PME-2350 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1

Tamanho: px
Começar a partir da página:

Download "PME-2350 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1"

Transcrição

1 ME-50 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1 11 Motição e objetios N náise estátic de estruturs formds por igs desej-se conhecer, ém ds tensões e deformções nos pontos mis soicitdos, os desocmentos trnsersis o ongo do eio centr decorrentes do crregmento picdo à ig Em ger, isto pode ser feito trés d integrção d EDO de ª ordem (que recion distribuição de momentos fetores ns seções, M(, com distribuição de curturs medids o ongo do eio centr, ( ( ou d EDO de 4ª ordem (que recion distribuição de crregmento distribuído o ongo do eio centr, q(, com derid de 4ª ordem d função (, que fornece os desocmentos trnsersis em cd ponto do eio As dus forms em, nturmente, o mesmo resutdo fin, ficndo escoh crgo do projetist Os pontos positios e negtios recionds cd um dests escohs são: Opção 1: Integrção d EDO de ª ordem ( onto positio: sendo um EDO de menor ordem, são necessáris menos integrções pr obter e menos condições de contorno pr obter s dus únics constntes de integrção onto negtio: determinção d epressão corret d distribuição de momentos fetores pode ser de difíci obtenção (dependendo d form como o crregmento está picdo Opção : Integrção d EDO de 4ª ordem ( ( onto negtio: sendo um EDO de mior ordem, são necessáris mis integrções pr obter e mis condições de contorno pr obter s qutro constntes de integrção onto positio: determinção d epressão corret d distribuição do crregmento distribuído é, em ger, mis simpes do que determinção d distribuição de momentos fetores (isto tmbém depende d form como o crregmento está picdo 1 Nots de Au preprds peo rof Dr Roberto Rmos Jr, emi: rrmosjr@uspbr Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic 1 A rof Meo Mores, 1, São uo, S, Te: (

2 r epicr mehor necessidde do uso ds funções de Mcu (ou ds funções de singuridde, serem estudds em outr oportunidde, consideremos ig bipoid de comprimento tot L e rigidez feion EI constnte submetid os crregmentos indicdos n Fig 1 A V A b M o B C D E q V E c L Fig 1 Vig submetid diersos tipos de crregmento É eidente que cd inserção de um noo crregmento (ou retird do mesmo, no cso de crregmentos distribuídos há um correspondente terção n epressão do momento fetor no trecho que segue ogo pós introdução (ou retird deste crregmento Dest form, pr ig submetid o crregmento indicdo n Fig1, terímos um tot de qutro trechos serem nisdos: AB, BC, CD e DE, com s respectis epressões de momento fetor dds por: Trecho 1 (AB:, 0 Trecho (BC:, Trecho (CD:, Trecho 4 (DE:, Nturmente, cd no epressão do momento fetor (em cd um dos qutro trechos considerdos está ssocid um epressão correspondente pr inh eástic d ig (nquee trecho, qu poderi ser obtid pe integrção de:, 1 4 Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic A rof Meo Mores, 1, São uo, S, Te: (

3 o que eri à necessidde de determinção de oito constntes de integrção (dus pr cd trecho, s quis deem ser obtids pe soução do sistem iner de oito equções gébrics indicdo seguir: Eq(1: (0 0 (desocmento trnsers nuo em A; Eq(: ( ( (comptibiidde de desocmentos em B; Eq(: ( ( (comptibiidde de rotções em B; Eq(4: ( ( (comptibiidde de desocmentos em C; Eq(5: ( ( (comptibiidde de rotções em C; Eq(: ( ( (comptibiidde de desocmentos em D; Eq(7: ( ( (comptibiidde de rotções em D; Eq(8: ( 0 (desocmento trnsers nuo em E; Mesmo trtndo-se d soução de um sistem iner, é notório que o esforço depreendido pr resoer um probem simpes como o presentdo é demsido Contudo, com o uso ds funções de Mcu ou de outrs funções de singuridde (det de Dirc, Heiside, dipoo unitário, é possíe epressr sej distribuição de crregmento sej de momento fetor num únic epressão, fciitndo náise estrutur de form significti A seguir serão presentds s funções de Mcu 1 As funções de Mcu Sej 0 < < L, e n um número ntur ququer (n 0, 1,, Consideremos função definid no intero berto (0, L por: 0, 0 < <, < < ercebe-se, crmente, que o uso dos símboos, empregdos por Mcu pr representr s singuriddes decorrentes de descontinuiddes no crregmento picdo em igs, nd mis fz do que tornr nu função ntes do ponto de singuridde (, mntendo função interd pós este mesmo ponto, conforme iustr Fig Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic A rof Meo Mores, 1, São uo, S, Te: (

4 Fig Eempo com função de Mcu: 1 (à esq ; 1, (à dir Verific-se de imedito que integr indefinid d função fic dd por: 1 Onde C é um constnte de integrção ser determind 1 Eempos de picção d função de Mcu n náise de igs Momento concentrdo picdo em : M o Fig Momento concentrdo em r o crregmento decorrente de um momento concentrdo picdo em, prce do momento fetor tot deid unicmente este momento de mgnitude é dd por: 0, 0, Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic 4 A rof Meo Mores, 1, São uo, S, Te: (

5 b Forç concentrd picd em : Fig 4 Forç concentrd em r o crregmento decorrente de um forç concentrd picd em, prce do momento fetor tot deid unicmente est forç de mgnitude é dd por: 0, 0, c Crregmento uniformemente distribuído no intero (té o fin d ig: q Fig 5 Crregmento uniforme no trecho r um crregmento uniformemente distribuído de intensidde q (em N/m, no SI, picdo no intero (ou sej, té o fin d ig, prce do momento fetor tot deid unicmente este crregmento é dd por: 0, 0, Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic 5 A rof Meo Mores, 1, São uo, S, Te: (

6 d Crregmento inermente distribuído no intero (té o fin d ig: L q o Fig Crregmento inermente distribuído no trecho r um crregmento inermente distribuído de intensidde máim q o (em N/m, no SI, picdo no intero (ou sej, té o fin d ig, prce do momento fetor tot deid unicmente este crregmento é dd por: 0, 0, Onde é deciidde ngur do crregmento inermente distribuído (epress em N/m 14 Eempo de picção competo A ig ABCD indicd n Fig 7 encontr-se simpesmente poid em B e D, estndo rigidmente conectd um suporte CEF, em cuj etremidde tu um forç ertic ede-se: obter inh eástic d ig ABCD utiizndo s funções de Mcu, prtindo d equção diferenci de ordem que estbeece reção entre curtur e o momento fetor n ig Utiize os eios indicdos e epresse respost pens em função dos prâmetros ddos; b obter o desocmento ertic n seção A e estbeecer s condições em que t desocmento é pr cim Ddos:,,, EI Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic A rof Meo Mores, 1, São uo, S, Te: (

7 Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic 7 A rof Meo Mores, 1, São uo, S, Te: ( Fig 7 Vig ABCD com crregmento trnsers Soução: es equções d estátic determinm-se s reções nos poios B e D: V B + V D (mbs, B V e D V, orientds pr cim D reção (momento fetor (curtur temos: M V M EI C B ( "( 0 onde: M C (momento em C, deido o trnsporte d forç Integrndo dus ezes, irá: 1 ( C C M V EI C B + + onde s constntes de integrção são obtids trés ds condições de contorno que são: i 0 ( ii 0 4 ( resutndo, finmente: ( EI b r 0, teremos; 9 5 (0, EI A V δ Assim: 10 0, A V < > δ

