Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella"

Transcrição

1 Cœlum Australe Jrnal Pessal de Astrnmia, Física e Matemática - Prduzid pr Irineu Gmes Varella Criad em 1995 Retmad em Junh de 01 An III Nº 01 - Junh de 01 REFRAÇÃO ATMOSFÉRICA - I Prf. Irineu Gmes Varella, BSc.,Lic.,Esp Direits autrais reservads - Pribida a reprduçã. 1 - INTRODUÇÃO A radiaçã prveniente ds crps celestes, antes de atingir um bservadr u um instrument de bservaçã situad na superfície terrestre, atravessa a camada de ar da atmsfera. A radiaçã que inicialmente prpagava-se em um mei distint d ar, cm densidade praticamente nula, a penetrar na atmsfera sfre refraçã. O estud desse fenômen é bastante cmplex face as cnheciments ainda reduzids das cndições atmsféricas e de nã pderms acmpanhá-l em sua extensã. Para a sua descriçã trna-se necessári a adçã de um mdel para a atmsfera terrestre. Entre muits utilizads vams adtar, em um primeir mment, mdel de Cassini que cnsiste em se admitir a atmsfera hmgênea, ist é, cm densidade cnstante em tds s seus pnts e de altura determinada (h) e praticamente desprezível em relaçã a rai da Terra (ρ). Vams admitir, também, que a Terra pssui a frma esférica. - DESCRIÇÃO DO FENÔMENO Cnsiderems um pnt P da superfície terrestre nde esteja lcalizad um bservadr, O centr da Terra e OZ a vertical desse lugar ( fig.1 ). Os rais de luz prvenientes de uma estrela E atingem limite superir da atmsfera em Q e chegam a bservadr em P percrrend, na atmsfera, trajet QP. A distância zenital bservada dessa estrela será ângul ZPQ z a pass que a distância zenital tpcêntrica z t está representada pel ângul entre a vertical d lugar PZ e a direçã PE que seria seguida pels rais luminss se nã huvesse atmsfera. Dessa frma, bservadr em P verá a estrela em E, cm distância zenital z < z t. A diferença entre as duas distâncias zenitais anterirmente mencinadas define ângul R chamad de ângul de refraçã atmsférica, u simplesmente refraçã atmsférica: R z t - z (1)

2 Cœlum Australe An III Nº 1 Junh de 01 Irineu Gmes Varella Fig. 1 - Desvi sfrid pels rais luminss de um astr na atmsfera terrestre. O ângul R é, também, a diferença entre ângul de incidência ( i ) e ângul de refraçã ( r ): a) ângul de incidência i NQE b) ângul de refraçã r PQO A lei de Snell-Descartes permite escrever: sen i sen r n ar u sen i n ar sen r nde n ar é índice de refraçã d ar. Cm i r + R, segue-se que: sen i sen ( r + R ) n ar sen r u, ainda, sen r. cs R + sen R. cs r n ar sen r

3 Cœlum Australe An III Nº 1 Junh de 01 Irineu Gmes Varella 3 Send R um ângul muit pequen, pdems admitir que cs R 1 e que sen R R rd. Assim, pdems reescrever a expressã anterir, cm: sen r + R rd cs r n ar sen r R rd ( n ar - 1 ) tan r () D triângul PQO, btems pela aplicaçã da lei ds sens: sen r sen( 180 z ) ρ ρ + h ρ + h E assim, tems ainda: ρ sen r ρ + h 1 + h ρ 1 + α (3) na qual, evidentemente, α h/ρ. Cm tan r sen r 1 sen r substituind-se valr de sen r dad pr (3), vem: tan r 1+ α 1 ( 1+ α) ( 1 + α) α + α + 1 sen z tan r α + α + cs z α + α cs z cs z + 1 E, finalmente, 1/ [ 1+ ( α + α )sec ] tan r tan z z (4) Cm h é pequen cmparad cm ρ, ist é, α h / ρ << 1, pdems desprezar valr de α (h/ρ), pis α < α. Desenvlvend clchete resultante em série e tmand-se apenas s dis primeirs terms, bterems:

4 Cœlum Australe An III Nº 1 Junh de 01 Irineu Gmes Varella 4 A expressã (4) trna-se entã, 1/ [ 1 + α sec z ] 1 α sec z ( 1 α ) α ( 1 ) tan r tan z sec z tan z tan z + tan z ( 1 ) 3 tan r α tan z α tan z (5) Substituind-se (5) em (), vem: R rd ( n ar - 1 ) [ ( 1 - α ) tan z - α tan 3 z ] R rd ( n ar - 1 ) ( 1 - α ) tan z - ( n ar - 1 ) α tan 3 z Transfrmand-se de radians para segunds de arc, btems: R ( n ar - 1 ) ( 1 - α ) tan z ( n ar - 1 ) α tan 3 z Clcand-se agra: ( n ar - 1 ) ( 1 - α ) A e ( n ar - 1 ) α B terems: R" A tan z + B tan 3 z (6) Os valres de A e B pdem ser determinads pel métd ds mínims quadrads a partir de distâncias zenitais de estrelas btidas quand de suas passagens meridianas. Esses ceficientes nã sã cnstantes variand cm as cndições atmsféricas (pressã e temperatura). Para a temperatura de 0 C e 760 mmhg de pressã, seus valres sã: A 60,9 e B -0,07. Os valres d ângul de refraçã (R) btids cm us desses ceficientes sã denminads refraçã média (R m ): R m 60,9 tan z - 0,07 tan 3 z (7) Para as distâncias zenitais menres que 45 pdems, na prática, desprezar term Btan 3 z que se trna muit pequen. Para valres superires a 45 pde-se utilizar (7) cm certa segurança até z 75. Para distâncias zenitais superires a esse valr existem tabelas especiais calculadas pr expressões mais rigrsas.

