Campo magnético criado por uma corrente eléctrica e Lei de Faraday

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Campo magnético criado por uma corrente eléctrica e Lei de Faraday"

Transcrição

1 Campo magnéico ciado po uma coene elécica e Lei de Faaday 1.Objecivos (Rev. -007/008) 1) Esudo do campo magnéico de um conjuno de espias (bobine) pecoidas po uma coene elécica. ) Esudo da lei de indução de Faaday.. Inodução Nesa expeiência são exploadas duas leis que fazem pae dos fundamenos da física e com gandes implicações na ecnologia modena, sobeudo em quase odos os amos da engenhaia elecónica. São fundamenais, po exemplo, no pojeco de cicuios elecónicos, na consução de maquinaia elécica, ou na ansmissão de enegia elécica. A pimeia desas leis, a lei de Bio-Sava, desceve a elação ene a coene elécica que aavessa um pequeno oço de fio conduo e o campo magnéico geado po esa coene na egião do espaço à vola do fio. A lei de Bio-Sava afima que o campo magnéico decai com o inveso do quadado da disância ao segmeno de fio pecoido po coene. Conhecemos ese ipo de compoameno na elecosáica, quando se considea a elação ene uma caga elécica e o seu campo elécico associado, descio pela lei de Coulomb. Conudo, além do seu valo, a coene possui ambém um paâmeo de dieccionalidade que não exise no caso das cagas elécicas esáicas. Logo, o veco campo magnéico eá de se elaciona não só com a disância ao fio conduo, mas ambém com a diecção da coene no conduo, o que ona a lei de Bio-Sava mais complexa quando compaada com a lei de Coulomb. A segunda lei consideada nesa expeiência é a lei de Faaday. Esa lei desceve o compoameno de um cicuio imeso num campo magnéico vaiável: os poadoes de caga no cicuio ficam sujeios a foças que oiginam uma queda de poencial nos exemos do cicuio (a chamada foça elecomoiz), se ese esive abeo, ou o coespondene fluxo de coene, se o cicuio esive fechado. 3. Maeial Bobines: Enolameno de campo e enolameno de ese Geado de sinais; osciloscópio de canais; esisências de 10 kω; fios de ligação elécica. 4. Lei de Bio-Sava. O campo magnéico duma espia Uma coene elécica I, ao flui num cicuio oigina um campo magnéico no espaço à vola do conduo (Fig.1). Considee um compimeno elemena,, de fio conduo. Pela lei de Bio- Sava o campo magnéico elemena poduzido, db, a uma disância do ceno do elemeno é dado po = [ ] µ I s db B = 0 4 π 3 (1) -1 -

2 onde, db e são quanidades vecoiais. Os seus módulos são, especivamene, db e e esce- vemos poposiadamene e db, em vez de s e B, paa indica que esamos a fala do elemeno de campo poduzido pelo elemeno de fio e não po odo o fio. δ P I [ x ] I O senido de é o senido da inensidade de coene, com a diecção coincidene com o compimeno do fio, o veco apona de paa o pono P no espaço onde se peende conhece o campo magnéico. A pemeabilidade magnéica, µ 0, oma o valo de 4π.10-7 Tm/A no Sisema Inenacional de Unidades (SI), em que T - Tesla, epesena a unidade de campo magnéico. O esulado do poduo vecoial [ d x] é um novo veco, simulaneamene pependicula a e a e de módulo igual a (..sinδ). Consideando eses valoes emos que o módulo do campo magnéico seá dado po µ I δ db = 0 sin 4π onde δ epesena o ângulo fomado pelos vecoes e. Paa se obe o valo do campo ciado pela oalidade do compimeno de fio no pono P, emos de soma (inega) odos os elemenos do fio. Esa é gealmene uma aefa difícil, pois que a conibuição de cada elemeno paa o campo oal é em geal difeene em módulo e senido. Conudo, em alguns casos especiais o cálculo ealiza-se com facilidade. O cálculo do campo oal num pono P localizado sobe o eixo de uma espia cicula de aio R, à disância X do ceno da espia, é um desses casos R paiculaes (ve Fig.). X P Se em luga de uma espia única ivemos uma bobina compaca de N espias, emos um enolameno oal de N volas e o campo magnéico seá, com boa apoximação, N vezes o campo de Figua uma única espia. O valo do módulo do campo magnéico B num pono P sobe o eixo XX (Fig.), oiginado pelo conjuno das espias de um enolameno cicula, é dado po µ I NR B = db = 0 x R + X 3 (3) Figua 1 Paa ponos foa do eixo dos XX, o campo é basane mais difícil de calcula poque a soma da componene B y ao longo da espia já não se anula. Em odos os ponos dese abalho as medições seão ealizadas sobe o eixo dos XX. () - -

