Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B"

Transcrição

1 Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem X e Z e 1% prefere as três marcas. Cnsiderand que há s que nã preferem nenhuma das três marcas, a prcentagem ds que nã preferem nem X nem Y é: a) 0% b) % c) 0% d) 4% e) 48% Cnstruind Diagrama de Venn: O períd da funçã g(x) = f(x + 1) é: a) 1/ b) / c) d) e) D gráfic, períd t da funçã f é t =. Assim f(x + ) = f(x). Lg períd t da funçã g(x) é tal que g(x + t ) = g(x) f((x + t ) + 1) = f(x + 1) f(x t ) = f(x + 1). Lg períd da funçã g(x) é tal quet = t =. Questã Um jg cnsiste em lançar uma meda e um dad. Se sair cara na meda, jgadr perde e deve pagar $ X, send X valr da face d dad e, se sair cra, ele ganha e irá receber $ X. Cnsiderand que ele iniciu jg cm $ 0, a prbabilidade de ele cntinuar cm mesm valr, depis de duas jgadas, é: a) 1 b) 1 1 c) d) 1 e) Os que nã preferem nem X nem Y estã representads n diagrama pela regiã exterir a esses dis cnjunts, ist é, a prcentagem pedida é 0% + 8% = 48%. Questã A figura a seguir representa parte d gráfic de uma funçã periódica f : R R. Para que jgadr cntinue cm valr inicial, na segunda jgada a meda deve cair cm face cntrária à btida na primeira, que crre cm prbabilidade 1, e dad deve cair cm a mesma face da primeira jgada vltada para cima, que crre cm prbabilidade 1. Assim, a prbabilidade pedida é = 1.

2 matemática Questã 4 Um hspital dispõe de três médics e de quatr enfermeiras para frmar uma Cmissã de Ética (CE) e uma Cmissã de Cntrle de Infecções Hspitalares (CCIH). Cada cmissã deve ser cmpsta de um médic e duas enfermeiras e ninguém pde pertencer às duas cmissões. Juntas, uma CE e uma CCIH cnstituem uma frmaçã. O númer de frmações distintas que pdem ser cnstituídas é: a) b) 18 c) 4 d) 144 e) O númer de maneiras de se cmpr uma CmissãdeÉticaé = = enúmer de maneiras de se cmpr uma Cmissã de Cntrle de Infecções Hspitalares cm s médics e enfermeirs restantes é 1 4 = 1 = 1 =. Assim, númer de frmações distintas que pdem ser cnstituídas é 18 =. Questã 5 Carls tem it ans de idade. É um alun brilhante, prém cmprtu-se mal na aula, e a prfessra mandu- calcular a sma ds mil primeirs númers ímpares. Carls reslveu prblema em dis minuts, deixand a prfessra impressinada. A respsta crreta encntrada pr Carls fi: a) d) b) e) c) Cnsiderand que a prfessra pediu para Carls smar s mil primeirs númers ímpares psitivs, milésim númer é igual a 1 + ( ) = e a sma ds mil númers é = ( ) Questã Sejam a, b e c retas paralelas e distintas, cm b entre a e c, tais que a distância entre a e b seja 5, e a distância entre b e c seja 7. A área de um quadrad ABCD em que A a, B b e C cé igual a: a) 5 b) 4 c) 50 d) 74 e) 144 alternativa D Send F e E as prjeções rtgnais de B sbre a e c, respectivamente, e m (BAF) =θ, tems m (ABF) = 90 θe m (EBC) = 180 m (ABC) m (ABF) = = (90 θ) = θ. Assim, n ΔAFB, senθ= 5 e, n ΔBEC, csθ= Da Relaçã Fundamental, + 1 = = 74, que é a área d quadrad ABCD. Questã 7 Reslvend a equaçã lg ( senx ) = = lg 4 (cs x) n interval 0 < x < 90 valr de x é tal que: a) 45 < x < 0 b) 0 < x < 45 c) 0 < x < 0 d) 75 < x < 90 e) 0 < x < 75 Para 0 < x < 90, tems: lg (sen x) = lg 4 (cs x) lg 1 (sen x) = lg 4 (cs x) 4 lg 4 (sen x) = lg 4 (cs x) 1 cs x = cs x cs x = Cm < < cs 0 < cs x < cs 45 eafunçãc-sené decrescente n primeir quadrante, 45 < x < 0.