8 15 Apêndice 1: Conenção de sinis Fig 8 Conenção de orientção pr os eios coordendos Fig 9 Conenção de sinis pr os esforços soicitntes e crregmentos 1 Apêndice : Equções úteis pr náise de um ig Reção entre momento fetor e curtur: Considerndo o seguinte conjunto de hipóteses: i Mteri eástico-iner; ii iii Seções trnsersis pns permnecem pns; Lineridde geométric Cheg-se à seguinte equção constituti: Em que é curtur do eio centr d ig ( 1, sendo o rio de curtur oc ode-se erificr que epressão et d curtur é dd por: Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic 8 A rof Meo Mores, 1, São uo, S, Te: (

9 " 1 / orém, considerndo nomente hipótese de ineridde geométric, temos de form proimd: " Obtendo-se equção diferenci ordinári iner de segund ordem bio: " b Equções diferenciis de equiíbrio: Fig 10 Vig sob crregmento trnsers genérico D picção do equiíbrio de forçs n direção ertic (direção : D picção do equiíbrio de momentos: Combinndo s equções cim, cheg-se : Esco oitécnic d Uniersidde de São uo Deprtmento de Engenhri Mecânic 9 A rof Meo Mores, 1, São uo, S, Te: (

Esforços internos em vigas com cargas transversais

Esforços internos em vigas com cargas transversais Esforços internos Esforços internos em um estrutur crcterizm s igções interns de tensões, isto é, esforços internos são integris de tensões o ongo de um seção trnsvers de um rr. Esforços internos representm

Leia mais

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006 GRITO / TRU : ecânic ds struturs II T e T. Prov 7// ( ) ( Pontos). uestão: Sej treiç d figur, compost de brrs de mesm rigidez xi, e sujeit à crg vertic posiciond no nó centr inferior. Use o teorem de peyron

Leia mais

Teoria Elementar de Barra Prismática

Teoria Elementar de Barra Prismática Teori Eementr de Brr rismátic EF- ecânic d Estrtrs Teori Eementr de Brr rismátic rof. ige L. Bcem Hipóteses Teori eementr de rr prismátic Seções pns originmente ortogonis o eio d rr permnecem pns e ortogonis

Leia mais

CAPÍTULO VIII VIGAS ESTATICAMENTE INDETERMINADAS E ENCURVADURA

CAPÍTULO VIII VIGAS ESTATICAMENTE INDETERMINADAS E ENCURVADURA PÍTULO VIII VIGS ESTTIETE IDETERIDS E EURVDUR 8.. RESUO D TEORI 8... Introdução os pítuos V e VI form borddos os probems d determinção ds tensões e ds deformções em vigs pr vários tipos de crregmento e

Leia mais

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física.

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física. Ministério d Educção Fundção Universidde Feder de Mto Grosso do Su Instituto de Físic Curso de Licencitur em Físic O fio infinito Um exempo de obtenção do cmpo eetrostático por dois métodos: integrção

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps que vmos recordr: Representr o

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Acesse: http://fuvestibur.com.br/ Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítulo 5 Vigs sobre bse elástic Este cpítulo vi presentr s bses pr o estudo estático e elástico d fleão simples de vigs suportds diretmente pelo terreno (ue constitui, então, num poio elástico contínuo

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítuo 5 Vigs sobre bse eástic Este cpítuo vi presentr s bses pr o estudo estático e eástico d fexão simpes de vigs suportds diretmente peo terreno (ue constitui, então, num poio eástico contínuo pr ests

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA SC PITÉCNIC UNISI SÃ PU ecânic P ª Prov 4/6/4 urção d Prov: inutos (Nã é peritido o uso de ccudors, ceures, tets e/ou outros uipentos siires) ª Questão (, ponto) - efere-se à pestr de /6/4. Considere o

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

O Teorema de Tales. A massa de um bloco de gelo é de 13 kg. Se 10% do gelo derreter, de quanto passará a ser a sua massa?