3 5. Indução (Lei de Faaday) LEO - MEFT+MBiom+LMAC Se uma espia de áea oienada A se encona megulhada num campo magnéico, B, ela é aavessada po um fluxo magnéico dado po φ = A B = AB cos δ (4) O veco que epesena a áea possui um módulo igual a A, sendo a sua oienação no senido do eixo da espia, iso é, pependicula à áea. O fluxo é obido pelo poduo ineno de dois vecoes sendo δ ângulo ene eles. Como a função cos assume o seu valo máximo paa δ = 0º, o fluxo é máximo quando os vecoes A e B foem paalelos. Suponhamos que uilizamos uma dada espia paa poduzi um campo magnéico. Segundo a equação (3), se a coene que aavessa a espia vaia no empo, ambém o campo eá uma vaiação no empo popocional à coene. Uma única espia de ese, mais pequena, colocada no campo magnéico da espia maio, esá sujeia a um fluxo magnéico vaiável no empo. A lei de Faaday diz-nos que um fluxo magnéico vaiável no empo induz uma foça elecomoiz (uma queda de ensão) no cicuio da bobina de ese dada po V = dφφ (5) d onde d é o inevalo de empo em que ocoe a vaiação de fluxo d φ. Se uilizamos um pequeno enolameno de ese com N volas em vez de uma única espia, a queda de ensão induzida no enolameno de ese seá N vezes supeio. Nesa expeiência, o enolameno poduo do campo ( enolameno de campo ) é alimenado po uma coene de foma iangula, em que a subida do sinal iangula é epesenada pela equação I( ) = C 0. (6) sendo C 0 o declive consane fixado pelo geado de sinais que fonece a coene ao enolameno. Desa maneia a vaiação do campo magnéico, assim como o fluxo poduzido pelo enolameno poduo do campo, êm igualmene um declive consane desde que se possa despeza a componene do fluxo devido à coene auo-induzida. Paa que o valo da coene de auoindução seja despezável, a coene oal no enolameno de campo é limiada po uma esisência em séie de 10 kω e a fequência de vaiação do sinal deveá mane-se abaixo de 1 khz. Nesas condições asseguamos que o enolameno de ese apesene uma queda de ensão induzida, V, consane, na pae cescene da onda iangula, e uma queda de I ge +I p -I p V ese +V p -V p T / Figua 3-3 -

4 ensão consane, de sinal oposo, na pae decescene (Fig.3). Apêndice A Dedução da fómula paa o cálculo do campo B exp : Sendo A a áea de uma espia da bobine de ese e n o seu númeo de espias, a ensão aos e minais desa bobina é dada po V db = n A d c sendo B c o campo magnéico ciado pelo enolameno de campo. Assim, no caso de um campo de valo cescene com a ensão, a pai de B c (0) = 0 B = B c B 0 T num inevalo de empo T/, obêm-se (8) V = n A B 0 T (9) e po conseguine o valo máximo do campo é dado po V T B c = n A (10) com T = 1/f f.. A expessão (3) com x = 0 pemie-nos obe o valo eóico máximo do campo B I P N B eo = µ 0 P R (11) (7) enquano que da expessão (10) seá obido o coespondene valo expeimenal B 0 V T B exp = = n A 4 (1) - 4 -