5 Cœlum Australe An III Nº 1 Junh de 01 Irineu Gmes Varella 5 Os valres da refraçã média devem ser crrigids para a temperatura ( em C ) e para a pressã ( em mmhg ) registradas n instante da bservaçã, btend-se a refraçã crrigida (R c ): R" c R" m P t + 73 (8) Obtid valr da refraçã crrigida, calcula-se a distância zenital tpcêntrica z t pela expressã: z t z + R" c (9) 3 - EXEMPLOS E APLICAÇÕES Exempl Observu-se uma estrela cm z , send que, n instante da bservaçã, a pressã atmsférica era de 70 mmhg e a temperatura de 0 C. Obter a distância zenital tpcêntrica dessa estrela. Cm z < 45 pdems desprezar term B tan 3 z e calcular a refraçã média pr: R m 60,9 tan z 60,9 tan ( ) 46 Cm R m é dad para as cndições de 0 C de temperatura e 760 mmhg de pressã, devems crrigir valr calculad acima para as cndições de pressã e temperatura d instante da bservaçã: R" c 46" 41" E, assim, terems z t Exempl 3. - Calcular a distância zenital tpcêntrica de uma estrela bservada cm z , nas cndições P 740 mmhg e t 30 C. Para as refrações média e crrigida terems: R" m 60,9" tan (68 17' 08") - 0,07" tan 3 (68 17' 08") ' 30" R" c ' 30" ' 11" z t 68 17' 08" + ' 11" 68 19' 19"

6 Cœlum Australe An III Nº 1 Junh de 01 Irineu Gmes Varella REFRAÇÃO ATMOSFÉRICA AO NÍVEL DO HORIZONTE Os valres d ângul R vã se trnand cada vez maires à medida que a distância zenital cresce. O gráfic abaix ilustra cresciment de R cm aument da distância zenital bservada z : Fig. - Gráfic da refraçã média em funçã da distância zenital bservada. Quand z é próxim de 90 as fórmulas anterirmente deduzidas nã frnecem resultads cmpatíveis cm as bservações. Se z 90 elas nem mesm pdem ser utilizadas pis tan 90 nã está definida. Utilizand-se uma teria mais cmpleta para a refraçã pdems bter, para a refraçã média a nivel d hriznte, valr R m 34. O alt valr de R m nessas circunstâncias faz cm que s astrs bservads nas prximidades d hriznte ( cm z 90 ) tenham, na realidade z t 90 34, u seja, encntram-se mais de mei grau abaix d hriznte. Tal fat trna-se de grande imprtância quand se prcede a cálcul ds hráris d nascer e d cas ds astrs. A distância zenital a ser utilizada nessa situaçã deve ser z t 90 34, cm as crreções da paralaxe hrizntal e d semi-diâmetr d astr, se estes apresentarem valres cnsideráveis. Para Sl e para a Lua que pssuem diâmetrs aparentes da rdem de 3' (semi-diâmetrs de 16') efeit da refraçã quand se encntram próxims d hriznte é da mesma rdem de grandeza de seus tamanhs aparentes. Desta frma, quand Sl (u a Lua) é vist surgind n hriznte leste, ele ainda se encntra abaix daquela linha. Situaçã inteiramente análga acntece n cas: quand Sl é vist se pnd a este, na realidade já cruzu aquela linha ( fig.3 ).

7 Cœlum Australe An III Nº 1 Junh de 01 Irineu Gmes Varella 7 Para cálcul da inslaçã em determinad lcal da Terra, ist é, períd de temp que determinada lcalidade recebe de luz slar em dada épca d an, s efeits da refraçã atmsférica devem ser sempre incluíds pis, n ttal diári, cntribuem cm cerca de 4 minuts a mais de luz. Fig.3 Os efeits da refraçã atmsférica a nível d hriznte. É também a refraçã prduzida pela atmsfera terrestre a respnsável pel "achatament" bservad n disc slar (fig.4) quand ele se encntra próxim a hriznte. A brda inferir d disc slar (a mais próxima d hriznte) tem mair distância zenital que a brda superir. Cm a refraçã a nível d hriznte depende frtemente d valr da distância zenital, a brda inferir sfre um desvi significativamente mair que a superir, prvcand aspect que cm freqüência bservams. Fig. 4 - Efeit da refraçã sbre disc slar nas prximidades d hriznte.

8 Cœlum Australe An III Nº 1 Junh de 01 Irineu Gmes Varella FÓRMULA DE BENNETT Há utras expressões para cálcul da refraçã atmsférica que pdem ser encntradas na literatura astrnômica. Uma delas, bastante interessante pela sua simplicidade, é a fórmula empírica devida a G.G. Bennett (198) 1 : A fórmula de Bennett permite calcular, cm ba precisã, valr da refraçã média para tds s valres da altura bservada ( h 90 - z ) de um astr entre 0 e 90 : R' m 1 ( ) 7,31 tan h + h + 4,4 (10) A refraçã média btida pela fórmula anterir encntra-se expressa em minuts de arc e vale para as cndições de P milibares e t 10 C. Nessas cndições, a expressã (10) frnece, para a refraçã a nível d hriznte ( h 0 ), valr R' m 34' 8". Para utrs valres da pressã (em milibares) e da temperatura (em C), a refraçã média, dada em (10), pde ser crrigida pela expressã: P 83 R' c R' m (11) 1010 t + 73 A fórmula de Bennett, n entant, nã apresenta resultad crret para a altura h 90 ( z 0 ). Nessa situaçã send a incidência ds rais luminss nrmal à camada atmsférica devems ter R m 0, cm as expressões apresentadas n text frnecem. Para esse valr a fórmula de Bennett indica R m - 0,08". Para s demais valres das alturas bservadas, apresenta precisã de 0,07' ( cerca de 4" ), segund seu autr. 6 - TÁBUAS DE REFRAÇÃO De aplicaçã prática imediata sã as tabelas publicadas ns anuáris astrnômics d Observatóri Nacinal e d Institut Astrnômic da USP (até 1996), que frnecem s valres da refraçã média para diverss valres da distância zenital bservada e tabelas que permitem crrigir valr anterir de acrd cm a pressã e a temperatura registradas n instante da bservaçã. A tabela I (pag.9) fi calculada para s mesms valres da distância zenital bservada (z ) apresentads nas tábuas de refraçã d Anuári Astrnômic d IAG-USP, utilizand-se a expressã (7) para a refraçã média. Os valres calculads mstram-se em perfeit acrd cm s daquela tabela, excet pr pequenas diferenças casinais, da rdem de 1", devidas as arredndaments. 1 BENNETT, G. G. The calculatin f astrnmical refractin in marine navigatin. Jurnal f Navigatin, Vl. 35, p , 198

9 Cœlum Australe An III Nº 1 Junh de 01 Irineu Gmes Varella 9 TABELA I - REFRAÇÃO MÉDIA z R m z R m z R m z R m 0 0" 49 1' 09" 69 00' ' 35" 75 00' 3' 41" 5 5" 50 1' 1" 69 30' ' 40" 75 10' 3' 44" 10 11" 51 1' 14" 70 00' ' 44" 75 0' 3' 46" 15 16" 5 1' 17" 70 10' ' 45" 75 30' 3' 49" 0 " 53 1' 0" 70 0' ' 47" 75 40' 3' 51" 1 3" 54 1' 3" 70 30' ' 48" 75 50' 3' 54" 4" 55 1' 6" 70 40' ' 50" 76 00' 3' 57" 3 6" 56 00' 1' 9" 70 50' ' 51" 76 10' 4' 00" 4 7" 56 30' 1' 31" 71 00' ' 53" 76 0' 4' 03" 5 8" 57 00' 1' 3" 71 10' ' 55" 76 30' 4' 06" 6 9" 57 30' 1' 34" 71 0' ' 56" 76 40' 4' 09" 7 31" 58 00' 1' 36" 71 30' ' 58" 76 50' 4' 1" 8 3" 58 30' 1' 38" 71 40' 3' 00" 77 00' 4' 15" 9 33" 59 00' 1' 40" 71 50' 3' 01" 77 10' 4' 18" 30 35" 59 30' 1' 4" 7 00' 3' 03" 77 0' 4' " 31 36" 60 00' 1' 44" 7 10' 3' 05" 77 30' 4' 5" 3 38" 60 30' 1' 46" 7 0' 3' 07" 77 40' 4' 9" 33 39" 61 00' 1' 48" 7 30' 3' 09" 77 50' 4' 33" 34 41" 61 30' 1' 50" 7 40' 3' 10" 78 00' 4' 36" 35 4" 6 00' 1' 53" 7 50' 3' 1" 78 10' 4' 40" 36 44" 6 30' 1' 55" 73 00' 3' 14" 78 0' 4' 44" 37 45" 63 00' 1' 57" 73 10' 3' 16" 78 30' 4' 48" 38 47" 63 30' ' 00" 73 0' 3' 18" 78 40' 4' 5" 39 49" 64 00' ' 03" 73 30' 3' 0" 78 50' 4' 56" 40 51" 64 30' ' 05" 73 40' 3' 3" 79 00' 5' 01" 41 5" 65 00' ' 08" 73 50' 3' 5" 79 10' 5' 05" 4 54" 65 30' ' 11" 74 00' 3' 7" 79 0' 5' 10" 43 56" 66 00' ' 14" 74 10' 3' 9" 79 30' 5' 15" 44 58" 66 30' ' 17" 74 0' 3' 31" 79 40' 5' 0" 45 60" 67 00' ' 1" 74 30' 3' 34" 79 50' 5' 5" 46 6" 67 30' ' 4" 74 40' 3' 36" 80 00' 5' 30" 47 64" 68 00' ' 8" 74 50' 3' 39" 48 67" 68 30' ' 3" 75 00' 3' 41" Refraçã Média

Manuel António Facas Vicente. Métodos de Determinação do Azimute por Observações Astronómicas

Manuel António Facas Vicente. Métodos de Determinação do Azimute por Observações Astronómicas Manuel Antóni Facas Vicente Métds de Determinaçã d Azimute pr Observações Astrnómicas Departament de Matemática Faculdade de Ciências e Tecnlgia Universidade de Cimbra 1997 Métds de Determinaçã d Azimute

Leia mais

Comunicado Cetip n 091/ de setembro de 2013

Comunicado Cetip n 091/ de setembro de 2013 Cmunicad Cetip n 091/2013 26 de setembr de 2013 Assunt: Aprimrament da Metdlgia da Taxa DI. O diretr-presidente da CETIP S.A. MERCADOS ORGANIZADOS infrma que, em cntinuidade às alterações infrmadas n Cmunicad

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para

Leia mais

, cujos módulos são 3N. Se F A

, cujos módulos são 3N. Se F A VTB 008 ª ETAPA Sluçã mentada da Prva de Física 0. nsidere duas frças, F A e F B, cujs móduls sã 3N. Se F A e F B fazem, respectivamente, ânguls de 60 e cm eix-x ( ângul é medid n sentid anti-hrári em

Leia mais

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público Caixas Ativas e Passivas SKY 3000, SKY 00, SKY 700, SKY 600 e NASH 144 Áreas de Cbertura e Quantidade de Públic www.studir.cm.br Hmer Sette 18-07 - 01 A área cberta pelas caixas acima, em funçã d psicinament

Leia mais

Observação de fenômenos astronômicos. Como e Para Quê ESFERA CELESTE

Observação de fenômenos astronômicos. Como e Para Quê ESFERA CELESTE Observaçã de fenômens astrnômics Pente Nrte Nascente Cm e Para Quê ESFERA CELESTE Esfera e semi-esfera celestes Crdenadas astrnômicas alti-azimutal e equatrial Plan vertical Trópic de Capricórni Equadr

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

Notas de aula prática de Mecânica dos Solos II (parte 13)

Notas de aula prática de Mecânica dos Solos II (parte 13) Ntas de aula prática de Mecânica ds Sls II (parte ) Héli Marcs Fernandes Viana Cnteúd da aula prática xercíci relacinad a cálcul d empux ativ pel métd de Rankine, qual é causad pr um sl granular (u arens)

Leia mais

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma: EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é

Leia mais

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas Apstila de Física MOVIMENTO DE QUEDA LIVRE (1 a versã - Versã prvisória - setembr/000) Prf. Petrôni Lbat de Freitas A Experiência de Galileu Observand a queda de um bjet pdems ntar que a sua velcidade

Leia mais

Questão 13. Questão 14. Resposta. Resposta

Questão 13. Questão 14. Resposta. Resposta Questã 1 O velcímetr é um instrument que indica a velcidade de um veícul. A figura abai mstra velcímetr de um carr que pde atingir 40 km/h. Observe que pnteir n centr d velcímetr gira n sentid hrári à

Leia mais

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA A.M.A. Taeira A.C.M. Barreir V.S. Bagnat Institut de Físic-Química -USP Sã Carls SP Atraés d lançament de prjéteis pde-se estudar as leis

Leia mais

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

Administração AULA- 7. Economia Mercados [3] Oferta & Procura

Administração AULA- 7. Economia Mercados [3] Oferta & Procura Administraçã AULA- 7 1 Ecnmia Mercads [3] Oferta & Prcura Prf. Isnard Martins Bibligrafia: Rsseti J. Intrduçã à Ecnmia. Atlas 06 Rbert Heilbrner Micr Ecnmia N.Gregry Mankiw Isnard Martins Pag - 1 Oferta,

Leia mais

Modulação Angular por Sinais Digitais

Modulação Angular por Sinais Digitais Mdulaçã Angular pr Sinais Digitais Cm n cas da mdulaçã em amplitude, também para a mdulaçã angular se desenvlveu uma nmenclatura especial quand se trata de sinais digitais na entrada. N cas da mdulaçã

Leia mais

VISIBILIDADE DA LUA. FASES E ECLIPSES OBSERVAÇÃO E EXPLICAÇÃO. Lua Nova

VISIBILIDADE DA LUA. FASES E ECLIPSES OBSERVAÇÃO E EXPLICAÇÃO. Lua Nova Astrnmia na Praça, na Rua e na Escla Flhet 1 Francisc de Brja López de Prad Astrnmia na Praça, na Rua e na Escla Flhet 1 Francisc de Brja López de Prad Nas atividades 6 e 7 a cabeça da pessa representa

Leia mais

AÇÃO DO VENTO EM TORRES E ESTRUTURAS SIMILARES

AÇÃO DO VENTO EM TORRES E ESTRUTURAS SIMILARES AÇÃO DO VENTO EM TORRES E ESTRUTURAS SIMILARES O tópic apresentad a seguir visa estud das frças devidas a vent em trres e estruturas similares segund a nrma brasileira NBR 6123/87. Nas trres de telecmunicações,

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC FOLH DE QUESTÕES 007 1 a QUESTÃO Valr: 1,0 Um hmem está de pé diante de um espelh plan suspens d tet pr uma mla. Sabend-se que: a distância entre s lhs d hmem

Leia mais

Cartografia e Geoprocessamento Parte 1. Geoide, Datum e Sistema de Coordenadas Geográficas

Cartografia e Geoprocessamento Parte 1. Geoide, Datum e Sistema de Coordenadas Geográficas Cartgrafia e Geprcessament Parte 1 Geide, Datum e Sistema de Crdenadas Gegráficas Cartgrafia e Geprcessament qual a relaçã? Relaçã através d espaç gegráfic; Cartgrafia representa espaç gegráfic; Geprcessament

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

ATENUAÇÃO DO CAMPO ELÉTRICO NA BAIXA IONOSFERA.

ATENUAÇÃO DO CAMPO ELÉTRICO NA BAIXA IONOSFERA. ATENUAÇÃO DO CAMPO ELÉTRICO NA BAIXA IONOSFERA. Cutinh, Alexandre Mateus. ; Carrij, Gilbert Arantes Faculdade de Engenharia Elétrica/Elétrica, Uberlândia MG, acmateus@eletrica.ufu.br Resum - O bjetiv deste

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

Observação de fenômenos astronômicos. Como e Para Quê A TERRA NA SUA ÓRBITA

Observação de fenômenos astronômicos. Como e Para Quê A TERRA NA SUA ÓRBITA Observaçã de fenômens astrnômics Cm e Para Quê A TERRA NA SUA ÓRBITA Crdenadas: Latitude e Lngitude Duraçã ds dias e das nites nas Estações d an Sl 3 Sl Desenh fra de escala Francisc de Brja López de Prad

Leia mais

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)...

Questão 46. Questão 47. Questão 48. alternativa D. alternativa B. Dados: calor específico do gelo (água no estado sólido)... Questã 46 A partir de um bjet real de altura H, dispst verticalmente diante de um instrument óptic, um artista plástic necessita bter uma imagemcnjugadadealturaigualah.nesse cas, dependend das cndições

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

AGO/2003. Palavra(s)-chave: Iluminação natural. Determinação de níveis de iluminação. Ambientes internos. Procedimento de cálculo

AGO/2003. Palavra(s)-chave: Iluminação natural. Determinação de níveis de iluminação. Ambientes internos. Procedimento de cálculo AGO/2003 Prjet 02:135.02-003 ABNT Assciaçã Brasileira de Nrmas Técnicas Iluminaçã natural Parte 3: Prcediment de cálcul para a determinaçã da iluminaçã natural em ambientes interns Sede: Ri de Janeir Av.

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr

Leia mais

Capítulo 2 SISTEMAS DE REFERÊNCIA EMPREGADOS NA IMPLANTAÇÃO DE REDES GEODÉSICAS NO BRASIL

Capítulo 2 SISTEMAS DE REFERÊNCIA EMPREGADOS NA IMPLANTAÇÃO DE REDES GEODÉSICAS NO BRASIL 1 Capítul SISTEMAS DE REFERÊNCIA EMPREGADOS NA IMPLANTAÇÃO DE REDES GEODÉSICAS NO BRASIL Send dad um sistema de referência cartesian fix, qualquer pnt d espaç é determinad de maneira única pr suas crdenadas

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Avenida Prfessr Mell Mraes, nº 1. CEP 05508-900, Sã Paul, SP. PME 100 MECÂNICA A Terceira Prva 11 de nvembr de 009 Duraçã da Prva: 10 minuts (nã é permitid us de calculadras) 1ª Questã (,5 pnts): Um sólid

Leia mais

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim Estud da Cnvergência d Métd de Newtn-Raphsn Deseja-se mstrar que, se Métd de Newtn-Raphsn cnverge, esta cnvergência se dá para a raiz (zer da unçã. Hipótese: A raiz α é única n interval [a,b]. Deine-se

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

Circuitos de Corrente Alternada I

Circuitos de Corrente Alternada I Institut de Física de Sã Carls Labratóri de Eletricidade e Magnetism: Circuits de Crrente Alternada I Circuits de Crrente Alternada I Nesta prática, estudarems circuits de crrente alternada e intrduzirems