O Teorema de Tales. A massa de um bloco de gelo é de 13 kg. Se 10% do gelo derreter, de quanto passará a ser a sua massa? A UUL AL A 48 O Teorem de Tes A estc tem 1,50 m e su sombr 2,20 m. A sombr do poste mede 4,90 m. Qu é tur do poste? Pr pensr A mss de um boco de geo é de 13 kg. Se 10% do geo derreter, de qunto pssrá ser

Leia mais

O Teorema de Tales. A massa de um bloco de gelo é de 13 kg. Se 10% do gelo derreter, de quanto passará a ser a sua massa?

O Teorema de Tales. A massa de um bloco de gelo é de 13 kg. Se 10% do gelo derreter, de quanto passará a ser a sua massa? Acesse: http://fuvestibur.com.br/ A UUL AL A O Teorem de Tes A estc tem 1,50 m e su sombr 2,20 m. A sombr do poste mede 4,90 m. Qu é tur do poste? Pr pensr A mss de um boco de geo é de 13 kg. Se 10% do

Leia mais

4,00 m. E, h, ν uniformes. Figura 1 Figura 2

4,00 m. E, h, ν uniformes. Figura 1 Figura 2 Ee de nálise de Estruturs I icencitur e Engenhri iil Responsáel: Prof. J.. eieir de reits 3 de Jneiro de ª Époc º Seestre Obserções: urção de h3in (º este) ou 3 hors (Ee). onsult pens do forulário e de

Leia mais

TC 071 PONTES E ESTRUTURAS ESPECIAIS II

TC 071 PONTES E ESTRUTURAS ESPECIAIS II TC 071 PONTES E ESTRUTURAS ESPECIAIS II 7ª AULA (09/09/2.010) Vmos nlisr o comportmento ds longrin e o cminhmento ds crgs trvés d estrutur em grelh, pr: ) crgs plicds n longrin em estudo, b) crgs plicds

Leia mais

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações Universidde de São Pulo Escol Politécnic - Engenhri Civil PEF - Deprtmento de Engenhri de Estruturs e Fundções Estruturs de Concreto II PILARES DE CONTRAVENTAMENTO ESTABILIDADE GLOBAL Professor: Túlio

Leia mais

Capítulo 3 Diagramas de esforços em vigas isostáticas

Capítulo 3 Diagramas de esforços em vigas isostáticas Digrms de esforços em vigs rofessor Eine Toscno pítuo 3 Digrms de esforços em vigs isostátics 3.1 Digrms de esforços d esforço secion em um seção trnsvers de um estrutur sumetid um sistem de forçs ou crgs

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica PME-350 MECÂNICA DOS SÓLIDOS II Prof. R. Ramos Jr. 1 a Prova 13/09/01 Duração: 100 minutos 1 a Questão (5,0 pontos):

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

C A P Í T U L O 5 Vigas sobre base elástica

C A P Í T U L O 5 Vigas sobre base elástica C Í T U L O 5 Vigs sobre bse elástic Este cpítulo vi presentr s bses pr o estudo estático e elástico d flexão simples de vigs suportds diretmente pelo terreno (que constitui, então, num poio elástico contínuo

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica PME 100 MEÂNI ecuperção 03 de fevereiro de 009 urção d Prov: 10 inutos (não é peritido o uso de ccudors) 1ª Questão (30 pontos): N estrutur esquetizd bixo brr é rticud nos pontos e brr é rticud e e e brr

Leia mais

FORÇA LONGITUDINAL DE CONTATO NA RODA

FORÇA LONGITUDINAL DE CONTATO NA RODA 1 ORÇA LONGITUDINAL DE CONTATO NA RODA A rod é o elemento de vínculo entre o veículo e vi de tráfego que permite o deslocmento longitudinl, suportndo crg verticl e limitndo o movimento lterl. Este elemento