5 6. Pocedimeno expeimenal e Análise de dados 6.1 Cálculo do campo magnéico Ligue o geado de sinais ao enolameno (bobine) de campo e ao canal_1 do osciloscópio, como vem epesenado no esquema da Fig.4. A esisência de 10kΩ deveá esa em séie com o enolameno desa bobine paa limia a coene que a aavessa. Ese esquema pemie calcula a coene que aavessa o enolameno de campo, I, a pai da ensão do geado de sinais, V g, medida no osciloscópio (canal_1). Geado de sinal Osciloscópio 10 kω Vg V c V Bobina de campo Bobina de ese 10 kω 1 kω Figua 4 Ligue o enolameno (bobine) de ese a oua esisência de 10 kω e ao canal_ do osciloscópio. Meça o valo do campo no ceno do enolameno de campo, colocando o enolameno de ese no ceno do enolameno de campo. Os dois enolamenos, ese (seach) e campo (field), deveão esa paalelos. Seleccione a fequência do geado de sinais paa 100 Hz e a foma de ensão paa uma ensão iangula. Vaie a ensão de saída do geado confome os valoes fonecidos. Regise a queda de ensão (pico a pico) do geado, V g, e do enolameno de ese, V. Calcule e indique o valo dos eos no quado. Repei paa 5 valoes difeenes de ensão dadas e faze o gáfico de V ese em função de V geado. Paa o enolameno de ese e paa o enolameno do campo anoe e calcule: Númeo de espias no enolameno de ese: n = Raio do enolameno de ese: R = ± cm Áea do enolameno de ese: A = ± cm Númeo de espias no enolameno de campo: N c = Raio do enolameno de campo: R c = ± cm -5 -

6 Medição Tensão enolameno Tensão do geado V g (V) ese V (V) Inensidade da coene I p (A) B exp (T) B eo (T) Calcule o campo magnéico expeimenal a pai da queda de ensão no enolameno de ese uilizando a equação (1). Compae o esulado com o valo do campo eóico calculado a pai da equação (11) (eá de calcula o valo de I p a pai da ensão V p do geado) Compaação de valoes do campo magnéico: B exp = ± T B eo = ± T Obsevações: - 6 -

7 6. Dependência da fequência LEO - MEFT+MBiom+LMAC Seleccione inicialmene a fequência do geado de sinais paa 100 Hz e a foma de ensão paa uma ensão sinusoidal com o valo de 0 V pico a pico. Vaie a fequência do geado confome os valoes fonecidos paa a abela. Regise a queda de ensão (pico a pico) do enolameno de ese, V. Calcule e indique o valo dos eos no quado. Faça o gáfico de V ese em função de V e calcule a dependência do valo da ensão sinusoidal geado no enolameno de ese com as fequências imposas pelo geado. Dê uma explicação qualiaiva da dependência da ensão no enolameno de ese com a fequência. Seá a explicação a mesma paa valoes infeioes a 100 Hz e muio supeioes a 1000 Hz? Medição Fequência no geado f (Hz) f geado (Hz) Tensão enol. de ese V (V) V ese Obsevações: -7 -

8 6.3 Dependência da disância ene enolamenos Seleccione a fequência do geado de sinais paa 00 Hz e a foma de ensão paa sinusoidal com o valo de 0 V pico a pico. Meça o campo (módulo e senido) ou seja, egise a queda de ensão (pico a pico) do enolameno de ese, V, no ceno e em 5 ponos adicionais ao longo do eixo do enolameno de campo, no máximo aé 10 cm do ceno. Indique o valo dos eos no quado. Faça um gáfico de V ese em função da disância ene enolamenos e compae com o compoameno da eoia (equ. 3). Explique qualiaivamene os esulados obidos. Medição Disância ene bobines X (cm) Tensão bobine ese V (V) V ese Obsevações: - 8 -

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Campo Magnético de Espiras e a Lei de Faraday

Campo Magnético de Espiras e a Lei de Faraday Campo Magnético de Espiras e a Lei de Faraday Semestre I - 005/006 1.Objectivos 1) Estudo do campo magnético de espiras percorridas por corrente eléctrica. ) Estudo da lei de indução de Faraday.. Introdução

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Movimentos bi e tridimensional 35 TRIDIMENSIONAL

Movimentos bi e tridimensional 35 TRIDIMENSIONAL Moimenos bi e idimensional 35 3 MOVIMENTOS BI E TRIDIMENSIONAL 3.1 Inodução O moimeno unidimensional que imos no capíulo aneio é um caso paicula de uma classe mais ampla de moimenos que ocoem em duas ou

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

O sistema constituído por um número infinito de partículas é vulgarmente designado por sólido.

O sistema constituído por um número infinito de partículas é vulgarmente designado por sólido. Capíulo CINEMÁTIC DE UM SISTEM DE PRTÍCULS. INTRODUÇÃO Po sisema de paículas, ou sisema de ponos maeiais, designa-se um conjuno finio ou infinio de paículas, de al modo que a disância ene qualque dos seus

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

UMA METODOLOGIA PARA A SIMULAÇÃO NUMÉRICA DE COMPRESSORES. Dissertação submetida à UNIVERSIDADE FEDERAL DE SANTA CATARINA. para a obtenção do grau de

UMA METODOLOGIA PARA A SIMULAÇÃO NUMÉRICA DE COMPRESSORES. Dissertação submetida à UNIVERSIDADE FEDERAL DE SANTA CATARINA. para a obtenção do grau de UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA UMA METODOLOGIA PARA A SIMULAÇÃO NUMÉRICA DE COMPRESSORES Disseação submeida à UNIVERSIDADE FEDERAL DE SANTA CATARINA

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

Princípios de conservação e Equação de Evolução

Princípios de conservação e Equação de Evolução Pincípios de consevação e Equação de Evolução Os pincípios fundamenais da Mecânica aplicam-se a copos maeiais e po isso em fluidos aplicam-se a uma poção de fluido e não a um volume fixo do espaço. Ese

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

4 Descrição de permutadores

4 Descrição de permutadores Aponameno de Pemuadoe de alo Equipameno émico 005 João Luí oe Azevedo 4 ecição de pemuadoe Nea ecção vão deceve-e o pincipai ipo de pemuadoe de calo de conaco indieco com anfeência dieca, ou eja, equipameno

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

Cap. 3: ROI do Governo e as Contas Públicas 1GE211: MACROECONOMIA II

Cap. 3: ROI do Governo e as Contas Públicas 1GE211: MACROECONOMIA II Cap. 3: ROI do oveno e as Conas Públicas E: MACROECONOMIA II Equipa de Macoeconomia II, 04/05 Capíulo 3. Resição Oçamenal Ineempoal do oveno e as Conas Públicas 3.. Facos sobe as Conas Públicas na Economia

Leia mais

Capítulo 5 Trabalho e Energia

Capítulo 5 Trabalho e Energia Caíulo 5 Tabalho e Enegia 5.1 Imulso Resolvendo a equação fundamenal da dinâmica, aa uma aícula; d F = (5.1) d conhecendo a foça F em função do emo, o inegação, emos; ou d = Fd (5.) = Fd = I (5.3) I chamamos

Leia mais

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES CAPITULO 1 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS Prof. SILVIO LOBO RODRIGUES 1.1 INTRODUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA FENG Desinase o primeiro capíulo

Leia mais

Transmissão de calor

Transmissão de calor UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia ansmissão de calo 3º ano Pof D. Engº Joge Nhambiu Aula. Equação difeencial de condução de calo Equação difeencial de condução de calo Dedução da equação

Leia mais

Resposta no tempo de sistemas de primeira e de segunda ordem só com pólos

Resposta no tempo de sistemas de primeira e de segunda ordem só com pólos Resposa o empo de sisemas de pimeia e de seguda odem só com pólos Luís Boges de Almeida Maio de Iodução Esas oas apeseam, de foma sumáia, o esudo da esposa o empo dos sisemas de pimeia e de seguda odem

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA LIMA, Nélio Neves; CUNHA, Ygho Peteson Socoo Alves MARRA, Enes Gonçalves. Escola de Engenhaia Elética

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009)

ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009) ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Pofesso : Humbeo Anônio Baun d Azevedo ª LISTA DE EXERCÍCIOS (Aualizada em abil de 009 1 Dados A (1, 0, -1, B (, 1,, C (1, 3, 4 e D (-3, 0, 4 Deemina: a

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

Separação Cromatografica. Docente: João Salvador Fernandes Lab. de Tecnologia Electroquímica Pavilhão de Minas, 2º Andar Ext. 1964

Separação Cromatografica. Docente: João Salvador Fernandes Lab. de Tecnologia Electroquímica Pavilhão de Minas, 2º Andar Ext. 1964 Sepaação Comaogafica Docene: João Salvado Fenandes Lab. de Tecnologia Elecoquímica Pavilhão de Minas, º Anda Ex. 964 Sepaação Comaogáfica envolve ineacções ene um soluo numa fase móvel (eluene) e um leio

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

Espaço SENAI. Missão do Sistema SENAI

Espaço SENAI. Missão do Sistema SENAI Sumário Inrodução 5 Gerador de funções 6 Caracerísicas de geradores de funções 6 Tipos de sinal fornecidos 6 Faixa de freqüência 7 Tensão máxima de pico a pico na saída 7 Impedância de saída 7 Disposiivos

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

Medição de Potência. Jorge Guilherme 2008 #20 2 R. Elementos reactivos ou armazenadores de energia Elementos resistivos ou dissipadores de energia

Medição de Potência. Jorge Guilherme 2008 #20 2 R. Elementos reactivos ou armazenadores de energia Elementos resistivos ou dissipadores de energia Elecrónica de nsrumenação edição de oência Jorge Guilherme 008 #0 oência em.. U ce., ce. Elecrónica de nsrumenação U. [] oência em.a. p( u(. i( [] oência insanânea Num circuio resisivo puro i( u( / u (

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Linhas de Campo Magnético

Linhas de Campo Magnético Linha de Campo Magnético Popiedade da Linha de Campo Magnético Não há evidência expeimental de monopolo magnético (pólo iolado) Etutua magnética mai imple: dipolo magnético Linha de Campo Magnético ão

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Marins Seúbal Prof. Carlos Cunha 1ª Ficha de Avaliação FÍSICO QUÍMICA A ANO LECTIVO 2006 / 2007 ANO II N. º NOME: TURMA: C CLASSIFICAÇÃO Grisson e a sua equipa são chamados

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

Capítulo VII Campo Magnético e suas fontes

Capítulo VII Campo Magnético e suas fontes ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 Capítulo VII Campo Magnético e suas fontes 7.1 Efeitos magnéticos na natueza 7.1.1 Beve intodução históica As obsevações e

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

CAL. 6T63 ÍNDICE PORTUGUÊS. Português. n HORA/CALENDÁRIO Ponteiros de 24 horas, horas, minutos e pequeno dos segundos

CAL. 6T63 ÍNDICE PORTUGUÊS. Português. n HORA/CALENDÁRIO Ponteiros de 24 horas, horas, minutos e pequeno dos segundos PORTUGUÊS 78 ÍNDICE Página CORO TIPO BLOQUEIO ROSC... 80 CERTO D HOR... 81 CERTO DO DI DO MÊS... 82 CRONÓMETRO... 83 OPERÇÃO DO BOTÃO DE BLOQUEIO DE SEGURNÇ... 85 TQUÍMETRO... 86 TELÉMETRO... 88 SUBSTITUIÇÃO

Leia mais

Escoamentos Compressíveis. Capítulo 06 Forma diferencial das equações de conservação para escoamentos invíscidos

Escoamentos Compressíveis. Capítulo 06 Forma diferencial das equações de conservação para escoamentos invíscidos Escoamenos Compessíveis Capíulo 06 Foma difeencial das equações de consevação paa escoamenos invíscidos 6. Inodução A análise de poblemas na dinâmica de fluidos eque ês passos iniciais: Deeminação de um