3 matemática Questã 8 Um aplicadr que investiu seu capital na data zer bteve as rentabilidades abaix: Data Rentabilidade +50% 50% +50% 50% +50% 50% +50% 50% +50% 50% A prcentagem aprximada d capital desse aplicadr, a final de dez meses, será: a) 4% b) 8% c) 75% d) 8% e) 0% O aplicadr teve ganh de 50% ns meses 1,, 5, 7e9eperda de 50% ns meses, 4,, 8 e, u seja, seu capital inicial ficu multiplicad pr = 0 0 = 5 4 = = 4% Questã 9 Uma circunferência de rai, situada n 1º quadrante d plan cartesian, é tangente a eix y e à reta de equaçã y = x. Entã, a rdenada d centr dessa circunferência vale: a) 1 b) + 1 c) + d) + e) + Questã kx y + z = Cnsidere sistema linear x + ky + z = k x + y + kz = 1 de incógnitas x, y e z. Sendk um parâmetr real, entã: a) sistema será impssível se u k = 1 b) sistema será determinad se k = 1 c) sistema será impssível se k = 0 u d) sistema será indeterminad se k = 0 u e) sistema será determinad se k = 0 u As distâncias d centr da circunferência às retas x = 0 e y = x sã iguais a. Cm a circunferência encntra-se n 1º quadrante, entã C = (; b), cm b > 0. Assim: b dc, r = = b = 1 + ( 1) b = +. Escalnand a matriz cmpleta d sistema tems: k k 1 c = k k k 1 k 1 (k 1) (k + 1) 0 k + 1 k 1 k 1 0 k 1 1 k k 1 (k 1) (k + 1) 0 k + 1 k 1 k 0 0 k k 4k + 4

4 matemática 4 Cm k para td k real, sistema será k k = 0 spi se, e smente se, 4k + 4 = 0 k(k 1) = 0 k = 1. k = 1 O sistema será spd se, e smente se, k k 0 k 0 e k 1e k. 1 E, pr fim, sistema será si se, e smente se, k k = 0 k = 0 u k =. 1 4k Questã 11 Send i = 1 a unidade imaginária d cnjunt ds númers cmplexs, valr da expressã ( 1 + i) ( 1 i) é: a) 0 b) 1 c) 1 d) 1i e) 1i (1 + i) (1 i) = [(1 + i) ] [(1 i) ] = = (i) ( i) = 8i 8i = 1i Entã, vlume de água derramada, em cm, fi: a) π b) 15π c) 50π d) 00π e) 500π Cnsidere a figura a seguir. Questã 1 A figura A mstra um cp cilíndric ret cmdiâmetrdabasedecmealturade 0 cm, apiad sbre uma mesa plana e hrizntal, cmpletamente chei de água. O cp fi inclinad lentamente até sua geratriz frmar um ângul de 45 cm plan da mesa, cm mstra a figura B. Cm ângul de inclinaçã d cp é 45, triângul BAC é retângul isósceles. Assim, vlume de água derramada é igual à metade d vlume de um cilindr de rai da base 5 cm e altura 1 cm, u seja,v = π 5 = 15 π cm. Questã 1 Cnsidere a equaçã x x + mx + = 0 de incógnita x esendm um ceficiente real. Sabend que as raízes da equaçã frmam uma prgressã aritmética, valr de m é: a) 5 b) c) d) 4 e) 5

5 matemática 5 Cm as raízes da equaçã frmam uma prgressã aritmética, elas sã a r,a,a + r, cm a, r C. Assim, pelas relações entre ceficientes e raízes, (a r) + a + (a + r) = a =. 1 Lg, é raiz da equaçã, de md que + m + = 0 m =. Questã 14 Se calcularms valr de 95, irems bter um númer natural N. O algarism final (das unidades) desse númer N vale: a) b) 4 c) 5 d) e) 8 Pdems bservar que, a multiplicarms um númer natural cuj algarism das unidades é pr um númer k par, algarism das unidades d prdut é igual a algarism das unidades de k. 4 Lg, cm = 1, algarism das unidades de 4q + r, cm q natural e 1 r, é igual a r eé igual a n cas em que r = Prtant, já que N = = +, algarism das unidades de 95 é = 8. Questã 15 Send A = 1 1 e B = 170, a matriz X x = y na equaçã A 1 X = Bserá: a) b) c) 5 d) 5 e) alternativa D Tems que A = = e A = = = A A. Lg, cm = + para td k inteir psitiv, pel pif, pdems afirmar que A n = 1 n para td n Z +. Assim, A 1 X B 1 1 x 170 = y = x + 1y = 170 x = y = y = e X =.

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

Lista de Exercícios Funções

Lista de Exercícios Funções PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática Departament de Matemática Cálcul Dierencial e Integral I Lista de Eercícis Funções ) O gráic abai epressa a temperatura em

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)...

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)... Questã 46 A partir de um bjet real de altura H, dispst verticalmente diante de um instrument óptic, um artista plástic necessita bter uma imagemcnjugadadealturaigualah.nesse cas, dependend das cndições

Leia mais

Questão 2. Questão 1. Resposta. Resposta

Questão 2. Questão 1. Resposta. Resposta Instruções: Indique claramente as respstas ds itens de cada questã, frnecend as unidades, cas existam Apresente de frma clara e rdenada s passs utilizads na resluçã das questões Expressões incmpreensíveis,

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada Questã Um veícul se deslca em trajetória retilínea e sua velcidade em funçã d temp é apresentada na fiura. a) Identifique tip de mviment d veícul ns intervals de temp de 0 a 0 s,de 0 a 30 s e de 30 a 0

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6

UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6 MATEMÁTICA 0) Respsta: A Cx, Ax, = 0x + 0 x! x! = 0x + 0!( x )! ( x )! xx ( )( x )( x )! xx ( )( x )( x )! =0( x ) ( x )! ( x )! xx ( )( x ) x( x )( x ) =0( x ) Cm x, dividims ambs s lads pr (x ) e btems:

Leia mais

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006.

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006. DISCIPLINA: Matemática 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex, 2006. PARKIN, Michael.

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 Numa cidade d interir d estad de Sã Paul, uma prévia eleitral entre.000 filiads revelu as seguintes infrmações a respeit de três candidats A, B, ec, d Partid da Esperança (PE), que cncrrem a 3

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV Administração Prova Objetiva 07/dezembro/008 MATEMÁTICA 0. Uma pesquisa de mercado sobre determinado eletrodoméstico mostrou que 7% dos entrevistados preferem a marca

Leia mais

1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de

1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de 1ª Avaliaçã 1) Seja f ( ) uma funçã cuj dmíni é cnjunt ds númers naturais e que asscia a td natural par valr zer e a td natural ímpar dbr d valr Determine valr de (a) f ( 3) e (b) + S, send f ( 4 ) * S

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES. Matrizes e Determinantes

SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES. Matrizes e Determinantes SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES Matrizes e Determinantes Depis de estudad uma matéria em matemática é imprtante que vcê reslva um númer significativ de questões para fiaçã de cnteúd.

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

DISCIPLINA: Matemática e Matemática Aplicada

DISCIPLINA: Matemática e Matemática Aplicada DISCIPLINA: Matemática e Matemática Aplicada 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex,

Leia mais

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 3 (1ª ou 2ª Séries EM)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 3 (1ª ou 2ª Séries EM) . Cnsidere a PG:, 9, 7, 8, 4,... A partir dela vams cnstruir a seqüência:, 6, 8, 4, 6,..., nde primeir term cincide cm primeir term da PG, e a partir d segund, n-ésim é a diferença entre n-ésim e (n-)-ésim

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO Transfrmadres 1.1- INTRODUÇÃO N estud da crrente alternada bservams algumas vantagens da CA em relaçã a CC. A mair vantagem da CA está relacinada cm a facilidade de se elevar u abaixar a tensã em um circuit,

Leia mais

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo.

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo. Tema: Estud d Cmprtament de Funções usand Cálcul Diferencial Funções Crescentes, Decrescentes e Cnstantes Seja definida em um interval e sejam e pnts deste interval Entã: é crescente n interval se para

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A Questã TIPO DE PROVA: A Um bjet é vendid em uma lja pr R$ 6,00. O dn da lja, mesm pagand um impst de 0% sbre preç de venda, btém um lucr de 0% sbre preç de cust. O preç de cust desse bjet é: a) R$ 6,00

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prf. Marcs Diniz Prf. André Almeida Prf. Edilsn Neri Júnir Prf. Emersn Veiga Prf. Tiag Celh Aula n 02: Funções. Objetivs da Aula Denir funçã e cnhecer s seus elements; Recnhecer grác de uma funçã;

Leia mais

Matemática Elementar B Lista de Exercícios 2

Matemática Elementar B Lista de Exercícios 2 Ministéri da Educaçã Diretria de Graduaçã e Educaçã Prfissinal Departament Acadêmic de Matemática Matemática Elementar B Lista de Exercícis 0 Transfrme s ânguls a seguir de graus para radians a) 0º b)

Leia mais

a) No total são 10 meninas e cada uma delas tem 10 opções de garotos para formar um par. Logo, o número total de casais possíveis é = 100.

a) No total são 10 meninas e cada uma delas tem 10 opções de garotos para formar um par. Logo, o número total de casais possíveis é = 100. Questã 1: Em uma festa de aniversári, deseja-se frmar 10 casais para a valsa. A aniversariante cnvidu 10 garts e 9 gartas. a) Quants casais diferentes pderã ser frmads? b) Sabend-se que 4 das meninas sã

Leia mais

Questão 13. Questão 14. Resposta

Questão 13. Questão 14. Resposta Questã Uma empresa imprime cerca de.000 páginas de relatóris pr mês, usand uma impressra jat de tinta clrida. Excluind a amrtizaçã d valr da impressra, cust de impressã depende d preç d papel e ds cartuchs

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

= 30maneiras para sentar-se. Como são 20 filas, o número total de maneiras distintas que atende ao enunciado será:

= 30maneiras para sentar-se. Como são 20 filas, o número total de maneiras distintas que atende ao enunciado será: TEÁTIC 1ª QUESTÃO Um avião possui 10 poltronas de passageiros distribuídas em 0 filas. Cada fila tem poltronas do lado esquerdo (denotadas por, B, C) e do lado direito (denotadas por D, E, F), separadas

Leia mais

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2 UNIVERSIDADE FEDERA DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOOGIA DEPARTAMENTE DE ENGENHARIA DA EETRICIDADE ABORATÓRIO DE ONDAS EETROMAGNÉTICAS QUARTA EXPERIÊNCIA DO ABORATÓRIO DE ONDAS TRANSFORMADORES

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor ( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),

Leia mais

Matemática B Extensivo v. 3

Matemática B Extensivo v. 3 Etensiv v. Eercícis 0) B Períd é dad pr: P π Cm m 8, tems: P π 8 π 8 rad 0) C Dmíni: π 6 kπ kπ + π 6. k. π + π. 6 0) C 0) E I. Incrreta. Dmíni: π + kπ π 6 + k π 6 D (f) { R / π 6 + k π, k z} II. Crreta.

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

É permitida a reprodução parcial ou total deste Caderno de Provas apenas para fins didáticos, desde que citada a fonte. VESTIBULAR.

É permitida a reprodução parcial ou total deste Caderno de Provas apenas para fins didáticos, desde que citada a fonte. VESTIBULAR. VESTIBULAR 1º semestre 2014 Transferência de Curso de Graduação Administração Matemá ca Nome do candidato Por favor, abra somente quando autorizado. O CEFET-MG é parceiro da Coleta Seletiva Solidária e

Leia mais

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto:

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto: Matemática O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas ( x, y) dados abaixo x y 0 5 m 8 6 4 7 k Podemos concluir que o valor de k m é: A 5,5 B 6,5 C 7,5 D 8,5

Leia mais

Raciocínio Matemático RESOLUÇÃO

Raciocínio Matemático RESOLUÇÃO ESCOLA DE ECONOMIA DE SÃO PAULO FUNDAÇÃO GETÚLIO VARGAS PROCESSO SELETIVO 2007/1.º SEMESTRE CADERNO 1 Respostas da 2. a Fase Raciocínio Matemático RESOLUÇÃO 17.12.2006 RACIOCÍNIO MATEMÁTICO 01. Em uma

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011 PROVAS DE MATEMÁTICA DO VESTIBULAR-0 DA MACKENZIE Profa. Maria Antônia Gouveia. //0 QUESTÃO N o 9 Turma N o de alunos Média das notas obtidas A 0,0 B 0,0 C 0,0 D 0,0 A tabela acima refere-se a uma prova

Leia mais

Informática II INFORMÁTICA II

Informática II INFORMÁTICA II Jrge Alexandre jureir@di.estv.ipv.pt - gab. 30 Artur Susa ajas@di.estv.ipv.pt - gab. 27 1 INFORMÁTICA II Plan Parte I - Cmplementar cnheciment d Excel cm ferramenta de análise bases de dads tabelas dinâmicas

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

Matemática B Extensivo V. 2

Matemática B Extensivo V. 2 Gabarit Matemática B Extensiv V. Reslva Aula Aula 7.0) a) sen 0 sen (60 0 ) 7.0) f(x) sen 0 b) cs 0 cs (80 0 ) c) cs 60 cssec 60 cssec 00 sen 00. d) sec 97 sec cs e) tg tg tg ( 80 ) Períd: p 6 Imagem:

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

Pontifícia Universidade Católica do RS Faculdade de Engenharia

Pontifícia Universidade Católica do RS Faculdade de Engenharia Pntifícia Universidade Católica d S Faculdade de Engenharia LABOATÓO DE ELETÔNCA DE POTÊNCA EXPEÊNCA 4: ETFCADO TFÁSCO COM PONTO MÉDO ( PULSOS) OBJETO erificar qualitativa e quantitativamente cmprtament

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

000 IT_005582 000 IT_007009

000 IT_005582 000 IT_007009 000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo, sem

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 ANO DO ENSINO MÉDIO DATA: 9/0/09 PROFESSOR: CARIBÉ Td mund quer ajudar a refrescar planeta. Viru mda falar em aqueciment glbal. É precis nã esquecer que s recurss

Leia mais

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

Aula 8. Transformadas de Fourier

Aula 8. Transformadas de Fourier Aula 8 Jean Baptiste Jseph Furier (francês, 768-830) extracts ds riginais de Furier Enquant que as Séries de Furier eram definidas apenas para sinais periódics, as sã definidas para uma classe de sinais

Leia mais

cos. sen = ; tg 2x

cos. sen = ; tg 2x Resluções das atividades adicinais Capítul Grup A. alternativa E Sabems que: tg 0 tg 0 sen 0 sen 0 cs 0 cs 0 Dessa frma: + +. alternativa E Tems: sen + cs + cs cs Cm ;, cs < 0. Lg cs. Entã: sen sen cs

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org

Coordenadas Polares. Prof. Márcio Nascimento. marcio@matematicauva.org Coordenadas Polares Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

o que se entende por lente.