Leia mais

PME Mecânica dos Sólidos I 5 a Lista de Exercícios

PME Mecânica dos Sólidos I 5 a Lista de Exercícios ESCOL POLITÉCNIC D UNIVERSIDDE DE SÃO PULO DEPRTMENTO DE ENGENHRI MECÂNIC PME-00 - Mecânica dos Sóidos I 5 a Lista de Eercícios 1) estrutura treiçada indicada abaio é formada por barras de mesmo materia

Leia mais

Física A Semi-Extensivo V. 3 Exercícios

Física A Semi-Extensivo V. 3 Exercícios Semi-Etensio V. 3 Eercícios ) D ) 94 F = = m. g =. = 5. 9, 8 35, = 4 F = 4 =. = 4.,35 = 35 3) 56. Incorret. Se elocidde é constnte, forç resultnte no liro é zero; logo, s forçs que tum no liro são o peso

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

9.1 Indutores e Indutância

9.1 Indutores e Indutância Cpítuo 9 Indutânci 9.1 Indutores e Indutânci Neste cpítuo, estudmos os indutores e sus indutâncis, cujs proprieddes decorrem diretmente d ei de indução de Frdy. Cpcitores: Recpitução Lembre-se que, no

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

"Bem-vindos ao melhor ano de suas vidas #2018"

Bem-vindos ao melhor ano de suas vidas #2018 COLÉGIO SHALOM Ensino Fundmentl 8ª no ( ) 65 Profº: Wesle d Silv Mot Disciplin: Mtemátic Aluno ():. No. Trblho de recuperção Dt: 17 /12/ 2018 "Bem-vindos o melhor no de sus vids #2018" 1) Sobre s proprieddes

Leia mais

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Prof. lvro Muriel Lim Mchdo justmento de Observções Qundo s medids não são feits diretmente sobre s grndezs procurds, ms sim

Leia mais

Eletrotécnica TEXTO Nº 7

Eletrotécnica TEXTO Nº 7 Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos

Leia mais

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

Elementos Finitos Isoparamétricos

Elementos Finitos Isoparamétricos Cpítulo 5 Elementos Finitos Isoprmétricos 5.1 Sistems de Referênci Globl e Locl Considere o elemento liner, ilustrdo n Figur 5.1, com nós i e j, cujs coordends são x i e x j em relção o sistem de referênci

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3

Leia mais

20/07/15. Matemática Aplicada à Economia LES 201

20/07/15. Matemática Aplicada à Economia LES 201 Mtemátic Aplicd à Economi LES 201 Auls 3 e 4 17 e 18/08/2015 Análise de Equilíbrio Sistems Lineres e Álgebr Mtricil Márci A.F. Dis de Mores Análise de Equilíbrio em Economi (Ching, cp 3) O significdo do

Leia mais

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh

Leia mais

fct - UNL ESTRUTURAS DE BETÃO ARMADO I 10 ESTADO LIMITE DE DEFORMAÇÃO ESTRUTURAS DE BETÃO ARMADO I PROGRAMA

fct - UNL ESTRUTURAS DE BETÃO ARMADO I 10 ESTADO LIMITE DE DEFORMAÇÃO ESTRUTURAS DE BETÃO ARMADO I PROGRAMA ESTRUTURAS DE BETÃO ARADO I ESTRUTURAS DE BETÃO ARADO I 0 ESTADO LIITE DE DEFORAÇÃO 0 ESTADO LIITE DE DEFORAÇÃO PROGRAA.Introdução o betão rmdo 2.Bses de Projecto e Acções 3.Proprieddes dos mteriis: betão

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

Resistência de Materiais 2

Resistência de Materiais 2 Resistênci de Mteriis Ano ectivo 0/04 º Exme 8 de Jneiro de 04 Durção: hors Oservções: Não podem ser consultdos quisquer elementos de estudo pr lém do formulário fornecido. Resolver os prolems em grupos

Leia mais

VII - ADERÊNCIA, ANCORAGEM E EMENDAS DAS ARMADURAS LONGITUDINAIS TRACIONADAS DE PEÇAS FLETIDAS

VII - ADERÊNCIA, ANCORAGEM E EMENDAS DAS ARMADURAS LONGITUDINAIS TRACIONADAS DE PEÇAS FLETIDAS VII - DERÊNCI, NCORGEM E EMENDS DS RMDURS LONGITUDINIS TRCIONDS DE EÇS FLETIDS - DERÊNCI Concreto rmdo soidriedde entre concreto e ço derênci ) derênci por desão: igção físico-químic n interfce ço/concreto

Leia mais

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019 Físic III - 4323203 Escol Politécnic - 2019 GABARITO DA P2 09 de mio de 2019 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio 2. A esfer e csc esféric são concêntrics

Leia mais

PROVA COMENTADA. Dimensionamento das armaduras de flexão no vão e no apoio da viga contínua. m - momento fletor de cálculo

PROVA COMENTADA. Dimensionamento das armaduras de flexão no vão e no apoio da viga contínua. m - momento fletor de cálculo téchne educção PROVA COMENTADA Q1) RESPOSTA Dimensionmento ds rmdurs de flexão no vão e no poio d vig contínu. Vão - M 39,4 kn. m - momento fletor crcterístico k - M M 1,4 39,4 55,16 kn. m - momento fletor

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

ϕ ( + ) para rotações com o Flechas e deflexões

ϕ ( + ) para rotações com o Flechas e deflexões Fechas e defeões Seja uma barra reta, em euiíbrio, apoiada em suas etremidades, submetida a uma feão norma. Esta barra fetida, deia de ser reta assumindo uma forma, como a mostrada na figura. figura barra

Leia mais

29/08/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

29/08/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDADE FEDERAL DO PARANÁ SEOR DE CIÊNCIAS DA ERRA DEPARAMENO DE GEOMÁICA AJUSAMENO II GA Prof. Aro Murie Lim Mcdo Ajustmento de Oserções Qundo s medids não são feits diretmente sore s grndezs procurds,

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

O ROTACIONAL E O TEOREMA DE STOKES

O ROTACIONAL E O TEOREMA DE STOKES 14 O ROTACONAL E O TEOREMA DE STOKES 14.1 - O ROTACONAL A equção:. dl ( A) (14.1) ecion integ de inh do veto intensidde de cmpo mgnético fechdo L com coente tot envovid po esse cminho. o ongo de um cminho

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

Formas Lineares, Bilineares e Quadráticas

Formas Lineares, Bilineares e Quadráticas Forms Lineres Bilineres e Qudrátics Considere V um R-espço vetoril n-dimensionl Forms Lineres Qulquer trnsformção liner d form f : V R é denomind um funcionl liner ou form liner Eemplos: f : R R tl que

Leia mais

Modelos Teóricos para Análise de Transformadores Baseados em Modelos Simplificados de Impedância e de Elementos Concentrados

Modelos Teóricos para Análise de Transformadores Baseados em Modelos Simplificados de Impedância e de Elementos Concentrados 4. Modelos Teóricos pr Análise de Trnsformdores Bsedos em Modelos implificdos de Impedânci e de Elementos Concentrdos 4. Introdução Um vez que o trlho propõe o projeto e crcterizção de trnsformdores em

Leia mais

ENGENHARIA ASSISTIDA POR COMPUTADOR

ENGENHARIA ASSISTIDA POR COMPUTADOR ENGENHARIA ASSISTIDA POR COMPUTADOR Prof. Isc N. L. Silv Prof. Crlos Crespo Izqierdo Professor do Deprtmento de Engenhri Mecânic e Mectrônic PUCRS ORMULAÇÃO DO ME NO CÁLCULO ESTRUTURAL Em resmo o ME consiste

Leia mais

MÉTODO DOS DESLOCAMENTOS EM TRELIÇAS E PÓRTICOS

MÉTODO DOS DESLOCAMENTOS EM TRELIÇAS E PÓRTICOS ÍUO MÉOO OS ESOMENOS EM RÇS E ÓRIOS om o objectivo de presentr uns conceitos como o de ssembem e introdução de condições de poio, fz-se qui um sucint descrição do método dos desocmentos picdo à náise de