Leia mais

2 Conceitos de transmissão de dados

2 Conceitos de transmissão de dados 2 Conceios de ransmissão de dados 2 Conceios de ransmissão de dados 1/23 2.2.1 Fones de aenuação e disorção de sinal 2.2.1 Fones de aenuação e disorção do sinal (coninuação) 2/23 Imperfeições do canal

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS APÍTULO III TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS A- TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS Vimos aé aqui que para calcularmos as ensões em

Leia mais

Figura 1 Carga de um circuito RC série

Figura 1 Carga de um circuito RC série ASSOIAÇÃO EDUAIONAL DOM BOSO FAULDADE DE ENGENHAIA DE ESENDE ENGENHAIA ELÉTIA ELETÔNIA Disciplina: Laboraório de ircuios Eléricos orrene onínua 1. Objeivo Sempre que um capacior é carregado ou descarregado

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

ANÁLISE DE ESTRATÉGIAS LONG-SHORT TRADING COM RÁCIOS DE VARIÂNCIAS. Por José Sousa. Resumo 1

ANÁLISE DE ESTRATÉGIAS LONG-SHORT TRADING COM RÁCIOS DE VARIÂNCIAS. Por José Sousa. Resumo 1 ANÁLIE DE ETRATÉGIA LONG-HORT TRADING COM RÁCIO DE VARIÂNCIA Po José ousa Resumo Nese abalho são aplicados os eses de ácios de vaiâncias aos speads de índices accionisas. Os speads uilizados foam consuídos

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009 Tese Inermédio de Física e Química A Tese Inermédio Física e Química A Versão Duração do Tese: 90 minuos 26.05.2009.º ou 2.º Anos de Escolaridade Decreo-Lei n.º 74/2004, de 26 de Março Na folha de resposas,

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aiidades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 3 1.1 Velocidade.............................. 3 1.2 Represenações do moimeno................... 7 1.3 Aceleração em uma

Leia mais

67.301/1. RLP 10 & 20: Controlador pneumático de volume-caudal. Sauter Components

67.301/1. RLP 10 & 20: Controlador pneumático de volume-caudal. Sauter Components 7./ RL & : Conrolador pneumáico de volume-caudal Usado em conjuno com um prao orifício ou com um sensor de pressão dinâmica e um acuador pneumáico de regiso para conrolo do volume de ar em sisemas de ar

Leia mais

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br F-38 - º Semeste de 013 Coodenado. José Antonio Rovesi IFGW-DEQ-Sala 16 ovesi@ifi.unicamp.b 1- Ementa: Caga Elética Lei de Coulomb Campo Elético Lei de Gauss Potencial Elético Capacitoes e Dieléticos Coente

Leia mais

Prof. Luiz Marcelo Chiesse da Silva DIODOS

Prof. Luiz Marcelo Chiesse da Silva DIODOS DODOS 1.JUÇÃO Os crisais semiconduores, ano do ipo como do ipo, não são bons conduores, mas ao ransferirmos energia a um deses ipos de crisal, uma pequena correne elérica aparece. A finalidade práica não

Leia mais

Interações Eletromagnéticas 1

Interações Eletromagnéticas 1 Inteações Eletomagnéticas 1 I.H.Hutchinson 1 I.H.Hutchinson 1999 Capítulo 1 Equações de Maxwell e Campos Eletomagnéticos 1.1 Intodução 1.1.1 Equações de Maxwell (1865) As equações que govenam o eletomagnetismo

Leia mais

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Pofa Stela Maia de Cavalho Fenandes 1 PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Dinâmica estudo dos movimentos juntamente com as causas que os oiginam. As teoias da dinâmica são desenvolvidas com base no conceito

Leia mais

Problemas sobre Indução Electromagnética

Problemas sobre Indução Electromagnética Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 2016 Professor: Rubens Penha Cysne Lisa de Exercícios 4 - Gerações Superposas Obs: Na ausência de de nição de

