Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado"

Transcrição

1 ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a mesma velcidade, a partir d marc zer, em uma pista circular, um pedestre chega à marca ds.500 metrs às 8 hras, e as metrs às 8h5min. a) A que hras e minuts referid pedestre cmeç a caminhar? b) Quants metrs tem a pista se pedestre deu duas vltas cmpletas em hra e 40 minuts? a) Das 8 hras às 8h5min, pedestre caminh m 500 m = 500 m. Assim sua velcidade cnstante é de 500 m = 00 m. 5 min min Para caminhar d marc zer até 500 m pedestre gasta 500m min = 5 min. Prtant cmeç a caminhar às 8 h 5 min = 7h5min. 00 m b) Em h40min, que equivale a 00 min, pedestre caminh 00 m 00 min = m, cmpletand duas vltas. Assim, a pista tem min m. Questã Em uma empresa, / ds funcináris tem idade menr que 0 ans, /4 tem idade entre 0 e 40 ans e 40 funcináris têm mais de 40 ans. a) Quants funcináris tem a referida empresa? b) Quants deles têm pel mens 0 ans? a) Seja n númer de funcináris da empresa. Tems que: n n = n n = 96 4 Lg a empresa tem 96 funcináris. b) Tems que = ds funcináris têm pel mens 0 ans, seja, 96 = 64 funcináris. Questã Uma sala retangular medind m pr 4,5m deve ser ladrilhada cm ladrilhs quadrads iguais. Supnd que nã haja espaç entre ladrilhs vizinhs, pergunta-se: a) Qual deve ser a dimensã máima, em centímetrs, de cada um desses ladrilhs para que a sala pssa ser ladrilhada sem crtar nenhum ladrilh? b) Quants desses mesms ladrilhs sã necessáris? Supnd que s lads ds ladrilhs sejam paralels as lads da sala, para que tenhams um númer inteir de ladrilhs, a medida L d lad ds ladrilhs deve ser um divisr cmum de 00 cm e 45 cm. Cnseqüentemente: a) Os ladrilhs terã dimensã máima quand L, em cm, fr igual a máim divisr cmum de 00 = 5 e 45 = 5 7, seja, igual a 5 = 5 cm. 00 cm 45 cm b) Sã necessáris = 04 ladrilhs. 5 cm 5 cm Questã 4 Uma transprtadra entrega, cm caminhões, 60 tneladas de açúcar pr dia. Devid a prblemas peracinais, em um cert dia cada caminhã fi carregad cm 500kg a mens que usual, tend sid necessári, naquele dia, alugar mais 4 caminhões.

2 matemática a) Quants caminhões fram necessáris naquele dia? b) Quants quils transprt cada caminhã naquele dia? a) Seja n númer de caminhões utilizads n dia em que hve prblemas peracinais. Entã, naquele dia, cada caminhã fi carregad cm kg. n Nrmalmente sã utilizads n 4 caminhões e, prtant, cada um carrega kg. n 4 Assim, = 500 n n 4 n 4n 480 = 0 n = 0 n = 4 n = 4. b) Cada caminhã transprt Questã 5 4 = 500 kg. Um hmem, de,80m de altura, sbe uma ladeira cm inclinaçã de 0, cnfrme mstra a figura. N pnt A está um pste vertical de 5 metrs de altura, cm uma lâmpada n pnt B. Pede-se para: a) Calcular cmpriment da smbra d hmem depis que ele subiu 4 metrs ladeira acima. b) Calcular a área d triângul ABC. a) Seja cmpriment da smbra, cm indica a figura a seguir. Supnd que hmem está na psiçã vertical, tems que DE // AB e, prtant, ABC ~ DEC. Lg DE AB = DC,80 = =,5 m. AC b) A área d triângul ABC é AB AC sen BAC = = 5 (4 +,5) sen(90 0 ) = = 5 6 m. Questã 6 Em Matemática, um númer natural a é chamad palíndrm se seus algarisms, escrits em rdem inversa, prduzem mesm númer. Pr eempl, 8, e 7 sã palíndrms. Pergunta-se: a) Quants númers naturais palíndrms eistem entre e 9.999? b) Esclhend-se a acas um númer natural entre e 9.999, qual é a prbabilidade de que esse númer seja palíndrm? Tal prbabilidade é mair menr que %? Justifique sua respsta. a) Para determinar um palíndrm de k k algarisms, k inteir psitiv, basta terms s seus k primeirs algarisms. Lg há 9 palíndrms de dígit e9dedígits (basta determinar primeir algarism); 9 0 = 90 palíndrms de dígits e 90 de 4 dígits (basta determinar s dis primeirs algarisms). Desta frma, há = 98 palíndrms entre e9999. b) A prbabilidade desejada é =. 0 Cm < = %, tal prbabilidade é menr que 0 00 %. Questã 7 Seis círculs, tds de rai cm, sã dispsts n plan cnfrme mstram as figuras a seguir:

3 matemática m(ma C) = m(ma B) = 60, m(am B) = m(am C) = = 0 e m(qm N) = 60. Lg, n MBA, tg 60 = MB MB = MC = cm. Cm m(en F) = m(mn P) = 80 m(qm N) = 0, n DEN tems m(en D) = 0 = 60. Prtant a) Calcule a área d triângul ABC. b) Calcule a área d paralelgram MNPQ e cmpare-a cm a área d triângul ABC. a) tg 60 = EN EN = cm. Os triânguls GXQ e EDN sã cngruentes e, prtant, GQ = EN. Finalmente, a área d paralelgram MNPQ é A = MN MQ sen(qm N) A = A = 4 0 = + cm = sen 60 Vist que 0 < < 7 +,a área d paralelgram MNPQ é menr que a área d triângul ABC. Questã 8 Cm triângul ABC é eqüiláter (pr simetria) e AFD AED, tems m(fa D) = m(ea D) = 0. Lg tg 0 = DE = AE = cm. Assim, a área d triângul ABC é (4 + ) 4 = (7 + ) cm. b) Observand a figura, cm XAY é eqüiláter, tems m(ba C) = 60 m(ba C) = 0. Já que MBA MCA, tems Uma piscina, cuja capacidade é de 0m, leva 0 hras para ser esvaziada. O vlume de água na piscina, t hras após iníci d prcess de esvaziament, é dad pela funçã V(t) = a (b t) para 0 t 0 e V(t) = 0 para t 0. a) Calcule as cnstantes a e b. b) Faça gráfic da funçã V(t) para t [0,0]. a) Assumind que n instante inicial t = 0 a piscina está cheia, tems V(0) = 0 e V(0) = 0. Lg a (b 0) = 0 a = 0 a (b 0) = 0 b = 0 b) Para t [0; 0], gráfic da funçã V(t) = (0 t) = t t + 0 é um 0 0 arc de parábla cm cncavidade para cima, 0 vértice ; = (0; 0), e que crta 4 0 0

4 matemática 4 ei das rdenadas n pnt (0; 0). Para t 0 tems V(t) = 0. Prtant gráfic de V(t), para t [0; 0], tem seguinte aspect: Questã 0 Cnsidere sistema linear abai, n qual a é um parâmetr real: a + y + z = + ay + z = + y + az = a) Mstre que para a = sistema é impssível. b) Encntre s valres d parâmetr a para s quais sistema tem sluçã única. Questã 9 O sólid da figura a seguir é um cub cuja aresta mede cm. a) Para a =, tems: + y + z = + y + z = + y + z = + y + z = 0 + 0y + 0z = 0 + 0y + 0z = 4 Lg sistema é impssível. b) O sistema tem sluçã única se, e smente se, determinante da matriz incmpleta é nã nul, seja, L + L + L a 0 a a) Calcule vlume da pirâmide ABCD. b) Calcule a distância d vértice A a plan que passa pels pnts B, C e D. a) Na pirâmide ABCD tems que DD é a altura relativa à base ABC, pis DD é perpendicular a plan ABCD. Lg vlume prcurad é AB BC 4 DD cm = =. b) O plan definid pr B, C, D passa pr A. Tems que a diagnal AB é perpendicular a A B e rtgnal a BC, já que é perpendicular a BC e BC é paralel a BC. Lg a diagnal AB é perpendicular a plan definid pr B, C, D e, prtant, a distância de A a este plan é AB = = cm. L + L + L (a + ) a a + a + a + a 0 L + L L + L L + L a 0 0 L + L (a + ) 0 a (a + )(a ) 0 a e a. Questã Cnsidere a equaçã + m m = 0, nde m é um númer real. a) Reslva essa equaçã para m =. b) Encntre tds s valres de m para s quais a equaçã tem uma única raiz real.

5 matemática 5 + m m = 0 4m + m = 0 ( ) (m + ) + 4m = 0 ( m) ( ) = 0 = m ( ) = Cnseqüentemente: a) Para m =, tems ( ) = = = V = {} = m = b) A equaçã tem uma única raiz real se, e smente se: as equações = m e= sã equivalentes; a equaçã = m nã pssui raízes reais. Prtant m = m 0 m = m 0. Questã Sejam α, β e γ s ânguls interns de um triângul. a) Mstre que as tangentes desses três ânguls nã pdem ser, tdas elas, maires iguais a. b) Supnd que as tangentes ds três ânguls sejam númers inteirs psitivs, calcule essas tangentes. a) Supnd que as tangentes ds três ânguls sã tdas maires iguais a, tems tgα tgα > α > 60 tgβ tgβ > β > 60 tgγ tgγ > γ > 60 α + β + γ > 80, que é absurd, já que α, β, γ sã s ânguls interns de um triângul. Se triângul fr retângul, nã está definida a tangente d ângul ret. b) D item a, tems que a tangente de pel mens um ds ânguls, digams α, é menr d que. Cm as tangentes devem ser inteirs psitivs, tems que tgα =. Assim, nas cndições dadas: α+β+γ =80 tg(β+γ) = tg(80 α) tg β + tg γ = tg α = tg βtg γ tgβ+tgγ =tgβ tgγ (tgβ )(tgγ ) = = e tgγ = ) = e tgγ = ) = e tgγ = ) = e tgγ = ) Lg s valres das tangentes sã, e.

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

Questão 2. Questão 1. Resposta. Resposta

Questão 2. Questão 1. Resposta. Resposta Instruções: Indique claramente as respstas ds itens de cada questã, frnecend as unidades, cas existam Apresente de frma clara e rdenada s passs utilizads na resluçã das questões Expressões incmpreensíveis,

Leia mais

começou a caminhar às 7h35min. gastou = 25 minutos. Então ele

começou a caminhar às 7h35min. gastou = 25 minutos. Então ele MATEMÁTICA Caminhando sempre com a mesma velocidade, a partir do marco zero, em uma pista circular, um pedestre chega à marca dos 2 500 metros às 8 horas, e aos 000 metros às 8h5min. a) A que horas e minutos

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Lista de Exercícios Funções

Lista de Exercícios Funções PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática Departament de Matemática Cálcul Dierencial e Integral I Lista de Eercícis Funções ) O gráic abai epressa a temperatura em

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)...

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)... Questã 46 A partir de um bjet real de altura H, dispst verticalmente diante de um instrument óptic, um artista plástic necessita bter uma imagemcnjugadadealturaigualah.nesse cas, dependend das cndições

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente D

Gabarito Extensivo MATEMÁTICA volume 1 Frente D Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 Numa cidade d interir d estad de Sã Paul, uma prévia eleitral entre.000 filiads revelu as seguintes infrmações a respeit de três candidats A, B, ec, d Partid da Esperança (PE), que cncrrem a 3

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

OBMEP NÍV. 6)A figura é composta de triângulos retângulos isósceles todos iguais. Qual é a área em 2. 30 cm

OBMEP NÍV. 6)A figura é composta de triângulos retângulos isósceles todos iguais. Qual é a área em 2. 30 cm NÍV NÍVEL 7 a Lista 1) Qual é mair ds númers? (A) 0 006 (B) 0+6 (C) + 0 006 (D) (0+ 6) (E) 006 0 + 0 6 ) O símbl representa uma peraçã especial cm númers. Veja alguns exempls = 10, 8 = 7, 7 = 11, 5 1 =

Leia mais

Questão 13. Questão 14. Resposta

Questão 13. Questão 14. Resposta Questã Uma empresa imprime cerca de.000 páginas de relatóris pr mês, usand uma impressra jat de tinta clrida. Excluind a amrtizaçã d valr da impressra, cust de impressã depende d preç d papel e ds cartuchs

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálcul Diferencial e Integral I Curs de Agreclgia Prfª Paula Reis de Miranda 0/º semestre MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA

Leia mais

ANÁLISE DE DESEMPENHO DOS GRAFICOS DE x E R.

ANÁLISE DE DESEMPENHO DOS GRAFICOS DE x E R. ANÁLISE DE DESEMPENHO DOS GAFICOS DE E. Vims cm cnstruir e utilizar s gráfics de cntrle. Agra vams estudar sua capacidade de detectar perturbações n prcess. GÁFICO de Em um julgament, veredict final será

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONIFÍCIA UNIVERSIDADE CAÓLICA DE GOIÁS DEPARAMENO DE MAEMÁICA E FÍSICA Prfessres: Edsn Vaz e Renat Medeirs ELERICIDADE E MAGNEISMO NOA DE AULA II Giânia 2014 1 ENERGIA POENCIAL ELÉRICA E POENCIAL ELÉRICO

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

são as áreas dos retângulos brancos, Após o 5º. giro: 5

são as áreas dos retângulos brancos, Após o 5º. giro: 5 Sluçã da prva da 1ª Fase SOLUÇÕES 1ª FSE 2016 OMEP N2 2016 Nível 2 1 1 1 Cada faia da bandeira tem área igual a 300 cm 2. s partes brancas da faia superir têm, prtant, área igual a 150 cm 2. parte branca

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA

COMENTÁRIO DA PROVA DE MATEMÁTICA COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO Transfrmadres 1.1- INTRODUÇÃO N estud da crrente alternada bservams algumas vantagens da CA em relaçã a CC. A mair vantagem da CA está relacinada cm a facilidade de se elevar u abaixar a tensã em um circuit,

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada Questã Um veícul se deslca em trajetória retilínea e sua velcidade em funçã d temp é apresentada na fiura. a) Identifique tip de mviment d veícul ns intervals de temp de 0 a 0 s,de 0 a 30 s e de 30 a 0

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

OBMEP. NÍVEL 2-1 a Lista. 1) Em 1998, a população do Canadá era de 30,3 milhões. Qual das opções abaixo representa a população do Canadá em 1998?

OBMEP. NÍVEL 2-1 a Lista. 1) Em 1998, a população do Canadá era de 30,3 milhões. Qual das opções abaixo representa a população do Canadá em 1998? NÍVEL - 1 a Lista NÍVEL 1 a Lista 1) Em 1998, a ppulaçã d Canadá era de 30,3 milhões. Qual das pções abaix representa a ppulaçã d Canadá em 1998? A) 30 300 000 B) 303000 000 C) 30 300 D) 303000 E) 30 300

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand

Leia mais

5. (Insper 2014) Considere o quadrilátero convexo ABCD mostrado na figura, em que AB 4cm, AD 3cm e  90.

5. (Insper 2014) Considere o quadrilátero convexo ABCD mostrado na figura, em que AB 4cm, AD 3cm e  90. Nme: ºANO / CURSO TURMA: DATA: / 08 / 014 Prfessr: Paul 1. (Uneb 014) A tirlesa é uma técnica utilizada para transprte de carga de um pnt a utr. Nessa técnica, a carga é presa a uma rldana que desliza

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

Exercícios de Java Aula 17

Exercícios de Java Aula 17 Exercícis de Java Aula 17 Link d curs: http://www.liane.cm/2013/10/curs-java-basic-java-se-gratuit/ 1. Faça um prgrama que peça uma nta, entre zer e dez. Mstre uma mensagem cas valr seja inválid e cntinue

Leia mais

SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES. Matrizes e Determinantes

SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES. Matrizes e Determinantes SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES Matrizes e Determinantes Depis de estudad uma matéria em matemática é imprtante que vcê reslva um númer significativ de questões para fiaçã de cnteúd.

Leia mais

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E NOTAÇÕES C é cnjunt ds númers cmplexs. R é cnjunt ds númers reais. N {,,,...}. i denta a unidade imaginária, u seja, i. z é cnjugad d númer cmplex z. Se X é um cnjunt, P(X) denta cnjunt de tds s subcnjunts

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2 UNIVERSIDADE FEDERA DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOOGIA DEPARTAMENTE DE ENGENHARIA DA EETRICIDADE ABORATÓRIO DE ONDAS EETROMAGNÉTICAS QUARTA EXPERIÊNCIA DO ABORATÓRIO DE ONDAS TRANSFORMADORES

Leia mais

DISCIPLINA: Matemática e Matemática Aplicada

DISCIPLINA: Matemática e Matemática Aplicada DISCIPLINA: Matemática e Matemática Aplicada 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex,

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

Caderno de Prova ENGENHARIA DE PRODUÇÃO E SISTEMAS. Vestibular Vocacionado 2010.2. 2ª FASE 2ª Etapa. Nome do Candidato:

Caderno de Prova ENGENHARIA DE PRODUÇÃO E SISTEMAS. Vestibular Vocacionado 2010.2. 2ª FASE 2ª Etapa. Nome do Candidato: Universidade d Estad de Santa Catarina Vestibular Vcacinad. Cadern de Prva ª FASE ª Etaa ENGENHARIA DE PRODUÇÃO E SISTEMAS Nme d Candidat: INSTRUÇÕES GERAIS Cnfira Cadern de Prva, as Flhas de Resstas e

Leia mais

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C Questã 46 O ceficiente de atrit e índice de refraçã sã grandezas adimensinais, u seja, sã valres numérics sem unidade. Iss acntece prque a) sã definids pela razã entre grandezas de mesma dimensã. b) nã

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor ( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),

Leia mais

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Prfessres: Edsn Vaz e Renat Medeirs ELETRICIDADE E MAGNETISMO NOTA DE AULA II Giânia - 2013 1 REVISÃO DE PRODUTO ESCALAR Antes

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006.

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006. DISCIPLINA: Matemática 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex, 2006. PARKIN, Michael.

Leia mais

Caderno 1 : Domínios de Definição, Limites e Continuidade

Caderno 1 : Domínios de Definição, Limites e Continuidade Institut Superir de Ciências d Trabalh e Empresa Curs: Gestã e GEI, An Cadeira: Optimizaçã Cadern : Dmínis de Definiçã, Limites e Cntinuidade (Tópics de teria e eercícis) Elabrad pr: Diana Aldea Mendes

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9.

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. MATEMÁTICA 6. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. 10 9 é 7. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a (A) (B) (C) (D)

Leia mais

SEM QUEBRAR AS TAÇAS!!