o que se entende por lente. 1062.0041 As lentes esféricas e suas principais características. 1. Habilidades e cmpetências. 3. Mntagem. B ::; A términ desta atividade alun deverá ter Cas necessári cnsulte a instruçã ]992.021. cmpetência

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma escola paga, pelo aluguel anual do ginásiodeesportesdeumclubea,umataxa fixa de R$.000,00 e mais R$ 0,00 por aluno. Um clube B cobraria pelo aluguel anual de um ginásio equivalente

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes

Leia mais

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E NOTAÇÕES C é cnjunt ds númers cmplexs. R é cnjunt ds númers reais. N {,,,...}. i denta a unidade imaginária, u seja, i. z é cnjugad d númer cmplex z. Se X é um cnjunt, P(X) denta cnjunt de tds s subcnjunts

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Questão 13. Questão 14. Resposta. Resposta

Questão 13. Questão 14. Resposta. Resposta Questã 1 O velcímetr é um instrument que indica a velcidade de um veícul. A figura abai mstra velcímetr de um carr que pde atingir 40 km/h. Observe que pnteir n centr d velcímetr gira n sentid hrári à

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. META: Definir e calcular área de figuras geométricas. AULA 8 OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. PRÉ-REQUISITOS

Leia mais

Questão 13. Questão 14. alternativa C

Questão 13. Questão 14. alternativa C Questã 13 O suc de laranja cncentrad da marca M cntém 20 mg de vitamina C pr 50 ml de suc cncentrad. Para ser cnsumid, deve ser diluíd cm água até que seu vlume seja 4 vezes mair que inicial. Pr utr lad,

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

SEM QUEBRAR AS TAÇAS!!

SEM QUEBRAR AS TAÇAS!! SEM QUEBRAR AS TAÇAS!! CADERNO CATARINENSE DE ENSINO DE ENSINO DE FÍSICA, 1(): 15-156, 1995. CADERNO BRASIEIRO DE ENSINO DE ENSINO DE FÍSICA, 1 Ed. Especial: 64-68, 004. Fernand ang da Silveira Institut

Leia mais

MATEMÁTICA PRIMEIRA ETAPA - 1999

MATEMÁTICA PRIMEIRA ETAPA - 1999 MATEMÁTICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Observe a figura. Essa figura representa o intervalo da reta numérica determinado pelos números dados. Todos os intervalos indicados (correspondentes a duas

Leia mais

ISCTE. SOCIOLOGIA E SOCIOLOGIA E PLANEAMENTO Ano Lectivo 2003/2004 (2º Semestre) ESTATÍSTICA II. (Interpretação de Outputs de SPSS)

ISCTE. SOCIOLOGIA E SOCIOLOGIA E PLANEAMENTO Ano Lectivo 2003/2004 (2º Semestre) ESTATÍSTICA II. (Interpretação de Outputs de SPSS) ISCTE SOCIOLOGIA E SOCIOLOGIA E PLANEAMENTO An Lectiv 2003/2004 (2º Semestre) ESTATÍSTICA II (Interpretaçã de Outputs de SPSS) Interval de Cnfiança para a Média Ppulacinal Ensai de Hipóteses para a Média

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte I

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte I Cálcul Diferencial e Integral II Página 1 Universidade de Mgi das Cruzes UMC Camps Villa Lbs Cálcul Diferencial e Integral II Parte I Engenharia Civil Engenharia Mecânica marilia@umc.br 1º semestre de

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma: EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 O gráfic mstra, aprimadamente, a prcentagem de dmicílis n Brasil que pssuem certs bens de cnsum. Sabe-se que Brasil pssui aprimadamente 50 milhões de dmicílis, send 85% na zna urbana e 15% na

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4 RESOLUÇÃO: Sendo que pode-se considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20

01) 2 02) 2,5 03) 3 04) 3,5 05) 4 RESOLUÇÃO: Sendo que pode-se considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM 2009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui, n sentid

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente D

Gabarito Extensivo MATEMÁTICA volume 1 Frente D Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais