

20/12/2017 ATIVIDADE DE AVALIAÇÃO FINAL Geometria Gilberto Gualberto 9º 0/1/017 ATIVIDADE DE AVALIAÇÃO FINAL 1. A figura abaixo apresenta duas circunferências concêntricas, uma de raio m e outra de raio 4 m. Calcule a área da parte hachurada

Leia mais

Exercícios sobre Estudo dos Polígonos

Exercícios sobre Estudo dos Polígonos Exercícios sobre Estudo dos Polígonos Material de apoio do Extensivo 1. (Uerj) Ao observar, em seu computador, um desenho como o apresentado a seguir, um estudante pensou tratar-se de uma curva. Porém,

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98/99 1ª P A R T E - MATEMÁTICA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98/99 1ª P A R T E - MATEMÁTICA 21 1ª P A R T E - MATEMÁTICA ITEM 01. O produto do MMC entre 30, 60 e 192 pelo MDC entre 144, 180 e 640 pode ser expresso por 2 a x 3 x 5. O valor do expoente a é a.( ) 1 b.( ) 2 c.( ) 4 d.( ) 6 e.( )

Leia mais

CADERNO DE EXERCÍCIOS 9

CADERNO DE EXERCÍCIOS 9 MATEMÁTICA Capítulo 1 Triângulo Retângulo e Triângulo Qualquer Nível 01 Os observadores A e B vêem um balão sob ângulos de 0º e 45º, como mostra a figura. Sabendo-se que a distância entre eles é de 100m,

Leia mais

Disciplina: Matemática Data da entrega: 31/03/2015.

Disciplina: Matemática Data da entrega: 31/03/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções

Leia mais

Geometria Gilberto Gualberto 9º 21/12/2016 ATIVIDADE DE AVALIAÇÃO FINAL. Geometria - 9 Ano- Prof Gilberto Gualberto

Geometria Gilberto Gualberto 9º 21/12/2016 ATIVIDADE DE AVALIAÇÃO FINAL. Geometria - 9 Ano- Prof Gilberto Gualberto Geometria Gilberto Gualberto 9º 1/1/016 ATIVIDADE DE AVALIAÇÃO FINAL Geometria - 9 Ano- Prof Gilberto Gualberto 1. Uma folha de papel retangular foi dobrada como mostra a figura abaixo. De acordo com as

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 019 Valor: xx,x pontos Aluno(a): Nº: Turma: QUEST 1 (UFG) Observe a figura: Nessa figura, o segmento

Leia mais

A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d)

A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d) 1 Para confeccionar uma bandeirinha de festa junina, utilizou-se um pedaço de papel com 10 cm de largura e 15 cm de comprimento, obedecendo-se às instruções abaixo 1 Dobrar o papel ao meio, Dobrar a ponta

Leia mais

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

3º Bimestre. Geometria. Autor: Leonardo Werneck

3º Bimestre. Geometria. Autor: Leonardo Werneck 3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 POLÍGONOS REGULARES INSCRITOS E CIRCUNSCRITOS NA CIRCUNFERÊNCIA... 4 1. Polígono Regular Inscrito na Circunferência... 4. Polígono Regular Circunscrito

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Quadriláteros. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Quadriláteros. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte 3 Quadriláteros. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte 3. Quadriláteros. 1 Exercícios Introdutórios Exercício

Leia mais

Roteiro Recuperação Geometria 3º trimestre- 1º ano

Roteiro Recuperação Geometria 3º trimestre- 1º ano Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num

Leia mais

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional

Leia mais

1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2

1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2 UFF - Universidade Federal Fluminense Instituto de Matemática GGM - Departamento de Geometria Professora: Andréa 2 o semestre de 2018 Atividades IV de Geometria I 1. Com base nos dados da Figua 1, qual

Leia mais

Trigonometria. Parte I. Página 1

Trigonometria. Parte I.  Página 1 Trigonometria Parte I 1 (Uerj 01) Um esqueitista treina em três rampas planas de mesmo comprimento a, mas com inclinações diferentes As figuras abaixo representam as trajetórias retilíneas AB= CD= EF,

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

1 a Lista de Exercícios MAT 105 Geometria Analitica

1 a Lista de Exercícios MAT 105 Geometria Analitica 1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo

Leia mais

GEOMETRIA: POLÍGONOS

GEOMETRIA: POLÍGONOS Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente

Leia mais

Áreas IME (A) (B) (C) (D) 104 (E) e 2

Áreas IME (A) (B) (C) (D) 104 (E) e 2 Áreas IME 1. (IME 010) Seja ABC um triângulo de lados AB, BC e AC iguais a 6, 8, e 18, respectivamente. Considere o círculo de centro O isncrito nesse triângulo. A distância AO vale: 104 (A) 6 104 (B)

Leia mais

Exercício 2. Na figura abaixo, determine as medidas de x e y,

Exercício 2. Na figura abaixo, determine as medidas de x e y, OBMEP na Escola 2017 Polo CPII Campus Niterói Professor Fábio Vinícius Lista de Exercícios do Encontro 1 da 2ª semana do Ciclo 5 Nível 3 Geometria Conteúdo: Teorema de Tales, Semelhança de triângulos,

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais