Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019

Tamanho: px
Começar a partir da página:

Download "Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019"

Transcrição

1 Físic III Escol Politécnic GABARITO DA P2 09 de mio de 2019 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio 2. A esfer e csc esféric são concêntrics e o espço entre els está preenchido com um mteril de condutividde σ(r) = A r constnte, (A é um constnte positiv). Um corrente elétric I, uniformemente distribuíd trvés do mteril entre os condutores, flui d esfer intern pr csc esféric. O 2 () (0,5 ponto) Determine dimensão d constnte A no Sistem Interncionl de Uniddes. (b) (1,0 ponto) Clcule resistênci elétric entre os condutores. (c) (1,0 ponto) Dd um diferenç de potencil V plicd entre s dus supercícies, clcule o vetor densidde de corrente J(r) em função dos ddos do problem.

2 Solução d questão 1 () A condutividde possui dimensão de inverso de resistênci multiplicd por inverso de unidde de comprimento. Portnto, no SI, A deve ter dimensão de inverso de Ohm. (b) Utilizndo expressão pr resistênci de um cmd infinitesiml de espessur dr e áre 4πr 2, teremos dr = 1 dr σ(r) 4πr = A 4π Integrndo entre r = e r = 2, teremos dr r R = 1 2 dr 4πA r = ln(2) 4πA (c) A diferenç de potencil V produz um corrente I dd por I = V R = 4πAV ln(2). Ess corrente flui d superfície intern (mior potencil) pr extern (menor potencil). Por conservção de crg, devemos ter I = J d A, pr qulquer superfície fechd pssndo por pontos entre e 2. Usndo simetri rdil d densidde de corrente, podemos considerr um superfície esféric de rio r ( r 2) de modo que J(r) d A = J(r)ˆr 4πr 2ˆr = J(r)4πr 2 = I = 4πAV ln(2) Logo, J(r) = AV ln(2)r 2 ˆr.

3 Questão 2 A figur bixo mostr trechos de um fio condutor reto e um fit condutor de comprimentos 2c e L, respectivmente. A fit possui lrgur b e su espessur pode ser desconsiderd. Correntes I 1 e I 2 percorrem o fio e fit, respectivmente. A densidde liner de corrente n fit é uniforme ( J = I 2 /b)ˆx. y I 2 b c I 1 O c x 2c () (1,0 ponto) Usndo lei de Biot-Svrt, clcule o vetor cmpo mgnético B produzido pelo fio num ponto situdo o longo do eixo y. (b) (1,5 ponto) Considerndo que gor o fio é infinito, c, e fit é infinit o longo d direção x, clcule o vetor forç por unidde de comprimento L produzid pelo fio sobre fit.

4 Solução d questão 2 () De cordo com lei de Biot-Svrt, o elemento do fio d l = dxˆx trnsportnto um corrente I 1 produz o longo do eixo y o cmpo mgnético infinitesiml: d B = µ 0I 1 4π dxˆx (yŷ x x) (x 2 + y 2 ) 3/2. Integrndo equção cim entre c nd c, obtemos: B = µ 0 I 1 c 2πy c 2 + y 2 ẑ. (b) Tomndo c, expressão pr o cmpo do fio é dd por: B = µ 0I 1 2πy ẑ. A forç mgnétic sobre fit de lrgur dy e comprimento L é d F = (Jdy) L B = I 2 b Lµ 0I 1 2πy dy ˆx ẑ = I 2 b Lµ 0I 1 2πy dy ŷ Integrndo em y, obtemos expressão pr forç mgnétic: F L = µ 0I 1 I +b 2 dy 2πb y ŷ = µ 0I 1 I 2 log + b ŷ. 2πb

5 Questão 3 Um corrente estcionári I circul no sentido nti-horário de um espir con- y D. dutor qudrd, de ldo. A figur o ldo mostr espir em um sistem de coordends tl que o plno d espir I 1 coincide com o plno xy (z = 0). Considere o cmpo mgnético (no 2 4 mesmo sistem de coordends) [ ( B(x, y, z) = B 0 1 x ) ( î + 1 y ) ĵ + 2z ] ˆk. C. 3 x () (1,5 ponto) Clcule s forç mgnétics F i (i = 1, 2, 3, 4) que tum em cd um dos ldos d espir (como indicdos n figur). Clcule tmbém forç resultnte sobre espir. (b) (1,0 ponto) Suponh que o movimento d espir sej restrito rotções em torno de um eixo verticl fixo pssndo pelos pontos CD (vej figur). Clcule o torque em torno deste eixo em relção à origem. Sugestão pr os itens () e (b): Clcule primeirmente s forçs infinitesimis df i e em seguid obtenh F i, efetundo integrl correspondente.

6 Solução d questão 3 () O cmpo mgnético possui os seguintes vlores o longo de cd ldo: B 1 = B(x, (, 0) = B 0 1 x ) î, B2 = B(0, ( y, 0) = B 0 [î + 1 y ) ] ĵ, B 3 = B(x, [( 0, 0) = B 0 1 x ) ] î + ĵ e B4 = B(, ( y, 0) = B 0 1 y ) ĵ. Usndo d F i = Id L i B, com d L 1 = dxî, d L 2 = dyĵ, d L 3 = dxî e d L 4 = dyĵ, segue que d F 1 = d F 4 = 0 e portnto F 1 = F 4 = 0. Por outro ldo, s forçs d F 2 e d F 3 são dds por d F 2 = I(dyĵ) B 2 = I(dyĵ) Integrndo desde y = té y = 0, teremos F 2 = B 0ˆk d F 3 = I(dxî) B 3 = I(dxî) Integrndo desde x = 0 té x =, teremos F 3 = B 0ˆk A forç resultnte é F = F 1 + F 2 + F 3 + F 4 = 2IB 0ˆk. [ ( {B 0 î + 1 y ) ]} ĵ = IdyB 0ˆk [( {B 0 1 x ) ]} î + ĵ = IdxB 0ˆk (b) Como forç F 2 tu sobre o eixo y (de rotção) o torque correspondente será nulo. Usndo forç d F 3, que tu sobre um elemento de comprimento dx teremos pr o torque infinitesiml d τ 3 = r d F 3 = (xî) Integrndo desde x = 0 té x =, teremos ( ) IdxB 0ˆk = IB 0 xdxĵ. τ 3 = 2 IB 0 ĵ. 2

7 Questão 4 Um fio condutor muito longo e de seção cilíndric de rio está envolto por um csc cilíndric de rio b, formndo um cbo coxil. No fio há um densidde de corrente uniforme J = Jĵ e n csc um densidde de corrente superficil K = Kĵ, sendo J e K constntes positivs. Expresse sus resposts em termos dos prâmetros ddos: y b ԦJ K x z () (1,0 ponto) Clcule o cmpo mgnético nos pontos onde 0 r b (r é distânci do ponto té o eixo y). (b) (1,0 ponto) Clcule o cmpo mgnético n região exterior à csc cilíndric (r > b). (c) (0,5 ponto) Determine o vlor de J/K tl que o cmpo sej nulo n região r > b.

8 Solução d questão 4 () Um vez que corrente é percorrid o longo d direção y, s linhs de cmpo mgnético formm circunferêncis concêntrics, cujo vetor B(r) pont tngencilmente em cd ponto d linh, especificdos qui pelo versor θ. Portnto, o ldo esquerdo d lei de Ampére ( B d l = µ C 0 I int ) é ddo por B d l = B(r).2πr. C Como corrente elétric se distribui uniformemente o longo de 0 < r <, corrente englobd I int é dd por I int = Jπr 2, sendo r distânci entre linh mperin e o eixo y. Portnto, B(r) = µ 0J 2 r θ. Pr clculrmos o vetor cmpo mgnético entre < r < b, vemos que ldo esquerdo d relção C B d l = µ 0 I int é o mesmo que quele clculdo nteriormente. Neste cso, I int corresponde à tod corrente englobd entre 0 < r <, dd por I int = Jπ 2. Portnto, B(r) = µ 0J 2 θ. 2r (b) Pr r > b, corrente englobd é dd por I int B(r) = µ 0 2r (J2 2Kb) θ. = Jπ 2 2Kπb e portnto (c) O cmpo mgnético será nulo n região r > b qundo J K = 2b 2.

9 Formulário B V B V A = A E d l, E = V, dr = ρ dl A, V = RI, J = σ E = 1 ρ E, B d A = 0, d F = Id l B, µ = I A, d B = µ 0I 4π d l r r 2, d τ = r d F, τ = µ B, U = µ B, B d l = µ 0 I int. Algums integris dx (c + x 2 ) = log(x + dx c + x 2 ), 1/2 (c + x 2 ) = x 3/2 c (c + x 2 ), 1/2 x dx (c + x 2 ) = x dx c + x 2, 1/2 (c + x 2 ) = 1 3/2 (c + x 2 ), 1/2 dx 2 + x = 1 ( x ) x dx 2 tn 1, 2 + x = log(2 + x 2 ).

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015 Físic - 4323203 Escol olitécnic - 2015 GABARTO DA 2 14 de mio de 2015 Questão 1 Considere um csc esféric condutor de rios interno e externo e b, respectivmente, conforme mostrdo n figur o ldo. A resistividde

Leia mais

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017 Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014 Físic III - 4320301 Escol Politécnic - 2014 GABARITO DA P2 14 de mio de 2014 Questão 1 A região entre dus cscs esférics condutors concêntrics de rios e b com b > é preenchid com um mteril de resistividde

Leia mais

Física III Escola Politécnica GABARITO DA P2 16 de maio de 2013

Física III Escola Politécnica GABARITO DA P2 16 de maio de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA P2 16 de mio de 2013 Questão 1 Considere dois eletrodos esféricos concêntricos de rios e b, conforme figur. O meio resistivo entre os eletrodos é

Leia mais

Escola Politécnica FGE GABARITO DA P2 14 de maio de 2009

Escola Politécnica FGE GABARITO DA P2 14 de maio de 2009 P2 Físic III Escol Politécnic - 2009 FGE 2203 - GABARITO DA P2 14 de mio de 2009 Questão 1 Considere um cpcitor cilíndrico de rio interno, rio externo e comprimento L >>, conforme figur. L Sejm +Q e Q

Leia mais

Física III Escola Politécnica de maio de 2010

Física III Escola Politécnica de maio de 2010 P2 Questão 1 Físic - 4320203 Escol Politécnic - 2010 GABATO DA P2 13 de mio de 2010 Considere um cpcitor esférico formdo por um condutor interno de rio e um condutor externo de rio b, conforme figur. O

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011 Físic III - 4320301 Escol Politécnic - 2011 GABARITO DA PR 28 de julho de 2011 Questão 1 () (1,0 ponto) Use lei de Guss pr clculr o vetor cmpo elétrico produzido por um fio retilíneo infinito com densidde

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA PS 27 de junho de 2013 Questão 1 Um crg pontul Q > 0 se encontr no centro de um esfer dielétric mciç de rio R e constnte dielétric κ. Não há crgs

Leia mais

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014 Físic III - 430301 Escol Politécnic - 014 GABARITO DA P1 de bril de 014 Questão 1 Um brr semi-infinit, mostrd n figur o longo do ldo positivo do eixo horizontl x, possui crg positiv homogenemente distribuíd

Leia mais

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017 Físic III - 4323203 Escol Politécnic - 2017 GABARITO DA P1 20 de ril de 2017 Questão 1 O cmpo elétrico sore o eixo de simetri (eixo z) de um nel de rio r e crg totl Q > 0 é ddo por z E nel = 1 Qz k. (r

Leia mais

Física III Escola Politécnica GABARITO DA P2 17 de maio de 2018

Física III Escola Politécnica GABARITO DA P2 17 de maio de 2018 Física III - 4323203 Escola Politécnica - 2017 GABARITO DA P2 17 de maio de 2018 Questão 1 Considere um fio retilíneo muito longo de raio R e centrado ao longo do eixo z no qual passa uma corrente estacionária

Leia mais

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2016

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2016 Fíic III - 4323203 Ecol Politécnic - 2016 GABARITO DA PS 30 de junho de 2016 Quetão 1 Um brr fin, iolnte, de comprimento, com denidde liner de crg λ = Cx, onde C > 0 é contnte, etá dipot o longo do eixo

Leia mais

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010 P3 Questão 1 Físic - 4320301 Escol Politécnic - 2010 GABARTO DA P3 24 de junho de 2010 onsidere um fio infinito percorrido por um corrente estcionári. oplnr com o fio está um espir retngulr de ldos e b

Leia mais

Escola Politécnica FGE GABARITO DA P2 17 de maio de 2007

Escola Politécnica FGE GABARITO DA P2 17 de maio de 2007 P2 Física III Escola Politécnica - 2007 FGE 2203 - GABARITO DA P2 17 de maio de 2007 Questão 1 Um capacitor plano é constituido por duas placas planas paralelas de área A, separadas por uma distância d.

Leia mais

Física III Escola Politécnica GABARITO DA P2 17 de maio de 2012

Física III Escola Politécnica GABARITO DA P2 17 de maio de 2012 Física III - 4320301 Escola Politécnica - 2012 GABARITO DA P2 17 de maio de 2012 Questão 1 Um capacitor de placas paralelas e área A, possui o espaço entre as placas preenchido por materiaisdielétricos

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

Soluοc~o d Quest~o 1 () r r > c s contribuiοc~oes do cilindro interno e d csc se cncelm. r < r < b somente o cilindro interno contribui produzindo um

Soluοc~o d Quest~o 1 () r r > c s contribuiοc~oes do cilindro interno e d csc se cncelm. r < r < b somente o cilindro interno contribui produzindo um ffω Ψ Φ 2 ' $ & F sic Escol olitécnic - 2004 FGE 2203 - Gbrito d 2 20 de mio de 2004 % } Est vliοc~o tem 100 minutos de durοc~o. } É proibid consult colegs, livros e pontmentos. } Escrev de form leg vel.

Leia mais

Formulário Equações de Maxwell:

Formulário Equações de Maxwell: 3 Prov Eletromgnetismo I Diurno Formulário Equções de Mxwell: D ρ, E B B 0, H J + D Condições de contorno: D σ l, E 0 B 0, H K l ˆn Equção d continuidde: ρ + J 0 Meios lineres e meios condutores: D ɛ E,

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

Física III Escola Politécnica GABARITO DA REC 26 de Julho de 2018

Física III Escola Politécnica GABARITO DA REC 26 de Julho de 2018 Física III - 4323203 Escola Politécnica - 2018 GABARITO DA REC 26 de Julho de 2018 Questão 1 Considere um capacitor de placas paralelas, formado por duas placas com área A carregadas com cargas Q e Q,

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

Escola Politécnica FGE GABARITO DA SUB 6 de julho de 2006

Escola Politécnica FGE GABARITO DA SUB 6 de julho de 2006 PS Física III Escola Politécnica - 2006 FGE 2203 - GABARITO DA SUB 6 de julho de 2006 Questão 1 Uma esfera dielétrica de raio a está uniformemente carregada com densidade volumétrica ρ A esfera está envolvida

Leia mais

Cálculo Diferencial e Integral II Prof. Ânderson Vieira

Cálculo Diferencial e Integral II Prof. Ânderson Vieira CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

Física IV Escola Politécnica GABARITO DA P1 28 de agosto de 2012

Física IV Escola Politécnica GABARITO DA P1 28 de agosto de 2012 Físic IV - 43004 Escol Politécnic - 01 GABARITO DA P1 8 de gosto de 01 Questão 1 Considere o circuito RLC em série com um fonte de tensão lternd esquemtizdo n figur. A fonte fornece um tensão que vri no

Leia mais

LEI DE AMPÈRE. Aula # 15

LEI DE AMPÈRE. Aula # 15 LEI DE AMPÈRE Aula # 15 BIOT-SAVART Carga em movimento gera campo magnético Campo magnético produzido por um elemento de corrente em um ponto r d B = ( µ0 ) id l r r 3 = ( µ0 ) idlsin(θ) r 2 µ 0 = 10 7

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Prof. A.F.Guimarães Física 3 Questões 9

Prof. A.F.Guimarães Física 3 Questões 9 Questão 1 Um fio retilíneo de rio R conduz um corrente constnte i; outro fio retilíneo de mesmo rio conduz um corrente contínu i cujo sentido é contrário o d corrente que flui no outro fio. Estime o módulo

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Cálculo III-A Módulo 3 Tutor

Cálculo III-A Módulo 3 Tutor Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,,

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Física III Escola Politécnica GABARITO DA PR 19 de julho de 2012

Física III Escola Politécnica GABARITO DA PR 19 de julho de 2012 Física III - 43231 Escola Politécnica - 212 GABAITO DA P 19 de julho de 212 Questão 1 Um bastão fino de comprimento L, situado ao longo do eixo x, tem densidade linear de carga λ(x) = Cx, para < x < L

Leia mais

Física III Escola Politécnica GABARITO DA PR 27 de julho de 2017

Física III Escola Politécnica GABARITO DA PR 27 de julho de 2017 Física - 4323203 Escola Politécnica - 2017 GABARTO DA PR 27 de julho de 2017 Questão 1 A superfície matemática fechada S no formato de um cubo de lado a mostrada na figura está numa região do espaço onde

Leia mais

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011 Física - 4320301 Escola Politécnica - 2011 GABARTO DA PS 30 de junho de 2011 Questão 1 No modelo de Rutherford o átomo é considerado como uma esfera de raio R com toda a carga positiva dos prótons, Ze,

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

(a) (b) (c) (d) (e) E = 0.

(a) (b) (c) (d) (e) E = 0. Universidde Federl do Rio de Jneiro Instituto de Físic Físic III 212/1 Prov Finl (PF): 2/7/212 Versão: A Formulário F e = qe, ( q E = k r 2ˆr onde k = 1 ), E da = Q int, 4πǫ ǫ E = V, q V = k r, qq U =

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss 1 1 ist de Eercícios Forç Elétric Cmpo Elétrico ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

FIS1053 Projeto de Apoio Eletromagnetismo-25-Abril-2014 Lista de Problemas 8 Ampère.

FIS1053 Projeto de Apoio Eletromagnetismo-25-Abril-2014 Lista de Problemas 8 Ampère. FIS1053 Projeto de Apoio Eletromagnetismo-5-Abril-014 Lista de Problemas 8 Ampère. 1ª Questão A figura mostra o corte transversal de um cabo coaxial, constituído por um fio retilíneo central de raio a

Leia mais

8/5/2015. Física Geral III

8/5/2015. Física Geral III Físic Gerl III Aul Teóric 15 (Cp. 0 prte /): 1) Forç mgnétic sobre um fio trnsportndo corrente ) Torque sobre um bobin de corrente ) O dipolo mgnético Prof. Mrcio R. Loos Forç mgnétic sobre um fio trnsportndo

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 2.

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 2. Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo A List Eercício :Usemudnçu + ev eclculeintegrldef,) +) sen ) sobre região : + π. Solução: O esboço d

Leia mais

b 2 = 1: (resp. R2 e ab) 2. Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp x 3 2

b 2 = 1: (resp. R2 e ab) 2. Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp x 3 2 8. APLICAÇÕES DA INTEGRAL CÁLCULO 2-2018.1 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ;

Leia mais

Física III Escola Politécnica GABARITO DA P3 16 de junho de 2011

Física III Escola Politécnica GABARITO DA P3 16 de junho de 2011 Física III - 4320301 Escola Politécnica - 2011 GABARITO DA P3 16 de junho de 2011 Questão 1 Um solenóide longo de comprimento h e raio R (R

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

v é o módulo do vetor v, sendo

v é o módulo do vetor v, sendo Geometri nlític e álculo Vetoril Nots de ul Prof. Dr. láudio S. Srtori Operções com Vetores no Espço R 3 : Representção: Determinção dos ângulos,, : rc rc rc Representção dos ângulos no espço R 3 : Representção:

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

Problemas sobre Electrostática

Problemas sobre Electrostática Fculdde de Engenhri Prolems sore Electrostátic ÓPTICA E ELECTOMAGNETISMO MIB Mri Inês Bros de Crvlho Setemro de 7 ELECTOSTÁTICA Fculdde de Engenhri ÓPTICA E ELECTOMAGNETISMO MIB 7/8 LEI DE COULOMB E PINCÍPIO

Leia mais

Lista 2 de CF368 - Eletromagnetismo I

Lista 2 de CF368 - Eletromagnetismo I List 2 e F368 - Eletromgnetismo Fbio reke 8 e ezembro e 23. Um cbo cilínrico infinitmente longo e rio R conuz um corrente uniformemente istribuí o longo e su seção ret. Usno Lei ircuitl

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Máquinas Elétricas. Máquinas CC Parte III

Máquinas Elétricas. Máquinas CC Parte III Máquins Elétrics Máquins CC Prte III Máquin CC Máquin CC Máquin CC Comutção Operção como gerdor Máquin CC considerções fem induzid Conforme já menciondo, tensão em um único condutor debixo ds fces polres

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Termodinâmica e Estrutura da Matéria 2013/14

Termodinâmica e Estrutura da Matéria 2013/14 Termodinâmic e Estrutur d Mtéri 3/4 (LMAC, MEFT, MEBiom Responsável: João P Bizrro Prátics: Edurdo Cstro e ítor Crdoso Deprtmento de Físic, Instituto Superior Técnico Resolução de exercícios propostos

Leia mais

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z.

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z. Um disco de rio está crregdo niformemente com m crg Q. Clcle o vetor cmpo elétrico: ) Nm ponto P sobre o eixo de simetri perpendiclr o plno do disco m distânci do se centro. b) No cso em qe o rio d plc

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

Física III Escola Politécnica GABARITO DA P3 25 de junho de 2014

Física III Escola Politécnica GABARITO DA P3 25 de junho de 2014 Física III - 4331 Escola Politécnica - 14 GABARITO DA P3 5 de junho de 14 Questão 1 O campo magnético em todos os pontos de uma região cilíndrica de raio R é uniforme e direcionado para dentro da página,

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

Um corpo triangular, como mostrado na figura, sofre um deslocamento definido por:

Um corpo triangular, como mostrado na figura, sofre um deslocamento definido por: Mecânic dos Sólidos I List de Exercícios I Exercício Um corpo tringulr, como mostrdo n figur, sofre um deslocmento definido por: u = y 5 e y () Configurção Deformd. A B C C Pr = cm e =. cm, pede -se: (b)

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

CDI-II. Integrais em Variedades. Comprimento. Área. 1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt =

CDI-II. Integrais em Variedades. Comprimento. Área. 1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt = Instituto Superior écnico Deprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CDI-II Integris em Vrieddes. Comprimento. Áre 1 Integrl de Linh de um Cmpo Esclr. Comprimento Sejm A e B dois

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

Eletromagnetismo I Lista de Problemas 2.2

Eletromagnetismo I Lista de Problemas 2.2 Eletromagnetismo I - 2017.2 - Lista de Problemas 2.2 1 Eletromagnetismo I Lista de Problemas 2.2 Departamento de Física de Ji-Paraná Universidade Federal de Rondônia Prof. Marco Polo Questão 01 Uma partícula

Leia mais

Potencial, Trabalho e Energia Potencial Eletrostática

Potencial, Trabalho e Energia Potencial Eletrostática Cpítulo 4 Potencil, Trblho e Energi Potencil Eletrostátic Existe um conexão entre o potencil elétrico e energi potencil, como veremos, ms não devemos esquecer que são dus quntiddes essencilmente distints.

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Lei de Coulomb 1 = 4πε 0

Lei de Coulomb 1 = 4πε 0 Lei de Coulomb As forçs entre crgs elétrics são forçs de cmpo, isto é, forçs de ção à distânci, como s forçs grvitcionis (com diferenç que s grvitcionis são sempre forçs trtivs). O cientist frncês Chrles

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:

Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos

Leia mais

Cálculo IV EP15 Aluno

Cálculo IV EP15 Aluno Fundção entro de iêncis e Educção uperior istânci do Estdo do Rio de Jneiro entro de Educção uperior istânci do Estdo do Rio de Jneiro álculo IV EP5 Aluno Objetivo Aul 25 Teorem de tokes Estudr um teorem

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão Seção 20: Equção de Lplce Notção. Se u = u(x, y) é um função de dus vriáveis, representmos por u, ou ind, por 2 u expressão u = 2 u = u xx + u yy, chmd de lplcino de u. No cso de função de três vriáveis,

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Segunda Prova: 01/10/2014

Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Segunda Prova: 01/10/2014 2 Universidade Federal do Rio de Janeiro Instituto de Física Física III 24/2 egunda Prova: //24 Versão: A F m = q v B, d F m = Id l B, B d l = µ I enc +µ ǫ dφ E eção. Múltipla escolha (8,6 = 4,8 pontos).

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z INSTITTO DE MATEMÁTICA DA FBA DEPARTAMENTO DE MATEMÁTICA A LISTA DE CÁLCLO IV SEMESTRE 00. (Função vetoril de um vriável, curv em R n. Integrl dupl e plicções) ) Determine um função vetoril F: I R R tl

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais