Circuitos de Corrente Alternada I

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Circuitos de Corrente Alternada I"

Transcrição

1 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Circuits de Crrente Alternada I Nesta prática, estudarems circuits de crrente alternada e intrduzirems a ntaçã cmplexa para análise ds mesms. Em particular, estudarems as curvas de tensã versus crrente para resistres, indutres e capacitres submetids a tensões alternadas. Estudarems também s circuits C e L e sua utilizaçã cm filtrs de freqüências. Sempre que surgir uma dúvida quant à utilizaçã de um instrument u cmpnente, alun deverá cnsultar prfessr para esclareciments. I. Definições gerais Ns circuits de crrente cntínua, a resistência elétrica é a única grandeza que expressa impediment a passagem da crrente elétrica. Em crrente alternada, existem utrs efeits além d resistiv que influenciam a passagem de crrente n circuit; pr exempl, a indutância quand circuit cntém bbinas, u a capacitância quand circuit cntém capacitres. Deste md, a razã tensã/crrente em um circuit de crrente alternada nã depende apenas das resistências elétricas d mesm. Pr esse mtiv, a razã entre tensã e crrente em um circuit de crrente alternada recebe um utr nme: impedância, um term que fi prpst pr Oliver Heaviside em Heaviside deu grandes cntribuições à teria eletrmagnética, tend refrmulad as equações de Maxwell na ntaçã vetrial mderna. As cntribuições de Heaviside também incluem cálcul vetrial, métds de resluçã de equações diferenciais e teria de circuits elétrics e linhas de transmissã, além de ter intrduzid utrs terms cm indutância, cndutância e eletrets. A impedância de um circuit é cmpsta de três cmpnentes: Z : cmpnente resistiva da impedância u simplesmente resistência (); Z C : cmpnente capacitiva da impedância u reatância capacitiva (X C ); Z L : cmpnente indutiva da impedância u reatância indutiva (X L ); Uma utra grandeza imprtante na descriçã de circuits de crrente alterna é a freqüência das tensões e crrentes d circuit. A freqüência linear é medida em Hertz 1

2 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I (Hz) e é igual a númer de cicls pr segund; seu símbl é usualmente f. A freqüência angular é medida em rad / s e é igual a taxa de variaçã da fase da crrente; seu símbl é nrmalmente ω. A relaçã entre as duas é: ω π f (1) II. Circuits esistivs, Capacitivs u Indutivs Na prática, é impssível bter circuits de crrente alternada cm características puramente resistivas, indutivas u capacitivas. Mesm assim é didátic tratar esses cass ideais, para se ter uma idéia de seu cmprtament. Neste cas, tratament pde ser feit através de equações diferenciais simples. As características previstas individualmente sã mantidas quand tratarms de circuits que cntenham cmbinações desses elements. a) Circuit Puramente esistiv Anterirmente, estudams s efeits da tensã e da crrente cntínua em resistres. Agra vams estudar um resistr submetid a uma fnte de tensã alternada da frma cs( ω t + δ ), cm na figura 1. Figura 1 Esquema elétric de um circuit puramente resistiv. Ohm: A crrente que flui através d resistr pde ser calculada utilizand-se a lei de I cs( ωt + δ ) I cs( ωt + δ ) ()

3 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Neste cas, bservams que tensã e crrente variam cssenidalmente n temp, e nã existe diferença de fase entre ambas. A amplitude da crrente, I, é dada simplesmente pr /. A ptência instantânea dissipada n resistr é dada pr: P I ωt + δ cs ( ) (3) pr: O valr médi da ptência dissipada em um u mais períds cmplets é dad P med T 1 1 t dt T cs ( ω + δ ) (4) Na equaçã 4, T representa um u mais períds cmplets. ems dessa equaçã que a ptência média é diferente de zer para qualquer valr ω, ist é, independentemente da freqüência um resistr sempre dissipa a mesma ptência elétrica em um circuit nde tensã e crrente variam n temp. A impedância d circuit, em módul, é dada pela razã entres s valres de pic da tensã ( ) e da crrente (I ): Z I (5) Prtant, neste cas a impedância é simplesmente a resistência d circuit. b) Circuit Puramente Capacitiv: Na figura mstrams um capacitr submetid a uma diferença de ptencial da frma cs( ωt + δ ). A carga acumulada n capacitr é Q Q cs( ωt + δ ), nde Q C. 3

4 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I I δ ~ + - C + - Q Figura Esquema elétric de um circuit puramente capacitiv. A crrente I que flui através d circuit pde ser calculada da seguinte frma: dq I ωc sin( ωt + δ ) I cs( ωt + δ + π / ) dt (6) Neste cas, bservams que tensã e crrente variam n temp, mas estã fra de fase pr um ângul de 90 (π/ rad). Em um circuit puramente capacitiv a crrente é adiantada em relaçã à tensã (u seja, pic de crrente crre antes d pic de tensã) e tem amplitude dada pr I ωc. Nte que esse cmprtament é de fat esperad, pis assim que capacitr descarregad é ligad n circuit a crrente é máxima e a tensã é mínima (pis capacitr está descarregad) e à medida que temp passa a crrente diminui e a tensã aumenta (a carga vai se acumuland nas placas d capacitr) e depis de um cert temp a crrente é zer e a tensã é máxima (capacitr carregad). A ptência dissipada neste circuit é dada pr: P I C cs( ωt + δ ).sin( ωt + δ ) (7) A ptência média é: P med T C sin( ) cs( ) ω t + δ ωt + δ dt C sin( + ) 0 ωt δ dt T T T (8) A ptência média dissipada em um circuit puramente capacitiv é sempre nula, para qualquer valr de ω. Em utras palavras, um capacitr nã dissipa ptência; ele 4

5 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I armazena energia (em frma de energia eletrstática) durante uma parte d cicl para frnecê-la durante a utra parte, de md que flux médi é nul. A impedância d circuit, em módul, é dada pela razã entre s valres máxims de tensã ( ) e de crrente (I ), u seja: Z X C I 1 ωc (8) A impedância capacitiva (u reatância capacitiva) é inversamente prprcinal à freqüência da tensã alternada. N limite de tensã cntínua, vai a infinit, que significa que nã há crrente. De fat, quand um capacitr é ligad a uma fnte de tensã cntínua, ele se carrega (usualmente de frma rápida) até a tensã da fnte e a crrente deixa de circular. c) Circuit Puramente Indutiv: Na figura 3 mstrams um indutr submetid a uma frça eletrmtriz da frma cs( ω t + δ ). A diferença de ptencial sbre um indutr pde ser escrita cm: di L cs( ω t + δ ) dt (9) I + δ ~ L Figura 3 Esquema elétric de um circuit puramente indutiv. A crrente I que flui através d circuit pde ser calculada da seguinte frma: I π t + dt t + + C I t + + C L cs( ω δ ) sin( ω δ ) cs( ω δ ) ωl (10) 5

6 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I A tensã e a crrente variam peridicamente n temp, e estã fra de fase pr um ângul de 90. Entretant, n cas d circuit puramente indutiv a crrente é atrasada em relaçã à tensã. Esse resultad pde ser cmpreendid qualitativamente se lembrarms que a frça cntra eletrmtriz n indutr é prprcinal a taxa de variaçã da crrente n temp (lei de Faraday-Lenz). Quand indutr é ligad a circuit ele se cmprta cm um curt-circuit (estams desprezand efeit resistiv) e a crrente tende a aumentar rapidamente (máxima taxa de variaçã) e imediatamente aparece uma tensã ns terminais d indutr (frça cntra-eletrmmtriz) de md a impedir que a crrente se estabeleça. À medida que temp passa a frma eletrmtriz da fnte faz cm que a crrente vai se estabelecend de frma mais lenta e a tensã n indutr vai diminuind até que a crrente atinja um valr que equilíbri e a tensã ns terminais d indutr seja nula. O pic de máxima tensã n indutr crre antes da máxima crrente e, prtant, a tensã está adiantada em relaçã a crrente. Cm n cas d circuit puramente capacitiv, a ptência média dissipada n circuit é nula para qualquer valr de ω. O indutr armazena energia (em frma magnética) durante uma parte d cicl e frnece essa energia na utra parte d cicl. A impedância d circuit é, em módul, a razã entre e I, u seja: Z X L I ωl (11) A impedância de um circuit puramente indutiv cresce cm a freqüência, e vai a zer em circuits de crrente cntínua. De fat, cm nesses circuits a crrente nã varia, a tensã sbre indutr é nula. Um indutr real (bbina) é cmpst pr muitas vltas de fis enrlads e pssui, além da indutância, uma resistência. Assim, cstuma-se dizer que na prática tda indutância vem sempre acmpanhada de uma resistência. Prém essa afirmaçã nã é ttalmente verdadeira, já que hje existem materiais que em baixa temperaturas pdem atingir estad supercndutr e ter resistência elétrica nula. Em utras palavras uma bbina feita de um material supercndutr é um indutr pur, u seja, cnverte energia elétrica em energia magnética da frma mais eficiente pssível. Iss pde 6

7 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I parecer a princípi uma idealizaçã sem muita aplicaçã, mas, de fat, ns equipaments de ressnância magnética nuclear, cmuns em hspitais hje em dia, a geraçã d alt camp magnétic necessári a experiment (u exame clínic, n cas) é feita através de um slenóide feit de material supercndutr, justamente para aprveitar essa máxima eficiência na cnversã de energia elétrica em energia magnética. III. A ntaçã cmplexa Na análise de circuits de crrente alternada, é bastante útil usar frmalism da impedância cmplexa, que usa as prpriedades das expnenciais imaginárias para simplificar a análise de prblemas que envlvem valres (tensões e crrentes) que variam senidalmente. A grande vantagem é que as equações diferenciais lineares transfrmam-se facilmente em equações rdinárias. Em tds s cass, valr de fat das tensões e crrentes (valr que pde ser medid em um experiment) é a parte real d númer cmplex. Na ntaçã cmplexa, tensã e crrente alternadas senidais sã expressas cm: i t ( t) e ω (1a) i t I( t) I e ω (1b) e I pdem assumir valres cmplexs. O cnceit de impedância também pde ser generalizad na ntaçã cmplexa, cm send a razã entre s valres cmplexs da tensã e da crrente. O resultad é em geral um númer cmplex, cuj módul é igual à impedância real (razã entre s valres de pic) e argument é igual à diferença de fase entre a crrente e a tensã (psitiv se a tensã fr adiantada cm relaçã à crrente). N cas de um resistr, a tensã e a crrente estã em fase, lg a impedância cmplexa é um númer real, igual à impedância real: 7

8 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Z (13) N cas d capacitr, a crrente é adiantada de 90º em relaçã à tensã, lg a impedância cmplexa está n eix imaginári negativ. Seu módul é dad pela equaçã 8. Prtant: Z C i ix C ωc (14) N cas d indutr, a crrente é atrasada de 90º em relaçã à tensã, lg a impedância cmplexa está n eix imaginári psitiv, cm módul dad pela equaçã 11. Prtant: Z ix iω L (15) L L I. Circuits C e L série Na análise ds circuits esquematizads na figura 4a e 4b, utilizarems frmalism da impedância cmplexa. ams assumir que s circuits sã alimentads pr uma fnte de tensã senidal da frma ( t) cs( ωt), que na ntaçã cmplexa i t se escreve ( t) e ω. A crrente que atravessa circuit é também senidal, e dada i t pr I ( t) Ke ω. (a) (b) (t) (t) (t) ~ ~ C C (t) (t) (t) L Figura 4: Circuits de crrente alternada. (a) C; (b) L 8

9 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Para circuit C, utilizand a lei de Kirchhff, pdems escrever: ( t) + C (16) As tensões n resistr e n capacitr sã dadas pr: i t I( t) Ke ω (17) C Q I( t). dt e C C iωc 1 K i ω. t (18) Substituind na equaçã 16 e canceland a expnencial que é cmum a tds s terms, btems: K. K + i ω C (19) Iss permite determinar K: K 1 i ωc (0) crrente: A impedância cmplexa é a razã entre s valres cmplexs da tensã e da Z I K 1 i ωc (1) O módul da impedância, que é a razã entre s valres de pic da tensã e da crrente, é módul desse valr: 9

10 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Z 1 + ωc () N circuit L, figura 4b, a tensã sbre indutr é dada pr: di L L ωlke dt iωt (3) A tensã ttal é dada pr ( t) +. Lg: L K + iωlk (4) Lg: K + iωl (5) A impedância cmplexa e seu módul sã, prtant: Z + iω. L (6) Z + ( ωl) (7) Cm frmalism de impedâncias cmplexas a análise ds circuits de crrente alternada fica muit parecida cm tratament dads as circuits de crrente cntínua. D mesm md que uma cmbinaçã de resistres em série e em paralel pde ser representada pr um únic resistr equivalente, um circuit cntend uma cmbinaçã arbitrária de resistres, indutres e capacitres pde ser representad pr uma impedância ttal Z. As equações 1 e 6 mstram que a impedância cmplexa equivalente de cmpnentes ligads em série é a sma das impedâncias cmplexas individuais, cm acntece cm as resistências em circuits de crrente cntínua. Da 10

11 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I mesma frma, a regra de assciaçã de impedâncias cmplexas em paralel é idêntica à das resistências. N entant, devems ressaltar que: O frmalism de impedância cmplexa é útil para tratar relações lineares, cm, pr exempl, uma equaçã de malha, mas nã pde ser usad quand as relações nã sã lineares, cm n cálcul de ptência. O frmalism de impedância cmplexa pde ser aplicad diretamente a circuits cm geradres de nda senidal, mas nã a circuits cm geradres de utr tip de nda.. Filtrs C ( passa-alta ) e L ( passa-baixa ) Os circuits L e C pssuem prpriedades muit interessante quant analisad cm funçã da freqüência. Esses circuits funcinam cm filtrs elétrics e sã utilizads em instalações elétricas e equipaments eletrônics para rejeitar ruíd e para prtegê-ls, pr exempl, cntra transientes induzids pela queda de rais durante as trmentas. De md geral um filtr pde ser representad cm um circuit cm dis terminais de entrada e dis de saída, cm na figura 5. Filtr s Figura 5 epresentaçã de um Filtr elétric Td filtr é caracterizad pr uma funçã de transferência, T(ω), definida cm send quciente entre a tensã (cmplexa) ns terminais de saída pela tensã (cmplexa) ns terminais da entrada: s ( s ) T( ω) ( ) max max e iφ (8) 11

12 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I O módul da funçã de transferência é a razã entre s valres de pic da tensã ns terminais de saída e entrada; argument é a diferença de fase entre eles (psitiv se a saída estiver adiantada em relaçã à entrada). a) Filtr C (u passa-alta ) A assciaçã em série de um resistr e um capacitr (mstrad na figura 4a) frma um circuit simples, prém de muita utilidade. Neste circuit, bserva-se um cmprtament característic da tensã n resistr ( ) em funçã da freqüência. Cnsiderand que a saída d filtr está ns terminais d resistr, a funçã de transferência pde ser escrita da seguinte frma: T ( ω) Z i ωc (9) O módul da funçã de transferência é: T ( ω) ωc (30) Para altas freqüências ( ω >> 1/ C ), a tensã de é aprximadamente igual à tensã de entrada d geradr ( ). Em baixas freqüências, é menr que a tensã de entrada. Lg este circuit privilegia a passagem de crrentes alternadas cm altas freqüências, send pr iss cnhecid cm filtr passa-alta. Na freqüência ω 1/ C, metade da ptência frnecida é atenuada pel circuit, e pr iss esse valr é denminad freqüência de meia-ptência. A funçã de transferência pde ser escrita em terms dessa freqüência: T ( ω) 1+ 1 ( ω / ω) (31) 1

13 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I A funçã de transferência é definida em term das tensões. Em algumas aplicações, é mais interessante pensar em terms de ptência. Para uma dada carga que será alimentada pela saída d filtr, a ptência é prprcinal a quadrad da tensã. Prtant, a razã entre as ptências é igual a quadrad da funçã de transferência. b) Filtr L (u passa-baixa ) Da mesma frma, a assciaçã em série de um resistr e um indutr, figura 4b, frma um utr circuit de grande utilidade. Neste cas a funçã de transferência pde ser escrita cm: T ( ω) Z 1 ωl 1+ i (3) O módul da funçã de transferência é: T ( ω) 1 ωl 1+ (33) Neste circuit, a tensã é aprximadamente igual a tensã a baixas freqüências ( ω << / L ). Em altas freqüências a tensã sbre a resistência (u seja, a crrente) é atenuada e pr iss filtr é denminad filtr passa-baixa. A freqüência ω L é a freqüência de meia-ptência, cm n filtr C. Esta freqüência pde ser / adtada cm a freqüência de crte d filtr. A funçã de transferência pde ser escrita em terms dessa freqüência: T ( ω) 1+ 1 ( ω / ω ) (34) 13

14 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Na figura 6a, há gráfic da funçã de transferência para s filtrs C e L. Na figura 6b, há um gráfic de ptência, que é igual a quadrad da funçã de transferência. Nte n gráfic d quadrad da funçã de transferência que, quand T(ω) 0.5 ω ω 0, justificand a denminaçã freqüência de meia ptência. (a) (b) T(ω) 0.4 T(ω) 0.4 Filtr L (passa-baixas) Filtr C (passa-altas) 0. Filtr L (passa-baixas) Filtr C (passa-altas) ω /ω 0 ω/ω 0 Figura 6 espsta de filtrs C e L em funçã da freqüência. (a) Funçã de transferência. (b) elaçã entre ptência de saída e ptência de entrada. Os filtrs C e L sã muit usads cm filtrs de freqüência em várias aplicações; um exempl é ns sistemas de sm cm várias caixas. A caixa mair, chamada de wfer, executa melhr s sns graves (de baixa freqüência), e a caixa menr ( twitter) executa melhr s aguds (de alta freqüência). O sinal que vai para wfer passa pr um filtr passa-baixas (L), e sinal que vai para twitter passa pr um filtr passa-altas (C). O resultad é que cada caixa reprduz apenas a faixa de freqüências para a qual seu desempenh é melhr, que melhra a qualidade d sm. 14

15 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Experiments Para quantificar cmprtament instantâne de tensões e crrentes que variam n temp, utilizarems um scilscópi. Prtant, preste muita atençã na ligaçã d scilscópi para que s cabs terra estejam sempre ligads n mesm pnt d circuit. 1. Curva xi de resistres, capacitres e indutres Nesta parte da prática estarems interessads em caracterizar cmprtament instantâne das curvas de tensões cm funçã da crrente (curvas xi) para resistres, indutres e capacitres. a) Utilizarems um scilscópi e um geradr de funções para medir a curva xi de resistres, capacitres e indutres em regime de crrente alternada. Para iss, use a mntagem da figura 7, cm scilscópi n md X-Y. N canal 1 (eix hrizntal), vcê deverá medir a crrente, a mens de um fatr de escala (lembre-se que, em um resistr, I / ); n canal (eix vertical), vcê deverá medir a tensã sbre cmpnente. Oscilscópi ~ X Canal 1 Canal (x) (y) Figura 7 Circuit utilizad para medir a curva -I característica de cmpnentes eletrônics. b) Clque um resistr de 1 kω e ajuste geradr de sinais para um sinal senidal de máxima amplitude e freqüência de cerca de 1 khz. c) Cnfigure scilscópi n md X-Y, ambs s canais em 5 /div e acplament DC e canal invertid (justifique prquê em seu relatóri). d) Clque um resistr n lugar d cmpnente X e bserve a curva xi na tela d scilscópi. arie a freqüência da fnte (de alguns Hz até dezenas de khz) e descreva que acntece cm a curva. cê deverá bservar uma reta cm mesm ceficiente angular em qualquer freqüência. Determine ceficiente angular e explique esse resultad. 15

16 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I e) Clque um capacitr de 0, µf n lugar d cmpnente X e bserve a curva xi na tela d scilscópi. arie a freqüência da fnte (desde alguns Hz até dezenas de khz) e descreva cm é a curva bservada e seu cmprtament cm funçã da freqüência. Frmule matematicamente prblema de md a prever tip de curva bservada e cmprtament cm funçã da freqüência. f) Clque um indutr de 44 mh n lugar d cmpnente X e bserve a curva xi na tela d scilscópi. arie a freqüência da fnte (desde alguns Hz até dezenas de khz) e descreva que acntece cm a curva. Frmule matematicamente prblema de md a prever tip de curva bservada e cmprtament cm funçã da freqüência.. Filtr C (passa-alta) Nesta parte da prática estarems interessads em verificar cmprtament das curva de transferência de filtrs passa-alta. a) Mnte circuit C mstrad na figura 8, cm 1 kω e C 0, µf. Ajuste geradr de funções para bter um sinal senidal de freqüência 1 khz cm amplitude máxima. ~ CH 1 CH Filtr C Figura 8 Circuit para determinar a curva característica de um filtr C b) Utilizand s dis canais d scilscópi, levante a curva da funçã de transferência d circuit, u seja, meça valr da tensã n geradr ( ) e na resistência ( ), em funçã da freqüência e faça um gráfic de / em funçã da 16

17 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I freqüência. Meça também valr da tensã n capacitr ( C ) Obs: durante tda a medida verifique valr da tensã (nã assuma que ele será mesm sempre). Certifique-se que s cabs de terra ds dis canais d scilscópi estejam cnectad n mesm pnt d circuit. Para medir a tensã sbre capacitr e resistr, ajuste scilscópi para visualizaçã de um canal, cm acplament DC. Para medir a tensã fnte, vcê pde usar md Add cm canal invertid (prque a fnte está ligada entre s terminais psitivs de cada canal); Utilize a mesma escala vertical para ambs s canais d scilscópi. c) Faça um gráfic de / e C / em funçã da freqüência. Uma sugestã é variar de 50 Hz até khz. d) Faça um gráfic da ptencia dissipada em cm funçã da freqüência e,cm esses dads, determine a freqüência de crte d filtr e cmpare cm valr esperad ω 0 1 C. 3. Filtr L (passa-baixas) Nesta parte da prática estarems interessads em verificar cmprtament das curva de transferência de filtrs passa-baixa. a) Mnte circuit L, utilizand 1 kω e L 44 mh. O circuit está mstrad na figura 9. ~ CH 1 CH L Filtr L Figura 9 Circuit para determinar a curva característica de um filtr L 17

18 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I b) Prceda da mesma maneira que n experiment anterir. Faça um gráfic de / e L / em funçã da freqüência. Uma sugestã é variar de 100 Hz até 0 khz. c) Faça um gráfic da ptencia dissipada em cm funçã da freqüência e, cm esses dads, determine a freqüência de crte d filtr, e cmpare cm valr esperad ω / L. Funçã de transferência de um filtr C ω/π (Hz) () () C () Funçã de transferência de um filtr L 18

19 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I ω/π (Hz) () () L () 19

20 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Apêndice Frmulaçã d Mdel de Drude para crrentes alternadas O mdel de Drude é um mdel teóric permite prever e calcular as prpriedades elétricas de materiais. Há várias maneiras de frmular mdel; em uma delas, faz-se a hipótese de que sbre s elétrns age, além da frça elétrica, uma frça de arrast prprcinal a sua velcidade. Iss nã entra em cntradiçã cm a hipótese de elétrn só interagir cm a rede de íns de fund durante as clisões prque que cnta é cmprtament médi ttal ds elétrns. Cm essa hipótese, a equaçã de mviment é: dv m dt m ee γv m (A1) Essa é uma equaçã diferencial de primeira rdem, linear e nã-hmgênea na variável v m, que é a velcidade média ds elétrns. Ela admite uma sluçã estacinária (v m cnstante n temp) se E fr cnstante também: v m ee γ (A) A crrente que atravessa um fi de seçã transversal A e cmpriment L é: I neav m ne AE γ (A3) Lembrand que E / L, escrevems: I ne A (A4) γ L ems entã que a hipótese da frça de arrast prprcinal à velcidade tem cm cnseqüência que a crrente é prprcinal a diferença de ptencial, à área e 0

21 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I inversamente prprcinal a cmpriment d fi, que fi demnstrad experimentalmente pr Ohm. A resistência desse cndutr é: γ I ne L A (A5) A resistividade d material é: γ ρ ne (A6) A grande vantagem dessa frmulaçã é que ela permite também cnsiderar cas de crrente alternada, quand camp elétric varia senidalmente n temp. Nesses cass, a equaçã A1 deve ser reslvida assumind um camp elétric da frma: E E cs( ωt) (A8) Para facilitar a resluçã, vams utilizar a ntaçã cmplexa e permitir que camp elétric e a velcidade ds elétrns assumam valres cmplexs. O camp elétric é escrit entã cm uma expnencial imaginária: E E exp( iωt) (A9) A sluçã particular a ser prcurada deve ter a mesma dependência tempral d camp elétric: v m v exp( iωt) (A10) Substituíms A1 em A1 e reslvems para v : 1

22 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I v ee γ + imω (A11) A diferença entre essa expressã e a A é que denminadr γ fi substituíd pr γ + imω (que vale γ n cas de crrente cntínua). Seguind s passs que levaram da A até a A6, resultad é: I ne A ( γ + imω). L (A1) A impedância d fi cndutr vale: Z γ I ne L mω L + i A ne A (A13) ems entã que a impedância de um cndutr tem uma parte real cnstante e uma parte imaginária prprcinal à freqüência. O primeir term tem a frma da impedância de uma resistência, enquant segund tem a frma da impedância de uma indutância. Em utras palavras, td cndutr é igual à assciaçã de um resistr cm um indutr. A resistência e indutância características sã: γ ne L A (A15) L m ne L A (A16) Cm era esperad, valr da resistência é mesm que fi calculad n cas de crrente cntínua. Da mesma frma que fi definida a resistividade, também definims a indutividade e a impeditividade de um material. Para pder ter uma idéia d efeit indutiv d fi retilíne, vams calcular a razã entre a reatância indutiva e a resistência d fi:

23 Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I X L ω L ω (A16) γ / m Na freqüência ω γ / m, a reatância indutiva e a resistência tem mesm valr. Ns cndutres metálics, valr típic de γ / m é da rdem de s -1. Assim, mesm a freqüências relativamente altas de 100 MHz, a reatância indutiva é várias rdens de grandeza menr que a resistência, e pde certamente ser desprezada. 3

Roteiro-Relatório da Experiência N o 3 RESSONÂNCIA SÉRIE E SELETIVIDADE

Roteiro-Relatório da Experiência N o 3 RESSONÂNCIA SÉRIE E SELETIVIDADE Rteir-Relatóri da Experiência N 3 1. COMPONENTES DA EQUIPE: AUNOS NOTA 1 3 4 Prf.: Cels Jsé Faria de Araúj 5 Data: / / : hs. OBJETIVOS:.1. Nesta experiência será mntad um circuit RC série ressnante, a

Leia mais

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

M.Sc. Jose Eduardo Ruiz Rosero 1. ENG1116 Tópicos especiais Energia solar

M.Sc. Jose Eduardo Ruiz Rosero 1. ENG1116 Tópicos especiais Energia solar 1 ENG1116 Tópics especiais Energia slar M.Sc. Jse Eduard Ruiz Rser 2 Ementa Cnquistas e desafis da energia slar Cnceits básics Radiaçã slar Física das células slares Célula slar Cmpnentes de um sistema

Leia mais

Aula 03 Circuitos CA

Aula 03 Circuitos CA Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Elements de Circuits n dmíni de Fasres Intrduçã Para cmpreender a respsta de dispsitivs básics

Leia mais

Análise de Circuitos em Regime Forçado Sinusoidal

Análise de Circuitos em Regime Forçado Sinusoidal Teria ds Circuits e Fundaments de Electrónica Análise de Circuits em egime Frçad Sinusidal Teresa endes de Almeida TeresaAlmeida@ist.utl.pt DEEC Área Científica de Electrónica T..Almeida ST-DEEC- ACElectrónica

Leia mais

Sistemas Elétricos de Potência 1 Lista de Exercícios No. 1 Revisão de Circuitos em Corrente Alternada

Sistemas Elétricos de Potência 1 Lista de Exercícios No. 1 Revisão de Circuitos em Corrente Alternada Sistemas Elétrics de Ptência Lista de Exercícis N. Revisã de ircuits em rrente lternada Parte : Ptência em Sistemas Mnfásics. Duas cargas em paralel cnsmem respectivamente 20 W cm um fatr de ptência de

Leia mais

Lista de exercícios Conceitos Fundamentais

Lista de exercícios Conceitos Fundamentais Curs: Engenharia Industrial Elétrica Disciplina: Análise Dinâmica Prfessr: Lissandr Lista de exercícis Cnceits Fundamentais 1) Em um circuit trifásic balancead a tensã V ab é 173 0 V. Determine tdas as

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

Capacitância e Capacitores

Capacitância e Capacitores Nessa prática, farems um estud sbre capacitres. erá intrduzid cnceit de capacitância e estudarems as leis de carga e descarga de capacitres, bem cm as regras de assciaçã desses elements de circuit. empre

Leia mais

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)...

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)... Questã 46 A partir de um bjet real de altura H, dispst verticalmente diante de um instrument óptic, um artista plástic necessita bter uma imagemcnjugadadealturaigualah.nesse cas, dependend das cndições

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

AULA CORRENTE CONTÍNUA E ALTERNADA

AULA CORRENTE CONTÍNUA E ALTERNADA APOSTILA ELÉTRIA PARA AULA 11 MÓDULO - 1 ORRENTE ONTÍNUA E ALTERNADA Induçã Eletrmagnética Geraçã de crrente cntínua e alternada Frmas de nda - icl - Períd - Frequência lts de pic e pic-a-pic Tensã eficaz

Leia mais

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para

Leia mais

Modulação AM - DSB. Sinal Modulante + = () ( ) ( ) k = Eficiência do modulador. Sinal Portador AM - DSB

Modulação AM - DSB. Sinal Modulante + = () ( ) ( ) k = Eficiência do modulador. Sinal Portador AM - DSB Mdulaçã AM - DSB Sinal Mdulante DC + = et = E kem cs ωmt * cs ω AM + t () ( ) ( ) x k = Eficiência d mduladr AM - DSB Sinal Prtadr Espectr d AM-DSB Sinal mdulante cssenidal et ( ) = cs ( ) * cs ( ) = AM

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #4 () O circuit a seguir é usad cm pré-amplificadr e

Leia mais

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO Transfrmadres 1.1- INTRODUÇÃO N estud da crrente alternada bservams algumas vantagens da CA em relaçã a CC. A mair vantagem da CA está relacinada cm a facilidade de se elevar u abaixar a tensã em um circuit,

Leia mais

Pontifícia Universidade Católica do RS Faculdade de Engenharia

Pontifícia Universidade Católica do RS Faculdade de Engenharia Pntifícia Universidade Católica d S Faculdade de Engenharia LABOATÓO DE ELETÔNCA DE POTÊNCA EXPEÊNCA 4: ETFCADO TFÁSCO COM PONTO MÉDO ( PULSOS) OBJETO erificar qualitativa e quantitativamente cmprtament

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

EEL211 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS II

EEL211 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS II EEL2 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS II LABORATÓRIO N O 9: RESPOSTA EM FREQÜÊNCIA (BW) FILTROS Filtrs sã circuits que permitem a passagem d sinal alternad para uma determinada faixa de frequência.

Leia mais

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha.

Vamos estudar as características e determinações do potencial da pilha e dos potenciais padrões do eletrodo e da pilha. Aula: 25 Temática: Ptenciais da Pilha Vams estudar as características e determinações d ptencial da pilha e ds ptenciais padrões d eletrd e da pilha. Uma pilha na qual a reaçã glbal ainda nã tenha atingid

Leia mais

Administração AULA- 7. Economia Mercados [3] Oferta & Procura

Administração AULA- 7. Economia Mercados [3] Oferta & Procura Administraçã AULA- 7 1 Ecnmia Mercads [3] Oferta & Prcura Prf. Isnard Martins Bibligrafia: Rsseti J. Intrduçã à Ecnmia. Atlas 06 Rbert Heilbrner Micr Ecnmia N.Gregry Mankiw Isnard Martins Pag - 1 Oferta,

Leia mais

Introdução às Redes e Serviços de Telecomunicações

Introdução às Redes e Serviços de Telecomunicações Capítul 1 Intrduçã às Redes e Serviçs de Telecmunicações 1.1 Intrduçã Neste capítul apresenta-se a resluçã de alguns prblemas e prpõem-se alguns exercícis adicinais referentes à matéria d capítul 1 de

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC FOLH DE QUESTÕES 007 1 a QUESTÃO Valr: 1,0 Um hmem está de pé diante de um espelh plan suspens d tet pr uma mla. Sabend-se que: a distância entre s lhs d hmem

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

PAGQuímica 2011/1 Exercícios de Cinética Química

PAGQuímica 2011/1 Exercícios de Cinética Química PAGQuímica 211/1 Exercícis de Cinética Química 1 2. 3. 4. 5. Explique se cada uma das alternativas abaix é crreta u nã, para reações químicas que crrem sem que haja variaçã de temperatura e pressã: a)

Leia mais

Módulos de Expansão para Microcontroladores

Módulos de Expansão para Microcontroladores T e c n l g i a Móduls de Expansã para Micrcntrladres Os melhres e mais mderns MÓDULOS DIDÁTICOS para um ensin tecnlógic de qualidade. Móduls de Expansã para Micrcntrladres INTRODUÇÃO Para maximizar s

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

Retificadores (ENG ) Lista de Exercícios (Selecionados) de Dispositivos Eletrônicos

Retificadores (ENG ) Lista de Exercícios (Selecionados) de Dispositivos Eletrônicos ista de Exercícis de ispsitivs Eletrônics etificadres (ENG - 20301) ista de Exercícis (Selecinads) de ispsitivs Eletrônics 06) etermine a queda de tensã direta através d did cujas características aparecem

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais

5. Lista de Exercícios - Amplificadores e Modelos TBJ

5. Lista de Exercícios - Amplificadores e Modelos TBJ 5. Lista de Exercícis - Amplificadres e Mdels TBJ. Um TBJ tend β = 00 está plarizad cm uma crrente cc de cletr de ma. Calcule s valres de g m, r e e r π n pnt de plarizaçã. Respsta: 40 ma/; 25 Ω; 2,5 kω.

Leia mais

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL AMPLIFICADO OPEACIONAL Intrduçã O amplificadr peracinal (ampp) é um amplificadr integrad cnstruíd para facilitar a análise e a utilizaçã de amplificadres realimentads. Análise baseada em cnceits de realimentaçã

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

As propriedades do gás estelar

As propriedades do gás estelar As prpriedades d gás estelar Estrelas sã massas gassas mantidas gravitacinalmente cm uma frma quase esférica e que apresentam prduçã própria de energia. A definiçã acima, além de nã ser a mais precisa

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONIFÍCIA UNIVERSIDADE CAÓLICA DE GOIÁS DEPARAMENO DE MAEMÁICA E FÍSICA Prfessres: Edsn Vaz e Renat Medeirs ELERICIDADE E MAGNEISMO NOA DE AULA II Giânia 2014 1 ENERGIA POENCIAL ELÉRICA E POENCIAL ELÉRICO

Leia mais

Vantagens do Sistema Trifásico

Vantagens do Sistema Trifásico Vantagens d Sistema Trifásic Original: 6-06-03 Hmer Sette Revisã: 30-06-03 Agra que sistema trifásic chegu as amplificadres, cm advent d TRI 6000 S da Etelj, interesse pel assunt na cmunidade de áudi aumentu

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

Comunicado Cetip n 091/ de setembro de 2013

Comunicado Cetip n 091/ de setembro de 2013 Cmunicad Cetip n 091/2013 26 de setembr de 2013 Assunt: Aprimrament da Metdlgia da Taxa DI. O diretr-presidente da CETIP S.A. MERCADOS ORGANIZADOS infrma que, em cntinuidade às alterações infrmadas n Cmunicad

Leia mais

Circuitos em CA Série, Paralelo e Misto

Circuitos em CA Série, Paralelo e Misto Institut Federal de Educaçã, Ciência e ecnlgia de Santa Catarina Departament Acadêmic de Eletrônica Retificadres Circuits em CA Série, Paralel e Mist Prf. Clóvis Antôni Petry. Flrianóplis, març de 2009.

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

CIRCUITOS DE CORRENTE ALTERNADA

CIRCUITOS DE CORRENTE ALTERNADA 3 IUITOS DE OENTE TEND 3. INTODUÇÃO O estud de circuits de crrente alternada (..) é sbremd imprtante dad que a grande mairia das instalações elétricas utiliza este tip de circuits. Inicia-se desenvlviment

Leia mais

PROVA DE FÍSICA MÓDULO III DO PISM (triênio )

PROVA DE FÍSICA MÓDULO III DO PISM (triênio ) QUESTÕES OBJETIVAS PROVA DE FÍSICA MÓDULO III DO PISM (triêni 2004-2006) Use, se necessári: cnstante de Planck, h = 6,63x10-34 J.s; carga d elétrn, q = 1,60x10-19 C; cnstante eletrstática, k = 9x10 9 N.M

Leia mais

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público Caixas Ativas e Passivas SKY 3000, SKY 00, SKY 700, SKY 600 e NASH 144 Áreas de Cbertura e Quantidade de Públic www.studir.cm.br Hmer Sette 18-07 - 01 A área cberta pelas caixas acima, em funçã d psicinament

Leia mais

S3 - Explicação sobre endereço e/ou número de telefone dos EUA

S3 - Explicação sobre endereço e/ou número de telefone dos EUA S3 - Explicaçã sbre endereç e/u númer de telefne ds EUA Nme Númer da Cnta (se huver) A preencher seu Frmulári W-8 d IRS, vcê afirma nã ser cidadã u residente ds EUA u utra cntraparte ds EUA para efeit

Leia mais

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma: EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é

Leia mais

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas Capítul 6 - Medidres de Grandezas Elétricas Periódicas 6. Intrduçã Neste capítul será estudad princípi de funcinament ds instruments utilizads para medir grandezas (tensões e crrentes) periódicas. Em circuits

Leia mais

, cujos módulos são 3N. Se F A

, cujos módulos são 3N. Se F A VTB 008 ª ETAPA Sluçã mentada da Prva de Física 0. nsidere duas frças, F A e F B, cujs móduls sã 3N. Se F A e F B fazem, respectivamente, ânguls de 60 e cm eix-x ( ângul é medid n sentid anti-hrári em

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

Modulação Angular por Sinais Digitais

Modulação Angular por Sinais Digitais Mdulaçã Angular pr Sinais Digitais Cm n cas da mdulaçã em amplitude, também para a mdulaçã angular se desenvlveu uma nmenclatura especial quand se trata de sinais digitais na entrada. N cas da mdulaçã

Leia mais

Estudo do circuito RL

Estudo do circuito RL Departament de Fíica da Faculdade de Ciência da Univeridade de Liba Fíica Experimental (Engenharia Infrmática) Trabalh 3 Mediçã de tenõe e crrente (AC) Cnceit: impedância, fae e funçã de tranferência Etud

Leia mais

Aula 05 Fontes Independentes e Dependentes

Aula 05 Fontes Independentes e Dependentes Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Mdels de Circuits Eletrônics Intrduçã Aula 05 Fntes Independentes e Dependentes Uma das funções

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

+ E - EEL211 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS W= C.V J. v C(t)= i C(t).dt +V C(0) V. d i C(t)=C. v C(t) A dt. j 2 π f C

+ E - EEL211 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS W= C.V J. v C(t)= i C(t).dt +V C(0) V. d i C(t)=C. v C(t) A dt. j 2 π f C 11 - ABOATÓO D UTOS ÉTOS ABOATÓO N O 8: UTO APATVO () NDUTVO () M GM SNODA O bjetiv desta aula é verificar experimentalmente cmprtament d capacitr e indutr em regime de crrente alternada senidal. STA D

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centr Federal de Educaçã Tecnlógica de Santa Catarina Departament Acadêmic de Eletrônica Retificadres Circuits it em CA Série, Paralel e Mist Prf. Clóvis Antôni Petry. Flrianóplis, agst de 2008. Bibligrafia

Leia mais

CAPÍTULO 2 RETIFICADORES A DIODO 2.1 - RETIFICADOR MONOFÁSICO DE MEIA ONDA A DIODO. a) Carga Resistiva Pura

CAPÍTULO 2 RETIFICADORES A DIODO 2.1 - RETIFICADOR MONOFÁSICO DE MEIA ONDA A DIODO. a) Carga Resistiva Pura CAPÍTULO ETFCADOES A DODO.1 ETFCADO MONOFÁSCO DE MEA ONDA A DODO a) Carga esistiva Pura A estrutura d retificadr mnfásic de meia nda alimentand uma carga resistiva está representada na figura.1. v D D

Leia mais

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella Cœlum Australe Jrnal Pessal de Astrnmia, Física e Matemática - Prduzid pr Irineu Gmes Varella Criad em 1995 Retmad em Junh de 01 An III Nº 01 - Junh de 01 REFRAÇÃO ATMOSFÉRICA - I Prf. Irineu Gmes Varella,

Leia mais

5 PROCEDIMENTO EXPERIMENTAL

5 PROCEDIMENTO EXPERIMENTAL 54 5 PROCEDIMENTO EXPERIMENTAL O nss bjetiv é avaliar desempenh ds dispsitivs pteletrônics LED e ftdetectres cm sensres de mediçã da variaçã da cncentraçã de pluentes particulads atmsférics. Cm este prpósit

Leia mais

Aula 02 Álgebra Complexa

Aula 02 Álgebra Complexa Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician Aula 02 Álgebra Cmplexa 1. Númers Cmplexs Intrduçã Circuits CC smas algébricas de tensões e

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

ELETRÔNICA DE POTÊNCIA II

ELETRÔNICA DE POTÊNCIA II ELETRÔCA E POTÊCA AULA 9 COERORE OLAO - COEROR FLYBACK Prf. Marci Kimpara UFM - Universidade Federal de Mat Grss d ul FAEG Faculdade de Engenharias, Arquitetura e Urbanism e Gegrafia Prf. Marci Kimpara

Leia mais

Organização de Computadores Digitais. Cap.10: Conjunto de Instruções: Modos de Endereçamento e Formatos

Organização de Computadores Digitais. Cap.10: Conjunto de Instruções: Modos de Endereçamento e Formatos Organizaçã de Cmputadres Digitais Cap.10: Cnjunt de Instruções: Mds de Endereçament e Frmats Mds de endereçament Os mds de endereçament sã um aspect da Arquitetura d cnjunt de instruções ns prjets das

Leia mais

Aula 03 Modelização de Sistemas

Aula 03 Modelização de Sistemas Aula 03 Mdelizaçã de Sistemas Mdelizaçã de Sistemas entrada (input) saída (utput) carr / massa / mla Mdelizaçã de Sistemas carr / massa / mla Mdelizaçã de Sistemas carr / massa / mla frça aplicada deslcament

Leia mais

O circuito RLC. 1. Introdução

O circuito RLC. 1. Introdução O circuito C Na natureza são inúmeros os fenómenos que envolvem oscilações. Um exemplo comum é o pêndulo de um relógio, que se move periódicamente (ou seja, de repetindo o seu movimento ao fim de um intervalo

Leia mais

FÍSICA. Prof. SÉRGIO GOUVEIA PROMILITARES AFA/EFOMM/EN MÓDULO 3 SUMÁRIO

FÍSICA. Prof. SÉRGIO GOUVEIA PROMILITARES AFA/EFOMM/EN MÓDULO 3 SUMÁRIO SUMÁRIO 1. MODELO DE UM CONDUTOR 3 2. EQUILÍBRIO ELETROSTÁTICO 3 3. TEOREMA DE FARADAY 3 4. O ELETROSCÓPIO UM INSTRUMENTO DE GRANDE SENSIBILIDADE PARA DETECTAR A PRESENÇA DE CARGAS ELÉTRICAS 4 5. PROVA

Leia mais

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas Apstila de Física MOVIMENTO DE QUEDA LIVRE (1 a versã - Versã prvisória - setembr/000) Prf. Petrôni Lbat de Freitas A Experiência de Galileu Observand a queda de um bjet pdems ntar que a sua velcidade

Leia mais

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada Questã Um veícul se deslca em trajetória retilínea e sua velcidade em funçã d temp é apresentada na fiura. a) Identifique tip de mviment d veícul ns intervals de temp de 0 a 0 s,de 0 a 30 s e de 30 a 0

Leia mais

KIT PARA O REPARO DO CIRCUITO ELETRÔNICO DOS PROCESSADORES RI3172 / RI3173

KIT PARA O REPARO DO CIRCUITO ELETRÔNICO DOS PROCESSADORES RI3172 / RI3173 KIT PR O REPRO DO IRUITO ELETRÔNIO DOS PROESSDORES RI3172 / RI3173 Em funçã da descntinuidade de frneciment da placa de circuit ds prcessadres RI3172 e RI3173 e devid a grande quantidade de aparelhs existentes

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C Questã 46 O ceficiente de atrit e índice de refraçã sã grandezas adimensinais, u seja, sã valres numérics sem unidade. Iss acntece prque a) sã definids pela razã entre grandezas de mesma dimensã. b) nã

Leia mais

Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada

Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada Experimento 7 Circuitos RC e RL em corrente alternada 1. OBJETIO Parte A: Circuito RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação

Leia mais

Física FUVEST ETAPA. Resposta QUESTÃO 1 QUESTÃO 2. b) A energia cinética (E c ) do meteoro é dada por:

Física FUVEST ETAPA. Resposta QUESTÃO 1 QUESTÃO 2. b) A energia cinética (E c ) do meteoro é dada por: Física QUSTÃO 1 Uma das hipóteses para explicar a extinçã ds dinssaurs, crrida há cerca de 6 milhões de ans, fi a clisã de um grande meter cm a Terra. stimativas indicam que meter tinha massa igual a 1

Leia mais

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS MARIA HELENA CUNHA Área Científica de Matemática - Escla Superir de

Leia mais

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2 UNIVERSIDADE FEDERA DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOOGIA DEPARTAMENTE DE ENGENHARIA DA EETRICIDADE ABORATÓRIO DE ONDAS EETROMAGNÉTICAS QUARTA EXPERIÊNCIA DO ABORATÓRIO DE ONDAS TRANSFORMADORES

Leia mais

FACULDADE AGES CURSO DE ENFERMAGEM REGULAMENTAÇÃO DAS PRÁTICAS EDUCATIVAS ADMINISTRAÇÃO APLICADA A ENFERMAGEM

FACULDADE AGES CURSO DE ENFERMAGEM REGULAMENTAÇÃO DAS PRÁTICAS EDUCATIVAS ADMINISTRAÇÃO APLICADA A ENFERMAGEM FACULDADE AGES CURSO DE ENFERMAGEM REGULAMENTAÇÃO DAS PRÁTICAS EDUCATIVAS ADMINISTRAÇÃO APLICADA A ENFERMAGEM As Práticas Educativas serã realizadas em hráris pré-determinads n períd diurn para aluns regularmente

Leia mais

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo.

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo. Tema: Estud d Cmprtament de Funções usand Cálcul Diferencial Funções Crescentes, Decrescentes e Cnstantes Seja definida em um interval e sejam e pnts deste interval Entã: é crescente n interval se para

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara Institut de Física USP Física V - Aula 10 Prfessra: Mazé Bechara Material para leitura na Xerx d IF 1. Prduçã e ransfrmaçã de Luz; Albert instein (1905); Artig 5 d Livr O an Miraculs de instein (traduçã

Leia mais

Objetivo: Desenvolver as condições ideais para a boa formulação de objetivos, transformando-os em metas realizáveis.

Objetivo: Desenvolver as condições ideais para a boa formulação de objetivos, transformando-os em metas realizáveis. 1 Transfrmand Snhs em Metas Objetiv: Desenvlver as cndições ideais para a ba frmulaçã de bjetivs, transfrmand-s em metas realizáveis. Públic-Alv: Pessas interessadas em atingir sucess prfissinal e realizaçã

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

Actividade Laboratorial Física 12º Ano Condensador Plano

Actividade Laboratorial Física 12º Ano Condensador Plano Actividade Labratrial Física 12º An Cndensadr Plan 1. Questã prblema a. Verificar cm varia a capacidade de um cndensadr cm a distância entre as armaduras. b. Verificar cm varia a capacidade de um cndensadr

Leia mais

Circuitos resistivos alimentados com onda senoidal. Indutância mútua.

Circuitos resistivos alimentados com onda senoidal. Indutância mútua. Capítulo 6 Circuitos resistivos alimentados com onda senoidal. Indutância mútua. 6.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 6.2 Introdução

Leia mais

Direção do deslocamento

Direção do deslocamento Referência: Sears e Zemansky Física I Mecânica Capítul 6: TRABALHO E ENERGIA CINÉTICA Resum: Prfas. Bárbara e Márcia. INTRODUÇÃO A imprtância d cnceit de energia se baseia n princípi da cnservaçã da energia:

Leia mais

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006.

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006. DISCIPLINA: Matemática 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex, 2006. PARKIN, Michael.

Leia mais

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE Algumas sentenças nã pdem ser expressas apenas cm us de símbls prpsicinais, parênteses e cnectivs lógics exempl: a sentenç a Para td x, x >0

Leia mais

Circuitos resistivos alimentados com onda senoidal

Circuitos resistivos alimentados com onda senoidal Circuitos resistivos alimentados com onda senoidal 5 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores estudamos

Leia mais

3 Fundamentos do Comportamento dos Hidrocarbonetos Fluidos

3 Fundamentos do Comportamento dos Hidrocarbonetos Fluidos 3 Fundaments d Cmprtament ds Hidrcarbnets Fluids 3.1. Reservatóris de Petróle O petróle é uma mistura de hidrcarbnets, que pde ser encntrada ns estads: sólid, líquid, u ass, dependend das cndições de pressã

Leia mais

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares J. A. M. Felippe de Sza 3 Sinais Singlares 3 Sinais Singlares 3. Intrdçã as sinais singlares 3 3. Sinais singlares discrets 4 O sinal impls nitári discret ( nit-implse ) 4 Prpriedades d impls nitári discret

Leia mais

Questão 46. Questão 47 Questão 48. alternativa A. alternativa B. partem do repouso, no ponto A, e chegam, simultaneamente,

Questão 46. Questão 47 Questão 48. alternativa A. alternativa B. partem do repouso, no ponto A, e chegam, simultaneamente, Questã 46 Um pequen crp é abandnad d repus, n pnt, situad a uma altura h, e atinge sl cm uma velcidade de módul v. Em seguida, mesm crp é disparad verticalmente para cima, a lng da mesma trajetória descrita

Leia mais

Questão 13. Questão 14. Resposta. Resposta

Questão 13. Questão 14. Resposta. Resposta Questã 1 O velcímetr é um instrument que indica a velcidade de um veícul. A figura abai mstra velcímetr de um carr que pde atingir 40 km/h. Observe que pnteir n centr d velcímetr gira n sentid hrári à

Leia mais

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA A.M.A. Taeira A.C.M. Barreir V.S. Bagnat Institut de Físic-Química -USP Sã Carls SP Atraés d lançament de prjéteis pde-se estudar as leis

Leia mais