SEM QUEBRAR AS TAÇAS!! SEM QUEBRAR AS TAÇAS!! CADERNO CATARINENSE DE ENSINO DE ENSINO DE FÍSICA, 1(): 15-156, 1995. CADERNO BRASIEIRO DE ENSINO DE ENSINO DE FÍSICA, 1 Ed. Especial: 64-68, 004. Fernand ang da Silveira Institut

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

Mestrado Profissional em Ensino das Ciências na Educação Básica Área de Concentração: Matemática ALEX DE BRITO COELHO

Mestrado Profissional em Ensino das Ciências na Educação Básica Área de Concentração: Matemática ALEX DE BRITO COELHO Mestrad Prfissinal em Ensin das Ciências na Educaçã Básica Área de Cncentraçã: Matemática ALEX DE BRITO COELHO Prdut Final da Dissertaçã apresentada à Universidade d Grande Ri Prf. Jsé de Suza Herdy em

Leia mais

Lista de exercícios de resistência ao cisalhamento dos solos

Lista de exercícios de resistência ao cisalhamento dos solos UNIVERSIDADE FEDERAL DE VIÇOSA Departament de Engenharia Civil Setr de Getecnia Paul Sérgi de Almeida Barbsa Lista de exercícis de resistência a cisalhament ds sls 1.ª ) Uma amstra de uma argila nrmalmente

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

Canguru Matema tico sem Fronteiras 2013

Canguru Matema tico sem Fronteiras 2013 Canguru Matema tico sem Fronteiras 201 http://www.mat.uc.pt/canguru/ Destinata rios: alunos dos 12. ano de escolaridade Durac a o: 1h 0min Turma: Nome: Na o podes usar calculadora. Em cada questa o deves

Leia mais

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção. Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio

Leia mais

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2

MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2 (9) 35-0 www.elitecampinas.cm.br O ELITE RESOLVE A UNICAMP 005 SEGUNDA FASE MATEMÁTICA MATEMÁTICA ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever apenas resultad

Leia mais

Supply Chain Game. EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autor: Prof. Dr. Daniel Bertoli Gonçalves

Supply Chain Game. EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autor: Prof. Dr. Daniel Bertoli Gonçalves Supply Chain Game EXERCÍCIOS PRÁTICOS DE LOGÍSTICA E CADEIA DE SUPRIMENTOS Autr: Prf. Dr. Daniel Bertli Gnçalves Exercíci Prátic 1 Simuland uma Cadeia e planejand seus estques Lcal: em sala de aula Material

Leia mais

Florianópolis, 25 de janeiro de 2016 EDITAL PARA CANDIDATURA À SEDE DO 6º ENCONTRO NACIONAL DE ESTUDANTES DE ENGENHARIA CIVIL 2017

Florianópolis, 25 de janeiro de 2016 EDITAL PARA CANDIDATURA À SEDE DO 6º ENCONTRO NACIONAL DE ESTUDANTES DE ENGENHARIA CIVIL 2017 Flrianóplis, 25 de janeir de 2016 EDITAL PARA CANDIDATURA À SEDE DO 6º ENCONTRO NACIONAL DE ESTUDANTES DE ENGENHARIA CIVIL 2017 1) Cnsiderações Gerais: A Federaçã Nacinal ds Estudantes de Engenharia Civil

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC FOLH DE QUESTÕES 007 1 a QUESTÃO Valr: 1,0 Um hmem está de pé diante de um espelh plan suspens d tet pr uma mla. Sabend-se que: a distância entre s lhs d hmem

Leia mais

Este documento tem como objetivo definir as políticas referentes à relação entre a Sioux e seus funcionários.

Este documento tem como objetivo definir as políticas referentes à relação entre a Sioux e seus funcionários. OBJETIVO Este dcument tem cm bjetiv definir as plíticas referentes à relaçã entre a Siux e seus funcináris. A Siux se reserva direit de alterar suas plíticas em funçã ds nvs cenáris da empresa sem avis

Leia mais

Agenda. A interface de Agendamento é encontrada no Modulo Salão de Vendas Agendamento Controle de Agendamento, e será apresentada conforme figura 01.

Agenda. A interface de Agendamento é encontrada no Modulo Salão de Vendas Agendamento Controle de Agendamento, e será apresentada conforme figura 01. Agenda Intrduçã Diariamente cada um ds trabalhadres de uma empresa executam diversas atividades, muitas vezes estas atividades tem praz para serem executadas e devem ser planejadas juntamente cm utras

Leia mais

INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS

INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS 1 INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS INTRODUÇÃO Os livrs de cálcul cstumam cnter um capítul u um apêndice dedicad a eplicações de fats básics da matemática e que, em geral, sã abrdads n Ensin

Leia mais

Aula 11 Bibliotecas de função

Aula 11 Bibliotecas de função Universidade Federal d Espírit Sant Centr Tecnlógic Departament de Infrmática Prgramaçã Básica de Cmputadres Prf. Vítr E. Silva Suza Aula 11 Biblitecas de funçã 1. Intrduçã À medida que um prgrama cresce

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível 1 (5ª u ª Séries) 1. Jã ganha uma mesada, que crrespnde a dis terçs da mesada d seu irmã. Cm a mesada de seu irmã é pssível cmprar 5 srvetes

Leia mais

Unidade 7: Sínteses de evidências para políticas

Unidade 7: Sínteses de evidências para políticas Unidade 7: Sínteses de evidências para plíticas Objetiv da Unidade Desenvlver um entendiment cmum d que é uma síntese de evidências para plíticas, que inclui e cm pde ser usada 3 O que é uma síntese de

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

FKcorreiosg2_cp1 - Complemento Transportadoras

FKcorreiosg2_cp1 - Complemento Transportadoras FKcrreisg2_cp1 - Cmplement Transprtadras Instalaçã d módul Faça dwnlad d arquiv FKcrreisg2_cp1.zip, salvand- em uma pasta em seu cmputadr. Entre na área administrativa de sua lja: Entre n menu Móduls/Móduls.

Leia mais

AULA CORRENTE CONTÍNUA E ALTERNADA

AULA CORRENTE CONTÍNUA E ALTERNADA APOSTILA ELÉTRIA PARA AULA 11 MÓDULO - 1 ORRENTE ONTÍNUA E ALTERNADA Induçã Eletrmagnética Geraçã de crrente cntínua e alternada Frmas de nda - icl - Períd - Frequência lts de pic e pic-a-pic Tensã eficaz

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011 PROVAS DE MATEMÁTICA DO VESTIBULAR-0 DA MACKENZIE Profa. Maria Antônia Gouveia. //0 QUESTÃO N o 9 Turma N o de alunos Média das notas obtidas A 0,0 B 0,0 C 0,0 D 0,0 A tabela acima refere-se a uma prova

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

Capítulo V. Técnicas de Análise de Circuitos

Capítulo V. Técnicas de Análise de Circuitos Capítul V Técnicas de Análise de Circuits 5.1 Intrduçã Analisar um circuit é bter um cnjunt de equações u valres que demnstram as características de funcinament d circuit. A análise é fundamental para

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

Profa. Dra. Silvia M de Paula

Profa. Dra. Silvia M de Paula Prfa. Dra. Silvia M de Paula Espelhs Esférics Certamente tds nós já estivems diante de um espelh esféric, eles sã superfícies refletras que têm a frma de calta esférica. Em nss ctidian ficams diante de

Leia mais

_ z~ '--z7-70. ----- 7ã ~ 174. 26. Observe o gráfico abaixo. MATEMÁTICA. 10... it

_ z~ '--z7-70. ----- 7ã ~ 174. 26. Observe o gráfico abaixo. MATEMÁTICA. 10... it MATEMÁTICA 26. Observe gráfic abai. TRANSPlAtms IlEAUZADOS NORSEM lols,alíluuto I - RLA DE ESPERA POR TRANSPlANJE EM.uut NO AS 305 ----- 7ã ~ 174 '--z7-70 10... it _ z~ Fnte: Jmal Zer Hra Nele está retratad

Leia mais