Leia mais

Física FUVEST ETAPA. Resposta QUESTÃO 1 QUESTÃO 2. b) A energia cinética (E c ) do meteoro é dada por:

Física FUVEST ETAPA. Resposta QUESTÃO 1 QUESTÃO 2. b) A energia cinética (E c ) do meteoro é dada por: Física QUSTÃO 1 Uma das hipóteses para explicar a extinçã ds dinssaurs, crrida há cerca de 6 milhões de ans, fi a clisã de um grande meter cm a Terra. stimativas indicam que meter tinha massa igual a 1

Leia mais

Introdução. Aula 3: Movimento Anual do Sol e Estações do Ano.

Introdução. Aula 3: Movimento Anual do Sol e Estações do Ano. Aula 3: Mviment Anual d Sl e Estações d An. Maria de Fátima Oliveira Saraiva, Kepler de Suza Oliveira Filh &Alexei Machad Müller O espetácul d pr d sl n Guaíba, em Prt Alegre. Intrduçã Prezad alun, Observar

Leia mais

Nascer e Ocaso dos Astros

Nascer e Ocaso dos Astros Nascer e Ocaso dos Astros Incluindo refração atmosférica 9 11 2011 J. Melendez, baseado no Prof. R. Boczko IAG-USP Astro puntiforme Sem refração Astro extenso Sem refração Astro puntiforme Com refração

Leia mais

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas Capítul 6 - Medidres de Grandezas Elétricas Periódicas 6. Intrduçã Neste capítul será estudad princípi de funcinament ds instruments utilizads para medir grandezas (tensões e crrentes) periódicas. Em circuits

Leia mais

MODELO DE ESTIMATIVA DE RADIAÇÃO SOLAR POR SATÉLITE NO CPTEC: VERSÃO GL1.2

MODELO DE ESTIMATIVA DE RADIAÇÃO SOLAR POR SATÉLITE NO CPTEC: VERSÃO GL1.2 MODELO DE ESTIMATIVA DE RADIAÇÃO SOLAR POR SATÉLITE NO CPTEC: VERSÃO GL1.2 Juan Carls Ceballs e Marcus Jrge Bttin CPTEC / INPE 12630 Cacheira Paulista SP e-mails: ceballs@cptec.inpe.br e bttin@cptec.inpe.br

Leia mais

Difração. I. Difração como conseqüência do princípio de Huygens-Fresnel

Difração. I. Difração como conseqüência do princípio de Huygens-Fresnel Nesta prática, estudarems fenômen de difraçã. Em particular, analisarems fendas retangulares simples e duplas e redes de difraçã. Medidas quantitativas d padrã de difraçã ns permitirã, entre utras cisas,

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações.

A nova metodologia de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e volumes, não mais em operações. Taxa DI Cetip Critéri de apuraçã a partir de 07/10/2013 As estatísticas d ativ Taxa DI-Cetip Over (Extra-Grup) sã calculadas e divulgadas pela Cetip, apuradas cm base nas perações de emissã de Depósits

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

ROTEIRO DE RECUPERAÇÃO SEMESTRAL DE GEOGRAFIA

ROTEIRO DE RECUPERAÇÃO SEMESTRAL DE GEOGRAFIA ROTEIRO DE RECUPERAÇÃO SEMESTRAL DE GEOGRAFIA Nme: Nº 1 a. Série Data: / / Prfessres: Fabiana, Nelsn e Sergi Nta: (valr: 1,0 para cada bimestre) 2º bimestre A - Intrduçã Neste semestre, sua nta fi inferir

Leia mais

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

Física A Extensivo V. 8

Física A Extensivo V. 8 Física Extensi V. 8 esla ula 9 9.) E Cnseraçã da quantidade de miment m. + m. = m. + m. m. + m. = m. + m. + = + + = + + = (I) Clisã perfeitamente elástica e = = + = (II) Mntand-se um sistema cm I e II,

Leia mais

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA.

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA. IME ITA Apstila ITA Intrduçã C 0 A trignmetria é um assunt que vei se desenvlvend a lng da história, nã tend uma rigem precisa. A palavra trignmetria fi criada em 595 pel matemátic alemã arthlmaus Pitiscus

Leia mais

Exercícios complementares às notas de aulas de Estradas (parte 7) Curvas horizontais de transição

Exercícios complementares às notas de aulas de Estradas (parte 7) Curvas horizontais de transição 1 Exercícis cpleentares às ntas de aulas de Estradas (parte 7) Heli Marcs Fernandes Viana Tea: urvas hrizntais de transiçã Heli Marcs Fernandes Viana 2 Exercíci 1 Para realizaçã d prjet de ua curva hrizntal