Leia mais

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk Módulo 07 Capíulo 06 - Viscosímero de Cannon-Fensk Inrodução: o mundo cienífico, medições são necessárias, o que sempre é difícil, impreciso, principalmene quando esa é muio grande ou muio pequena. Exemplos;

Leia mais

1ª Aula do Cap. 6 Forças e Movimento II

1ª Aula do Cap. 6 Forças e Movimento II ATRITO 1ª Aula do Cap. 6 Foças e Movimento II Foça de Atito e Foça Nomal. Atito e históia. Coeficientes de atito. Atito Dinâmico e Estático. Exemplos e Execícios. O efeito do atito ente duas supefícies

Leia mais

e A Formação do Circuito Equivalente

e A Formação do Circuito Equivalente Cadeno de Estudos de MÁQUINAS ELÉCTRICAS nº 4 A Coe nte Eléctica de Magnetização e A Fomação do Cicuito Equivalente Manuel Vaz Guedes (Pof. Associado com Agegação) Núcleo de Estudos de Máquinas Elécticas

Leia mais

e a temperatura do gás, quando, no decorrer deste movimento,

e a temperatura do gás, quando, no decorrer deste movimento, Q A figura mostra em corte um recipiente cilíndrico de paredes adiabáticas munido de um pistão adiabático vedante de massa M kg e raio R 5 cm que se movimenta sem atrito. Este recipiente contém um mol

Leia mais

Condensadores e Bobinas

Condensadores e Bobinas ondensadores e Bobinas Arnaldo Baisa TE_4 Dielécrico é não conduor Placas ou armaduras conduoras ondensadores TE_4 R Área A Analogia Hidráulica V S + - Elecrão Elecrões que se repelem d Bomba Hidráulica

Leia mais

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO 13 CAPÍTULO 2 DINÂMICA DA PATÍCULA: OÇA E ACELEAÇÃO Nese capíulo seá aalsada a le de Newo a sua foma dfeecal, aplcada ao movmeo de paículas. Nesa foma a foça esulae das foças aplcadas uma paícula esá elacoada

Leia mais

Aula ONDAS ELETROMAGNÉTICAS

Aula ONDAS ELETROMAGNÉTICAS ONDAS ELETROMAGNÉTICAS Aula 6 META Intoduzi aos alunos conceitos básicos das ondas eletomagnéticas: como elas são poduzidas, quais são suas caacteísticas físicas, e como desceve matematicamente sua popagação.

Leia mais

Análise econômica dos benefícios advindos do uso de cartões de crédito e débito. Outubro de 2012

Análise econômica dos benefícios advindos do uso de cartões de crédito e débito. Outubro de 2012 1 Análise econômica dos benefícios advindos do uso de carões de crédio e débio Ouubro de 2012 Inrodução 2 Premissas do Esudo: Maior uso de carões aumena a formalização da economia; e Maior uso de carões

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

OPÇÕES FINANCEIRAS - Exame

OPÇÕES FINANCEIRAS - Exame OPÇÕES FINANCEIRAS - Exame (esolução) /4/6 . (a) Aendendo a que e aplicando o lema de Iô a ln S, enão ST ln q S ds ( q) S d + S d ~ W ; Z T + d W ~ u ; () sendo : T. Na medida de pobabilidade Q, o valo

Leia mais

XXIX Olimpíada Internacional de Física

XXIX Olimpíada Internacional de Física XXIX Olimpíada Internacional de Física Reykjavík, Islândia Parte Experimental Segunda-feira, 6 de Julho de 1998 Lê isto primeiro: Duração: 5 H 1. Utiliza apenas a esferográfica que te foi dada. 2. Usa

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

Ivan Correr (UNIMEP) ivcorrer@unimep.br. Ronaldo de Oliveira Martins (UNIMEP) romartin@unimep.br. Milton Vieira Junior (UNIMEP) mvieira@unimep.

Ivan Correr (UNIMEP) ivcorrer@unimep.br. Ronaldo de Oliveira Martins (UNIMEP) romartin@unimep.br. Milton Vieira Junior (UNIMEP) mvieira@unimep. X SMPEP Bauu, SP, Basil, 7 a 9 de ovembo de 2005 Avaliação do índice de utilização de máquinas feamentas CC em uma empesa de usinagem, po meio da análise da técnica de pé ajustagem de feamentas. - van

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

AVALIAÇÃO DA DISPONIBILIDADE DOS SISTEMAS DE REFRIGERAÇÃO DE COMPONENTES E GERADORES DIESEL DE EMERGÊNCIA DE ANGRA-II CONSIDERANDO "OUTAGE TIMES"

AVALIAÇÃO DA DISPONIBILIDADE DOS SISTEMAS DE REFRIGERAÇÃO DE COMPONENTES E GERADORES DIESEL DE EMERGÊNCIA DE ANGRA-II CONSIDERANDO OUTAGE TIMES VLIÇÃO D DISPONIBILIDDE DOS SISTEMS DE REFRIGERÇÃO DE COMPONENTES E GERDORES DIESEL DE EMERGÊNCI DE NGR-II CONSIDERNDO "OUTGE TIMES" Celso Macelo Fanklin Lapa,, 2 Cláudio Mácio do Nascimeno beu Peeia e

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

3 PROGRAMAÇÃO DOS MICROCONTROLADORES

3 PROGRAMAÇÃO DOS MICROCONTROLADORES 3 PROGRAMAÇÃO DOS MICROCONTROLADORES Os microconroladores selecionados para o presene rabalho foram os PICs 16F628-A da Microchip. Eses microconroladores êm as vanagens de serem facilmene enconrados no

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS IUITOS ESSONANTES ENTO FEDEA DE EDUAÇÃO TENOÓGIA DE MINAS GEAIS PÁTIA DE ABOATÓIO DE TEEOMUNIAÇÕES POF: WANDE ODIGUES - 3 o e 4 o MÓDUOS DE EETÔNIA - 003 EPEIÊNIA N o TÍTUO: IUITOS ESSONANTES Os cicuios

Leia mais

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler).

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler). 3 - DESCRIÇÃO DO EEVADOR Abaixo apesentamos o diagama esquemático de um elevado (obtido no site da Atlas Schindle). Figua 1: Diagama esquemático de um elevado e suas pates. No elevado alvo do pojeto, a

Leia mais

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1.1 A QUAÇÕ D MAXWLL Todos os poblemas de eleicidade e magneismo podem se esolvidos a pai das equações de Mawell: v 1. Lei de Gauss: φ. nda ˆ. Lei de Gauss paa o magneismo:

Leia mais

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear 2. ÍOOS E JUNÇÃO Fernando Gonçalves nsiuo Superior Técnico Teoria dos Circuios e Fundamenos de Elecrónica - 2004/2005 íodo de Junção isposiivo de dois erminais, passivo e não-linear Foografia ânodo Símbolo

Leia mais

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney).

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney). 4. Mercado de Opções O mercado de opções é um mercado no qual o iular (comprador) de uma opção em o direio de exercer a mesma, mas não a obrigação, mediane o pagameno de um prêmio ao lançador da opção

Leia mais

INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 8 LINHA DE TRANSMISSÃO

INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 8 LINHA DE TRANSMISSÃO INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência 8 LINHA DE TRANSMISSÃO

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

ANÁLISE DE CIRCUITOS

ANÁLISE DE CIRCUITOS NÁLISE DE CIRCUITOS Corrente Contínua 1 Na figura seguinte representa um voltímetro e um amperímetro. Se indicar 0,6 m, quanto deverá marcar? U 50kΩ Figura 1 2 Se R b = 3R a, qual a tensão entre e B (sabendo

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E.

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E. PROFESSOR: Macelo Soae NO E QUESTÕES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉIO ============================================================================================= GEOMETRI Pae 1 01- figua é um quadado

Leia mais

O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1

O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1 O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1 Paulo J. Körbes 2 Marcelo Marins Paganoi 3 RESUMO O objeivo dese esudo foi verificar se exise influência de evenos de vencimeno de conraos de opções sobre

Leia mais