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 14

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 14 SEL 329 CONVERSÃO ELETROMECÂNCA DE ENERGA Aul 14 Aul de Hoje Gerdor CC Composto Gerdor Série nterpolos Gerdor CC com Excitção Compost Estrutur Básic Utiliz combinções de enrolmentos de cmpo em série e

Leia mais

Termodinâmica e Estrutura da Matéria 2013/14

Termodinâmica e Estrutura da Matéria 2013/14 Termodinâmic e Estrutur d Mtéri 3/4 (LMAC, MEFT, MEBiom Responsável: João P Bizrro Prátics: Edurdo Cstro e ítor Crdoso Deprtmento de Físic, Instituto Superior Técnico Resolução de exercícios propostos

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Técnicas de Análise de Circuitos

Técnicas de Análise de Circuitos Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS Universidde ederl Rurl do Semi-Árido ENÔMENOS DE TRANSPORTE MECÂNICA DOS LUIDOS ESTÁTICA DOS LUIDOS UERSA Universidde ederl Rurl do Semi-Árido Prof. Roberto Vieir Pordeus Nots de ul enômenos de Trnsorte

Leia mais

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço 2º. Teste de Introdução à Mecânic dos Sólidos Engenhri Mecânic 25/09/2008 25 Pontos 1ª. Questão: eterminr os digrms de esforços solicitntes d Vig i-poid com blnço bixo. 40kN 30 0 150 kn 60 kn/m 3 m 2 m

Leia mais

Função Quadrática (Função do 2º grau) Profº José Leonardo Giovannini (Zé Leo)

Função Quadrática (Função do 2º grau) Profº José Leonardo Giovannini (Zé Leo) Função Qudrátic (Função do º gru) Proº José Leonrdo Gionnini (Zé Leo) Zeros ou rízes e Equções do º Gru Chm-se zeros ou rízes d unção polinomil do º gru () = + b + c, reis tis que () =., os números DEFINIÇÃO:

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

Revisão EXAMES FINAIS Data: 2015.

Revisão EXAMES FINAIS Data: 2015. Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA

AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA AULA DE VÉSPERA VESTIBULAR 09 MATEMÁTICA Prof. Luiz Henrique 0) A figur indic um circunferênci de diâmetro AB 8 cm, um triângulo equilátero ABC, e os pontos D e E pertencentes à circunferênci, com D em

Leia mais

1 a Lista de exercícios Análise do estado de tensões

1 a Lista de exercícios Análise do estado de tensões 1 List de eercícios Análise do estdo de tensões 1) Pr o estdo de tensões ddo, determinr s tensões, norml e de cislhmento, eercids sobre fce oblíqu do triângulo sombredo do elemento. R: τ = 25,5 MP σ =

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 1) RESOLUÇÃO GRUPO I. Duração do Teste: 90 minutos

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 1) RESOLUÇÃO GRUPO I. Duração do Teste: 90 minutos Teste Intermédio Mtemátic A Resolução (Versão ) Durção do Teste: 90 minutos.0.0.º Ano de Escolridde RESOLUÇÃO GRUPO I. Respost (C) O vlor máimo d unção objetivo de um problem de progrmção liner é tingido

Leia mais

(1) (2) (3) (4) Física I - 1. Teste 2010/ de Novembro de 2010 TópicosdeResolução

(1) (2) (3) (4) Física I - 1. Teste 2010/ de Novembro de 2010 TópicosdeResolução Físic I - 1. Teste 010/011-3 de Noembro de 010 TópicosdeResolução Sempre que necessário, utilize pr o módulo d celerção resultnte d gridde o lor =10 0m s. 1 Dus forçs, representds pelos ectores d figur,

Leia mais