Leia mais

AULA CORRENTE CONTÍNUA E ALTERNADA

AULA CORRENTE CONTÍNUA E ALTERNADA APOSTILA ELÉTRIA PARA AULA 11 MÓDULO - 1 ORRENTE ONTÍNUA E ALTERNADA Induçã Eletrmagnética Geraçã de crrente cntínua e alternada Frmas de nda - icl - Períd - Frequência lts de pic e pic-a-pic Tensã eficaz

Leia mais

Compactação. Material de apoio COMPACTAÇÃO DOS SOLOS. Curso básico de mecânica dos solos (Carlos Souza Pinto, Oficina de Textos, 2006); Sumário

Compactação. Material de apoio COMPACTAÇÃO DOS SOLOS. Curso básico de mecânica dos solos (Carlos Souza Pinto, Oficina de Textos, 2006); Sumário Universidade Paulista Institut de Ciências Exatas e Tecnlgia Departament de Engenharia Civil Prfessra Mema Castr, MSc. 1 Material de api 2 Curs básic de mecânica ds sls (Carls Suza Pint, Oficina de Texts,

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

Análise da Paisagem Pedreira "Mané"

Análise da Paisagem Pedreira Mané Legenda Curvas de nível EN 246 Caminh de Ferr Estradas Nacinais Hipsmetria 240-250 250,0000001-260 260,0000001-270 270,0000001-280 280,0000001-290 290,0000001-300 300,0000001-310 EN 243 Fntes: Cartas Militares

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

As propriedades do gás estelar

As propriedades do gás estelar As prpriedades d gás estelar Estrelas sã massas gassas mantidas gravitacinalmente cm uma frma quase esférica e que apresentam prduçã própria de energia. A definiçã acima, além de nã ser a mais precisa

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #4 () O circuit a seguir é usad cm pré-amplificadr e

Leia mais

Ajuste Fino. Por Loud custom Shop Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS

Ajuste Fino. Por Loud custom Shop Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS Ajuste Fin Pr Lud custm Shp Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS AJUSTE FINO Uma das cisas mais bacanas n mund da guitarra é fat de nã existir cert u errad. Sempre irá existir muitas

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

Descarte de Pilhas e Baterias: Nós podemos contribuir. Segundo o IBGE, o consumo mundial de pilhas, em 2010, foi de

Descarte de Pilhas e Baterias: Nós podemos contribuir. Segundo o IBGE, o consumo mundial de pilhas, em 2010, foi de Descarte de Pilhas e Baterias: Nós pdems cntribuir Segund IBGE, cnsum mundial de pilhas, em 2010, fi de aprximadamente 10 bilhões de unidades. Iss demnstra quant fazems us desse prdut e a tendência é cresciment

Leia mais

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO

Transformadores. Transformadores 1.1- INTRODUÇÃO 1.2- PRINCÍPIO DE FUNCIONAMENTO Transfrmadres 1.1- INTRODUÇÃO N estud da crrente alternada bservams algumas vantagens da CA em relaçã a CC. A mair vantagem da CA está relacinada cm a facilidade de se elevar u abaixar a tensã em um circuit,

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C

Questão 48. Questão 46. Questão 47. Questão 49. alternativa A. alternativa B. alternativa C Questã 46 O ceficiente de atrit e índice de refraçã sã grandezas adimensinais, u seja, sã valres numérics sem unidade. Iss acntece prque a) sã definids pela razã entre grandezas de mesma dimensã. b) nã

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 2 TRIGONOMETRIA ESFÉRICA E POSIÇÃO DO SOL Definições gerais. Triângul de Psiçã. Relações entre distância zenital ( Z ), azimute ( A ), ângul hrári ( H ), declinaçã (δ ). Efeit da precessã ds equinócis

Leia mais

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE Algumas sentenças nã pdem ser expressas apenas cm us de símbls prpsicinais, parênteses e cnectivs lógics exempl: a sentenç a Para td x, x >0

Leia mais

PPGEP Comentários Iniciais CAPÍTULO 7 TESTE DE HIPÓTESE UFRGS. Testes de Hipótese

PPGEP Comentários Iniciais CAPÍTULO 7 TESTE DE HIPÓTESE UFRGS. Testes de Hipótese CAPÍTULO 7 7.. Cmentáris Iniciais Uma hipótese estatística é uma afirmativa a respeit de um parâmetr de uma distribuiçã de prbabilidade. Pr exempl, pdems frmular a hipótese que a prdutividade,5 peças/hra.

