Questão 2. Questão 1. Resposta. Resposta

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Questão 2. Questão 1. Resposta. Resposta"

Transcrição

1 Instruções: Indique claramente as respstas ds itens de cada questã, frnecend as unidades, cas existam Apresente de frma clara e rdenada s passs utilizads na resluçã das questões Expressões incmpreensíveis, bem cm respstas nã fundamentadas, nã serã aceitas A apresentar a resluçã das questões, evite texts lngs e dê preferência às fórmulas e expressões matemáticas Nã use aprximações para s valres de π u e Tda a resluçã das questões deve ser a caneta, nã apenas as respstas numéricas Questã A figura abaix mstra um fragment de mapa, em que se vê trech ret da estrada que liga as cidades de Paraguaçu e Piripiri Os númers apresentads n mapa representam as distâncias, em quilômetrs, entre cada cidade e pnt de iníci da estrada (que nã aparece na figura) Os traçs perpendiculares à estrada estã unifrmemente espaçads de cm Questã Pã pr quil divide piniões em Campinas (Crrei Ppular, /0/006) Uma padaria de Campinas vendia pães pr unidade, a um preç de R$ 0,0 pr pãzinh de 50 g Atualmente, a mesma padaria vende pã pr pes, cbrand R$,50 pr quilgrama d prdut a) Qual fi a variaçã percentual d preç d pãzinh prvcada pela mudança de critéri para cálcul d preç? b) Um cnsumidr cmpru pãezinhs de 50 g, pagand pr pes, a preç atual Sabend que s pãezinhs realmente tinham pes previst, calcule quants reais cliente gastu nessa cmpra a) O preç de 50 g de cada pãzinh, atualmente, 50,5 é dad pr 0,5 real 000 0,5 0, Assim a variaçã percentual é 0,,5% b) Cm preç de cada pãzinh de 50 g, atualmente, é 0,5 real, a cmprar pães cm essa massa cnsumidr paga 0,5 3,5 reais a) Para representar a escala de um mapa, usams a ntaçã : X, nde X é a distância real crrespndente à distância de unidade d mapa Usand essa ntaçã, indique a escala d mapa dad acima b) Repare que há um pst exatamente sbre um traç perpendicular à estrada Em que quilômetr (medid a partir d pnt de iníci da estrada) encntra-se tal pst? c) Imagine que vcê tenha que reprduzir mapa dad usand a escala : Se vcê fizer a figura em uma flha de papel, qual será a distância, em centímetrs, entre as cidades de Paraguaçu e Piripiri? a) A distância entre Paraguaçu e Piripiri é km Entre essas duas cidades há 8 espaçs de cm cada Lg cm n mapa crrespnde à distância de 3,5 km cm, 8 u seja, a escala d mapa apresentad é : b) Medind a partir d pnt de iníci da estrada, pst se encntra n quilômetr 3 + 5,5 3,5 c) A distância entre essas duas cidades é 3 km cm Usand a escala : , a distância entre elas na flha será ,8 cm

2 matemática Questã 3 Pr nrma, uma flha de papel A deve ter 0mm 97mm Cnsidere que uma flha A cm 0,mm de espessura é seguidamente dbrada a mei, de frma que a dbra é sempre perpendicular à mair dimensã resultante até a dbra anterir a) Escreva a expressã d term geral da prgressã gemétrica que representa a espessura d papel dbrad em funçã d númer k de dbras feitas b) Cnsidere que, idealmente, papel dbrad tem frmat de um paralelepíped Nesse cas, após dbrar papel seis vezes, quais serã as dimensões d paralelepíped? a) Cada dbra faz cm que a espessura d papel seja multiplicada pr Assim, após k dbras, papel dbrad tem sua espessura multiplicada pr k, u seja, é 0, k mm b) A mair dimensã da flha de papel é dividida pr a cada dbra Assim, as dimensões d papel dbrad sã: Dbra Dimensões 0 8,5 mm 05 8,5 mm ,5 mm 5,5 7,5 mm 5 5,5 37,5 mm 6 6,5 37,5 mm Assim, as dimensões d paralelepíped sã 6 6,5 mm, 37,5 mm e 0, 6, mm Questã Um pluviômetr é um aparelh utilizad para medir a quantidade de chuva precipitada em determinada regiã A figura de um pluviômetr padrã é exibida a seguir Nesse pluviômetr, diâmetr da abertura circular existente n tp é de 0 cm A água quecaisbreapartesuperirdaparelhé reclhida em um tub cilíndric intern Esse tub cilíndric tem 60 cm de altura e sua base tem/0daáreadaabertura superir d pluviômetr (Obs: a figura a lad nã está em escala) a) Calcule vlume d tub cilíndric intern b) Supnd que, durante uma chuva, nível da água n cilindr intern subiu cm, calcule vlume de água precipitad pr essa chuva sbre um terren retangular cm 500 m de cmpriment pr 300 m de largura a) A área da base d tub cilíndric intern é 0 0 cm 0 π π Prtant seu vlume é0π π cm 3 b) Para uma altura de cm, vlume de água dentr d tub cilíndric intern é 0π 0π cm 3 O vlume captad pr este pluviômetr é referente à área da abertura circular d seu tp, que é π π 0 00 cm A área d terren é m cm Admitind-se que td terren recebeu chuva na mesma prprçã, vlume de água precipitad pr essa chuva n terren é π cm 3 0 m 00π Questã 5 Um restaurante a quil vende 00 kg de cmida pr dia, a R$ 5,00 quilgrama Uma pesquisa de piniã revelu que, a cada real de aument n preç d quil, restaurante deixa de vender equivalente a 5 kg de cmida Respnda às perguntas abaix, supnd crretas as infrmações da pesquisa e definind a receita d restaurante cm valr ttal pag pels clientes a) Em que cas a receita d restaurante será mair: se preç subir para R$ 8,00 / kg u para R$ 0,00 / kg?

3 matemática 3 b) Frmule matematicamente a funçã f(x), que frnece a receita d restaurante cm funçã da quantia x, em reais, a ser acrescida a valr atualmente cbrad pel quil da refeiçã c) Qual deve ser preç d quil da cmida para que restaurante tenha a mair receita pssível? Dis prêmis iguais serã srteads entre dez pessas, send sete mulheres e três hmens Admitind que uma pessa nã pssa ganhar s dis prêmis, respnda às perguntas abaix a) De quantas maneiras diferentes s prêmis pdem ser distribuíds entre as dez pessas? b) Qual é a prbabilidade de que dis hmens sejam premiads? c) Qual é a prbabilidade de que a mens uma mulher receba um prêmi? a) Cm s prêmis sã iguais, deve ser esclhid um subcnjunt de duas dentre as dez pessas Lg númer de maneiras de distribuí-ls é b) Há 3 3 subcnjunts de dis hmens Lg, cm existem 5 maneiras de distribuir-se s prêmis, a prbabilidade pedida é 3 a) Se preç subir para R$ 8,00/kg, haverá um 5 5 aument de R$ 3,00 n preç, que acarretará uma queda de kg na venda diária de c) A mens uma mulher recebe um prêmi se, e smente se, s dis premiads nã sã ambs cmida e, cnseqüentemente, a receita será hmens Ou seja, event d qual fi pedida a 8 (00 5) 530 reais prbabilidade é event cmplementar d event Analgamente, cas preç aumente para d item b R$ 0,00/kg, a receita será 0 (00 5 5) Prtant a prbabilidade é 500 reais 5 5 Lg a receita será mair se preç subir para R$ 8,00/kg b) Se preç d quilgrama da cmida subir x Questã 7 reais, nv preç será, em reais, 5 + x Além diss, tal aument acarretará uma queda de 5x kg Na execuçã da cbertura de uma casa, ptu-se pela cnstruçã de uma estrutura, na venda diária de cmida Assim, tems f(x) (5 + x) (00 5x) e, além diss, cmpsta pr barras de madeira, cm frmat indicad na figura abaix x 0 x D(f) x x 0, u seja, 00 5x 0 D(f) [0; 0] Lg a funçã pedida é f: [0; 0] R, definida pr f(x) (5 + x) (00 5x) 5(x +5) (x 0), cm x ef(x)emreais c) Nte que gráfic da funçã f(x) é uma parábla cm cncavidade vltada para baix Reslva as questões abaix supnd que Lg seu valr máxim é btid para 0 + ( 5) α 5 Despreze a espessura das barras x,5, ist é, preç d quilgrama de madeira e nã use aprximações ns seus da cmida a5 +,5 7,50 reais cálculs a) Calcule s cmpriments b e c em funçã de a, que crrespnde a cmpriment da barra da base da estrutura Questã 6 b) Assumind, agra, que a 0m, determine cmpriment ttal da madeira necessária para cnstruir a estrutura a) Observe a figura:

4 matemática Nte que s triânguls ABC, DBM e D MC sã isósceles; lg AB AC b, DB DM, D M D C e, cm m (DEB) 90, E é pnt médi de BM Além diss, ΔABM ~ ΔDBE (cas AA) Assim m (BMA) 90 e, prtant, M é pnt médi de BC Dessa frma, ΔBDM ΔMD C (cas LAL) Entã DE c e, pr semelhança, BM BA BE BD b BD e AM AM c DE Send sen 5 sen(5 30 ) 3 6 e bservand que, para α5, m (BAC) ,tems, pela lei ds sens, a b sen 50 sen 5 a b 6 a( 6 ) b Além diss, n ΔBDE, sen 5 c b a( 3 ) c b) O cmpriment ttal da madeira é AB + BC + + AM + DM + DE b + a + c + b + c 3a( 6 ) a( 3 ) a + 3b + c a ( ) m Questã 8 Seja dad sistema linear: x + x x x x + x a) Mstre graficamente que esse sistema nã tem sluçã Justifique b) Para determinar uma sluçã aprximada de um sistema linear Ax b impssível, utiliza-se métd ds quadrads mínims, que T T cnsiste em reslver sistema AAx Ab Usand esse métd, encntre uma sluçã aprximada para sistema dad acima Lembre-se de que as linhas de M T (a transpsta de uma matriz M) sã iguais às clunas de M a) Chamand de r, s e t as retas representadas pelas equações x + x, x x e x + x, respectivamente, tems: Cm nã existe um pnt cmum às 3 retas, sistema nã tem sluçã b) Para sistema dad, tems A, x x x e b T T Prtant A Ax A b x x 6 3 x 3 6 x 6x 3x 3x + 6x 3x 6x 9x 3x 6x 3x + (6x ) x 3 x 3 Uma sluçã aprximada para sistema dad é 3 ; 3

5 matemática 5 Questã 9 Em um triângul cm vértices A, B e C, inscrevems um círcul de rai r Sabe-se que ângul A tem 90 e que círcul inscrit tangencia lad BC n pnt P, dividind esse lad em dis trechs cm cmpriments PB 0 e PC 3 a) Determine r b) Determine AB e AC c) Determine a área da regiã que é, a mesm temp, interna a triângul e externa a círcul Sejam Q e R, respectivamente, s pnts de intersecçã da circunferência inscrita cm s lads AC eab Seja O centr da circunferência inscrita Vams prvar que AROQ é um quadrad de lad r Inicialmente, cm m (A) 90,m(ARO) 90, m (AQO) 90 em(roq) 360 ( ) 90, tems que AROQ é um retângul Tems ainda que OR OQ r Assim, AROQ é um quadrad de lad r a) N triângul retângul ABC, AB AR + RB AR + PB r + 0, AC AQ + QC AQ + PC r + 3 e BC Lg, pr Pitágras, (r + 0) + (r + 3) 3 r + 3r 30 0 r b) AB r + 0 e AC r c) Cm círcul é intern a triângul, a área AB AC pedida é área ABC área πr 5 π 30 π Questã 0 O decaiment radiativ d estrônci 90 é bt descrit pela funçã Pt () P0,ndet é um instante de temp, medid em ans, b é uma cnstante real e P 0 é a cncentraçã inicial de estrônci 90, u seja, a cncentraçã n instante t 0 a) Se a cncentraçã de estrônci 90 cai pela metade em 9 ans, ist é, se a meia-vida d estrônci 90 é de 9 ans, determine valr da cnstante b b) Dada uma cncentraçã inicial P 0,deestrônci 90, determine temp necessári para que a cncentraçã seja reduzida a 0% de P 0 Cnsidere lg 0 3, 3 a) Se a meia-vida d estrônci-90 é de 9 ans, entã P(9) P(0) P b 9 0 P0 b 9 b 9 t b) P(t) 0, P 0 P0 9 0, P0 t 9 t lg t 9( lg lg 0) t 9(lg 0 ) Usand a aprximaçã lg 0 3,3, tems t 9 (3,3 ) 67,8 ans Questã Seja dada a reta x 3y n plan xy a) Se P é um pnt qualquer desse plan, quantas retas d plan passam pr P e frmam um ângul de 5 cm a reta dada acima? b) Para pnt P cm crdenadas (, 5), determine as equações das retas mencinadas n item (a) a) Seja r : x 3y 6 0 y 3 x, u seja, ceficiente angular da reta r é 3 Cnsidere m s ceficiente angular das retas que frmam 5 cm r, assim: 3ms m 3 + m s s tg 5 3 u + 3 m s 3ms 3 + m s m s u ms

6 matemática 6 Lg send P um pnt qualquer d plan, existem sempre duas retas que passam pr P e frmam 5 cm a reta r b) As equações pssíveis para P (; 5) sã: y 5 (x ) y x + 6 u u y 5 (x ) y x + Questã Seja ABCDABCD um cub cm aresta de cmpriment 6 cm e sejam M pnt médi de BC e O centr da face CDD C, cnfrme mstrad na figura a seguir Cm CM e AD sã paralels, pel cas AA, s triânguls ADP e MCP sã semelhantes, de md que: DP AD DP 6 CP MC DP 6 3 DP cm Agra, cnsidere plan que cntém C, D, C, D, O, P, L e K: a) Se a reta AM intercepta a reta CD n pnt P e a reta PO intercepta CC e DD em K e L, respectivamente, calcule s cmpriments ds segments CK e DL b) Calcule vlume d sólid cm vértices A, D, L, K, C e M a) Cnsidere primeir plan que cntém A, B, C, D, M e P: Nvamente pel cas AA, s triânguls PM O, PCK e PDL sã semelhantes Send OM CD 6 CM 3 cm e, prtant, PM 9 cm, DL CK MO 3 DL CK PD PC PM DL cm e CK cm b) O sólid de vértices A, D, L, K, C e M é um trnc de pirâmide de bases ADL e MCK, e seu vlume é igual à diferença entre s vlumes das pirâmides PADL, de base ADL e altura PD, e PMCK, de base MCK e altura PC Assim, vlume pedid é: AD DL MC CK PD PC cm 3 3 3

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

Questão 13. Questão 14. Resposta

Questão 13. Questão 14. Resposta Questã Uma empresa imprime cerca de.000 páginas de relatóris pr mês, usand uma impressra jat de tinta clrida. Excluind a amrtizaçã d valr da impressra, cust de impressã depende d preç d papel e ds cartuchs

Leia mais

Matemática INTRODUÇÃO. 1. "Pão por quilo divide opiniões em Campinas (Correio Popular, 21/10/2006). Resposta Esperada

Matemática INTRODUÇÃO. 1. Pão por quilo divide opiniões em Campinas (Correio Popular, 21/10/2006). Resposta Esperada 2ª Fase Matemática INTRODUÇÃO A prova de matemática da segunda fase do vestibular da UNICAMP é elaborada de forma a identificar os candidatos com boa capacidade de leitura de textos, bom raciocínio abstrato

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)...

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)... Questã 46 A partir de um bjet real de altura H, dispst verticalmente diante de um instrument óptic, um artista plástic necessita bter uma imagemcnjugadadealturaigualah.nesse cas, dependend das cndições

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 Numa cidade d interir d estad de Sã Paul, uma prévia eleitral entre.000 filiads revelu as seguintes infrmações a respeit de três candidats A, B, ec, d Partid da Esperança (PE), que cncrrem a 3

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada Questã Um veícul se deslca em trajetória retilínea e sua velcidade em funçã d temp é apresentada na fiura. a) Identifique tip de mviment d veícul ns intervals de temp de 0 a 0 s,de 0 a 30 s e de 30 a 0

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006.

DISCIPLINA: Matemática. MACEDO, Luiz Roberto de, CASTANHEIRA, Nelson Pereira, ROCHA, Alex. Tópicos de matemática aplicada. Curitiba: Ibpex, 2006. DISCIPLINA: Matemática 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex, 2006. PARKIN, Michael.

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais

NOME :... NÚMERO :... TURMA :...

NOME :... NÚMERO :... TURMA :... 1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO Relações métricas envolvendo a circunferência Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... X - RELAÇÕES MÉTRICAS NO DISCO (Potência de Ponto) X.1) Relação

Leia mais

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO Transfrmadres 1.1- INTRODUÇÃO N estud da crrente alternada bservams algumas vantagens da CA em relaçã a CC. A mair vantagem da CA está relacinada cm a facilidade de se elevar u abaixar a tensã em um circuit,

Leia mais

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2 UNIVERSIDADE FEDERA DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOOGIA DEPARTAMENTE DE ENGENHARIA DA EETRICIDADE ABORATÓRIO DE ONDAS EETROMAGNÉTICAS QUARTA EXPERIÊNCIA DO ABORATÓRIO DE ONDAS TRANSFORMADORES

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand

Leia mais

Lista de Exercícios Funções

Lista de Exercícios Funções PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática Departament de Matemática Cálcul Dierencial e Integral I Lista de Eercícis Funções ) O gráic abai epressa a temperatura em

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

Exercícios de Java Aula 17

Exercícios de Java Aula 17 Exercícis de Java Aula 17 Link d curs: http://www.liane.cm/2013/10/curs-java-basic-java-se-gratuit/ 1. Faça um prgrama que peça uma nta, entre zer e dez. Mstre uma mensagem cas valr seja inválid e cntinue

Leia mais

DISCIPLINA: Matemática e Matemática Aplicada

DISCIPLINA: Matemática e Matemática Aplicada DISCIPLINA: Matemática e Matemática Aplicada 1- BIBLIOGRAFIA INDICADA Bibliteca Virtual Pearsn MACEDO, Luiz Rbert de, CASTANHEIRA, Nelsn Pereira, ROCHA, Alex. Tópics de matemática aplicada. Curitiba: Ibpex,

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,

Leia mais

Informática II INFORMÁTICA II

Informática II INFORMÁTICA II Jrge Alexandre jureir@di.estv.ipv.pt - gab. 30 Artur Susa ajas@di.estv.ipv.pt - gab. 27 1 INFORMÁTICA II Plan Parte I - Cmplementar cnheciment d Excel cm ferramenta de análise bases de dads tabelas dinâmicas

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

são as áreas dos retângulos brancos, Após o 5º. giro: 5

são as áreas dos retângulos brancos, Após o 5º. giro: 5 Sluçã da prva da 1ª Fase SOLUÇÕES 1ª FSE 2016 OMEP N2 2016 Nível 2 1 1 1 Cada faia da bandeira tem área igual a 300 cm 2. s partes brancas da faia superir têm, prtant, área igual a 150 cm 2. parte branca

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E

Questão 2. Questão 1. Questão 3. alternativa E. alternativa D. alternativa E NOTAÇÕES C é cnjunt ds númers cmplexs. R é cnjunt ds númers reais. N {,,,...}. i denta a unidade imaginária, u seja, i. z é cnjugad d númer cmplex z. Se X é um cnjunt, P(X) denta cnjunt de tds s subcnjunts

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor ( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),

Leia mais

Vantagens do Sistema Trifásico

Vantagens do Sistema Trifásico Vantagens d Sistema Trifásic Original: 6-06-03 Hmer Sette Revisã: 30-06-03 Agra que sistema trifásic chegu as amplificadres, cm advent d TRI 6000 S da Etelj, interesse pel assunt na cmunidade de áudi aumentu

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

OBMEP NÍV. 6)A figura é composta de triângulos retângulos isósceles todos iguais. Qual é a área em 2. 30 cm

OBMEP NÍV. 6)A figura é composta de triângulos retângulos isósceles todos iguais. Qual é a área em 2. 30 cm NÍV NÍVEL 7 a Lista 1) Qual é mair ds númers? (A) 0 006 (B) 0+6 (C) + 0 006 (D) (0+ 6) (E) 006 0 + 0 6 ) O símbl representa uma peraçã especial cm númers. Veja alguns exempls = 10, 8 = 7, 7 = 11, 5 1 =

Leia mais

Utilizando o Calculador Etelj Velocidade do Som no Ar

Utilizando o Calculador Etelj Velocidade do Som no Ar Utilizand Calculadr telj Velcidade d Sm n Ar Hmer Sette 8 0 0 ste utilitári permite cálcul da velcidade de prpagaçã d sm n ar C, em funçã da temperatura d ar, da umidade relativa d ar e da pressã atmsférica

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

Caderno de Prova ENGENHARIA DE PRODUÇÃO E SISTEMAS. Vestibular Vocacionado 2010.2. 2ª FASE 2ª Etapa. Nome do Candidato:

Caderno de Prova ENGENHARIA DE PRODUÇÃO E SISTEMAS. Vestibular Vocacionado 2010.2. 2ª FASE 2ª Etapa. Nome do Candidato: Universidade d Estad de Santa Catarina Vestibular Vcacinad. Cadern de Prva ª FASE ª Etaa ENGENHARIA DE PRODUÇÃO E SISTEMAS Nme d Candidat: INSTRUÇÕES GERAIS Cnfira Cadern de Prva, as Flhas de Resstas e

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

FKcorreiosg2_cp1 - Complemento Transportadoras

FKcorreiosg2_cp1 - Complemento Transportadoras FKcrreisg2_cp1 - Cmplement Transprtadras Instalaçã d módul Faça dwnlad d arquiv FKcrreisg2_cp1.zip, salvand- em uma pasta em seu cmputadr. Entre na área administrativa de sua lja: Entre n menu Móduls/Móduls.

Leia mais

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma: EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B Questão TIPO DE PROVA: A Um taxista inicia o dia de traalho com o tanque de comustível de seu carro inteiramente cheio. Percorre 35 km e reaastece, sendo necessários 5 litros para completar o tanque. Em

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONIFÍCIA UNIVERSIDADE CAÓLICA DE GOIÁS DEPARAMENO DE MAEMÁICA E FÍSICA Prfessres: Edsn Vaz e Renat Medeirs ELERICIDADE E MAGNEISMO NOA DE AULA II Giânia 2014 1 ENERGIA POENCIAL ELÉRICA E POENCIAL ELÉRICO

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC FOLH DE QUESTÕES 007 1 a QUESTÃO Valr: 1,0 Um hmem está de pé diante de um espelh plan suspens d tet pr uma mla. Sabend-se que: a distância entre s lhs d hmem

Leia mais

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO Resposta da questão 1: Como 900 360 180, segue que o atleta girou duas voltas e meia. Resposta da questão : O ângulo percorrido pelo ponteiro das horas

Leia mais

SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES. Matrizes e Determinantes

SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES. Matrizes e Determinantes SEJAFERA APOSTILA EXERCÍCIOS / QUESTÕES DE VESTIBULARES Matrizes e Determinantes Depis de estudad uma matéria em matemática é imprtante que vcê reslva um númer significativ de questões para fiaçã de cnteúd.

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

Volume II Isolamento Térmico

Volume II Isolamento Térmico INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR TRANSFERÊNCIA DE CALOR (TCL) Vlume II Islament Térmic Curs Técnic Módul 2 Prf. Carls Babaid Net,

Leia mais

Aula 4 Ângulos em uma Circunferência

Aula 4 Ângulos em uma Circunferência MODULO 1 - AULA 4 Aula 4 Ângulos em uma Circunferência Circunferência Definição: Circunferência é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva.

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

PADRÃO DE RESPOSTA. Pesquisador em Informações Geográficas e Estatísticas A I PROVA 3 FINANÇAS PÚBLICAS

PADRÃO DE RESPOSTA. Pesquisador em Informações Geográficas e Estatísticas A I PROVA 3 FINANÇAS PÚBLICAS Questã n 1 Cnheciments Específics O text dissertativ deve cmtemplar e desenvlver s aspects apresentads abaix. O papel d PPA é de instrument de planejament de médi/lng praz que visa à cntinuidade ds bjetivs

Leia mais

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto:

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto: Matemática O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas ( x, y) dados abaixo x y 0 5 m 8 6 4 7 k Podemos concluir que o valor de k m é: A 5,5 B 6,5 C 7,5 D 8,5

Leia mais

ANÁLISE DE DESEMPENHO DOS GRAFICOS DE x E R.

ANÁLISE DE DESEMPENHO DOS GRAFICOS DE x E R. ANÁLISE DE DESEMPENHO DOS GAFICOS DE E. Vims cm cnstruir e utilizar s gráfics de cntrle. Agra vams estudar sua capacidade de detectar perturbações n prcess. GÁFICO de Em um julgament, veredict final será

Leia mais

Disciplina: _Matemática Professor (a): _Valeria

Disciplina: _Matemática Professor (a): _Valeria COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 1ª Etapa 201 Disciplina: _Matemática Professor (a): _Valeria Ano: 201 Turma: _9.1 e 9.2 Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Se o ABC é isóscele de base AC, determine x.

Se o ABC é isóscele de base AC, determine x. LISTA DE EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA PROFESSOR MOABI QUESTÃO I Nas figuras abaixo, o CBA é congruente ao CDE. Determine o valor de x e y. QUESTÃO II Num triângulo, o maior lado mede 26 cm,

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

Física FUVEST ETAPA. Resposta QUESTÃO 1 QUESTÃO 2. b) A energia cinética (E c ) do meteoro é dada por:

Física FUVEST ETAPA. Resposta QUESTÃO 1 QUESTÃO 2. b) A energia cinética (E c ) do meteoro é dada por: Física QUSTÃO 1 Uma das hipóteses para explicar a extinçã ds dinssaurs, crrida há cerca de 6 milhões de ans, fi a clisã de um grande meter cm a Terra. stimativas indicam que meter tinha massa igual a 1

Leia mais

Questão 13. Questão 14. alternativa C

Questão 13. Questão 14. alternativa C Questã 13 O suc de laranja cncentrad da marca M cntém 20 mg de vitamina C pr 50 ml de suc cncentrad. Para ser cnsumid, deve ser diluíd cm água até que seu vlume seja 4 vezes mair que inicial. Pr utr lad,

Leia mais

Caderno 1 : Domínios de Definição, Limites e Continuidade

Caderno 1 : Domínios de Definição, Limites e Continuidade Institut Superir de Ciências d Trabalh e Empresa Curs: Gestã e GEI, An Cadeira: Optimizaçã Cadern : Dmínis de Definiçã, Limites e Cntinuidade (Tópics de teria e eercícis) Elabrad pr: Diana Aldea Mendes

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível 1 (5ª u ª Séries) 1. Jã ganha uma mesada, que crrespnde a dis terçs da mesada d seu irmã. Cm a mesada de seu irmã é pssível cmprar 5 srvetes

Leia mais

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 PROVA DE MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO POR: PROFA. MARIA ANTÔNIA GOUVEIA QUESTÃO 21 ; O valor da expressão ( )( ; ; ) ; para x 101 é: a) 100; b) 10; c) 10,1;

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Prova Escrita e Prova Oral de Inglês

Prova Escrita e Prova Oral de Inglês AGRUPAMENTO DE ESCOLAS AURÉLIA DE SOUSA PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Prva Escrita e Prva Oral de Inglês 11.º An de esclaridade DECRETO-LEI n.º 139/2012, de 5 de julh Prva (n.º367) 1.ªe 2.ª Fase 6

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

5. Lista de Exercícios - Amplificadores e Modelos TBJ

5. Lista de Exercícios - Amplificadores e Modelos TBJ 5. Lista de Exercícis - Amplificadres e Mdels TBJ. Um TBJ tend β = 00 está plarizad cm uma crrente cc de cletr de ma. Calcule s valres de g m, r e e r π n pnt de plarizaçã. Respsta: 40 ma/; 25 Ω; 2,5 kω.

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

Arcos na Circunferência

Arcos na Circunferência Arcos na Circunferência 1. (Uerj 015) Um tubo cilíndrico cuja base tem centro F e raio r rola sem deslizar sobre um obstáculo com a forma de um prisma triangular regular. As vistas das bases do cilindro

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

= F cp. mv 2. G M m G M. b) A velocidade escalar V também é dada por: V = = 4π 2 R 2 = R T 2 =. R 3. Sendo T 2 = K R 3, vem: K = G M V = R.

= F cp. mv 2. G M m G M. b) A velocidade escalar V também é dada por: V = = 4π 2 R 2 = R T 2 =. R 3. Sendo T 2 = K R 3, vem: K = G M V = R. FÍSICA Um satélite com massa m gira em torno da Terra com velocidade constante, em uma órbita circular de raio R, em relação ao centro da Terra. Represente a massa da Terra por M e a constante gravitacional

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

Mestrado Profissional em Ensino das Ciências na Educação Básica Área de Concentração: Matemática ALEX DE BRITO COELHO

Mestrado Profissional em Ensino das Ciências na Educação Básica Área de Concentração: Matemática ALEX DE BRITO COELHO Mestrad Prfissinal em Ensin das Ciências na Educaçã Básica Área de Cncentraçã: Matemática ALEX DE BRITO COELHO Prdut Final da Dissertaçã apresentada à Universidade d Grande Ri Prf. Jsé de Suza Herdy em

Leia mais

Leia estas instruções:

Leia estas instruções: Leia estas instruções: 1 2 3 Confira se os dados contidos na parte inferior desta capa estão corretos e, em seguida, assine no espaço reservado para isso. Caso se identifique em qualquer outro local deste

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A Questã TIPO DE PROVA: A Um bjet é vendid em uma lja pr R$ 6,00. O dn da lja, mesm pagand um impst de 0% sbre preç de venda, btém um lucr de 0% sbre preç de cust. O preç de cust desse bjet é: a) R$ 6,00

Leia mais