Leia mais

Introdução às Redes e Serviços de Telecomunicações

Introdução às Redes e Serviços de Telecomunicações Capítul 1 Intrduçã às Redes e Serviçs de Telecmunicações 1.1 Intrduçã Neste capítul apresenta-se a resluçã de alguns prblemas e prpõem-se alguns exercícis adicinais referentes à matéria d capítul 1 de

Leia mais

Translação e rotação de sistemas

Translação e rotação de sistemas Prf. Dr. Carls Auréli Nadal X Y Translaçã de um sistema de crdenadas X 1 1 Y 1 X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas

Leia mais

Valor das aposentadorias

Valor das aposentadorias Valr das apsentadrias O que é? O cálcul d valr de apsentadrias é a frma cm s sistemas d INSS estã prgramads para cumprir que está previst na legislaçã em vigr e definir valr inicial que vai ser pag mensalmente

Leia mais

Solução Comentada da Prova de Química

Solução Comentada da Prova de Química Sluçã Cmentada da Prva de Química 01. A percentagem de dióxid de titâni, um pigment usad em tintas de cr branca, em um minéri pde ser determinada a partir da seguinte reaçã: 3Ti 2 (s) + 4BrF 3 (l) 3TiF

Leia mais

TOPOGRAFIA RUMOS E AZIMUTES MAGNÉTICOS E VERDADEIROS

TOPOGRAFIA RUMOS E AZIMUTES MAGNÉTICOS E VERDADEIROS 200784 Tpgrafia I TOPOGRAFIA RUMOS E AZIMUTES MAGNÉTICOS E VERDADEIROS Prf. Carls Eduard Trccli Pastana pastana@prjeta.cm.br (14) 3422-4244 AULA 8 1. Nrte Magnétic e Gegráfic O planeta Terra pde ser cnsiderad

Leia mais

Seminários de Ensino de Matemática 25/08/09

Seminários de Ensino de Matemática 25/08/09 Semináris de Ensin de Matemática 25/08/09 Encntrand caminhs mínims cm blhas de sabã 1. O prblema da menr malha viária Jsé Luiz Pastre Mell jlpmell@ul.cm.br O caminh mais curt ligand dis pnts n plan euclidian

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

v. Brahrnananda Rao e Sergio H. Franchito

v. Brahrnananda Rao e Sergio H. Franchito 34 SIMULAçA DO CICLO ANUAI DA ATMOSFERA COM UM MODELO MtDIA ZONAL v. Brahrnananda Ra e Sergi H. Franchit Institut Nacinal de Pesquisas Espaciais - INPE 12201-970, C.P. 1, sá Jsé ds Camps, SP ABSTRACT Since

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica Cartgrafia e Geprcessament Parte 2 Prjeçã Cartgráfica Recapituland... Geide; Datum: Planimétrics e Altimétrics; Tpcêntrics e Gecêntrics. Data ficiais ds países; N Brasil: Córreg Alegre, SAD69 e SIRGAS

Leia mais

Introdução. Aula 2 - Astronomia antiga, esfera celeste e movimento diurno dos astros.

Introdução. Aula 2 - Astronomia antiga, esfera celeste e movimento diurno dos astros. Aula 2 - Astrnmia antiga, esfera celeste e mviment diurn ds astrs. Área 1, Aula 2 Alexei Machad Müller, Maria de Fátima Oliveira Saraiva & Kepler de Suza Oliveira Filh Reprduçã da gravura de Flamarin,

Leia mais

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO Última Revisã: 02/06/2014 1. RESUMO CADASTRO Cliente preenche Frmulári de Cadastr CONFIRMAÇÃO DE CADASTRO A FH envia um e-mail de cnfirmaçã de cadastr para cliente

Leia mais

Prova Escrita e Prova Oral de Inglês

Prova Escrita e Prova Oral de Inglês AGRUPAMENTO DE ESCOLAS AURÉLIA DE SOUSA PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Prva Escrita e Prva Oral de Inglês 11.º An de esclaridade DECRETO-LEI n.º 139/2012, de 5 de julh Prva (n.º367) 1.ªe 2.ª Fase 6

Leia mais

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS COMÉRCIO EXTERIOR - REGULAR TERCEIRA SÉRIE NOME: EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS TESTES 1) Cnjunt sluçã da equaçã z z 0, n cnjunt ds númers cmplexs, é: a), 0, - c) d) e) 0 5 ) O cnjugad d númer

Leia mais

PESQUISA EM ANDAMENTO

PESQUISA EM ANDAMENTO ISSN 0100-7858 El'!'presa Brasileira de Pesquisa Ag'rpecuéria - EMBRAPA Vinculada a Ministéri da Agricultura Centr Nacinal de Pesquisa de Gad de Crte - CNPGC RdvIa BR 262, km 4 C aixa Pstal 154 79100 Camp

Leia mais

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS

BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS MARIA HELENA CUNHA Área Científica de Matemática - Escla Superir de

Leia mais

Instrumentos ópticos

Instrumentos ópticos Instruments óptics O h A uz entra n h através duma abertura variáve pupia. A córnea e cristain junts cam a imagem sbre a retina, que cntém cerca de cem mihões de sensres de uz (s bastnetes e s cnes)ë As

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

Aula 10 Resposta em Freqüência de Sistemas Lineares Diagramas de Bode Introdução

Aula 10 Resposta em Freqüência de Sistemas Lineares Diagramas de Bode Introdução Aula 0 Respsta em Freqüência de Sistemas Lineares Diagramas de Bde Intrduçã Diagramas de Bde Escala Lgarítmica de Amplitude Escala Lgarítmica de Freqüência Análise ds Terms das Funções de Transferência

Leia mais