GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006

Tamanho: px
Começar a partir da página:

Download "GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006"

Transcrição

1 GRITO / TRU : ecânic ds struturs II T e T. Prov 7// ( ) ( Pontos). uestão: Sej treiç d figur, compost de brrs de mesm rigidez xi, e sujeit à crg vertic posiciond no nó centr inferior. Use o teorem de peyron e energi de deformção pr obter o desocmento vertic do ponto de picção d crg. 4 α h/4 dos: 4 mm / mm 7 mm α rctn, 7, 87º / / Soução: - Forçs normis ns brrs: picndo Ritter, e sendo forç cortnte n primeir metde do vão igu V / e o momento no centro do vão igu /, obtém-se: V sinα, 4 e h, 7 4 Por outro do, o equiíbrio do nó centr inferior obrig ter-se, pois s dus brrs horizontis não conseguem equiibrr crg vertic. Ver figur seguinte. om isto, pode-se ccur energi de deformção cumud n treiç (ver Tbe): U j j 7 8 UL TU eprtmento de struturs TRU ecânic ds struturs II Prof. Roberto uchim

2 Tbe j º. de repetições: j j r, 4 4 4, 4 r j j r j j 7 8 O trbho reizdo pe crg é estocdo n treiç em form de energi de deformção, sem perd por cor ou por energi cinétic (vibrção). Logo, picndo peyron determin-se o desocmento vertic d crg tunte: , ou sej, v 8 mm v ( ) ( Pontos). uestão: onsidere o pir uto-equiibrdo d figur, sujeito dus forçs verticis F, de mesm inh de ção e mbs com excentriciddes iguis. o que segue, use o Teorem de stigino e considere unicmente energi de deformção por fexão d brr mior (s dus brrs menores, e, têm ). / F ssim sendo, pede-se ccur: - u diminuição d distânci vertic origin dos pontos e? b- u o desocmento horizont do ponto do pir? / x dos: mm, ( ) pir, 4 mm, F 9, / / F Soução: UL TU eprtmento de struturs TRU ecânic ds struturs II Prof. Roberto uchim

3 - otndo que foi picdo n estrutur um pr de forçs, o teorem de stigino dá o desocmento retivo entre mbs (se fosse pedido pens, p. ex., o desocmento vertic d forç em, teri quer ser picd nesse ponto pens um forç fictíci, e não dus). / F x / F / / F / Sendo U dx e peo teorem de stigino U, tem-se: F [ dx dx dx dx omo F F F ( x) cte, e, resut dx dx. 9, ( ) 4 mm, 4 st é medid d proximção entre si ds dus forçs. d qu se desoc verticmente mm. ote-se que é em ger preferíve derivr primeiro e integrr depois, e não o contrário! UL TU eprtmento de struturs TRU ecânic ds struturs II Prof. Roberto uchim

4 4 b- determinção do desocmento horizont em é feit trvés de um forç horizont F fictíci picd nesse ponto. ss forç terá de ser retird d estrutur, pois não fz prte do sistem de forçs picds. O digrm de momento fetor está ddo n figur seguinte. ote-se que pr integr ser feit, interess neste digrm pens função (x), não ser que se use Tbe de Kurt-eyer, qundo interessrão os pontos de máximos. / F F / (x)f /+F x/ F /+F /4 x / F / F / F / U O teorem de stigino gor se escreve: h. F omo se mostrou no item nterior, derivd d energi de deformção em reção à forç F resut n integr do produto. Observndo que em se deve nur forç F, e F x que n derivd considerndo simetri do digrm de momento fetor: não prece F (e por isso ne não há forç nur), tem-se, h U F F / / dx F x F dx [ ( ) F ] 8 omprndo com o resutdo nterior, vê-se que este desocmento é / 8, vezes mior. Logo, h mm. UL TU eprtmento de struturs TRU ecânic ds struturs II Prof. Roberto uchim

5 ( ) (, Pontos). uestão: Sej vig contínu d figur, um vez hiperestátic, sujeit momentos picdos nos poios extremos. - Use o teorem de enbre pr obter reção do poio interno. onsidere pens energi de deformção por fexão. b- esenhr o digrm de momento fetor. dos: km, m. / x (x) +x/ pr x / Soução: onforme o teorem de enbre (picáve estruturs hiperestátics), energi de deformção U U(, ), função do crregmento, pss por um mínimo pr vriáve, pois o desocmento vertic do poio é zero, ou sej: U v d função (x), cf. se ê no desenho cim, obtém-se como n questão nterior, e já observndo simetri: dx, ou x x ( + ) dx, ou sej, xdx + x dx k O sin negtivo indic que reção em é dirigid pr cim, o contrário do pressuposto. ote que rigidez não prece n equção de. b- O digrm de momento fetor é poigon, pois em cd vão forç cortnte é constnte. m tem-se reção k. Logo, em o momento fetor ve: ( ) + km, trção n fibr superior. UL TU eprtmento de struturs TRU ecânic ds struturs II Prof. Roberto uchim

6 - / (x) +x/ x pr x / ( ) (, Pontos) 4. uestão: vig isostátic e contínu d figur seguinte, pic-se n rótu um pr de momentos. Sendo constnte rigidez à fexão d vig, pede-se: - eterminr o desocmento vertic v no ponto cusdo peo pr de momentos. Use o PTV e tbe de Kurt-eyer. est tbe α, é posição retiv do vértice do tringuo. b- Retir-se gor o pr de momentos e pic-se em um forç vertic. est condição, obter rotção retiv ϕ n rótu, usndo o teorem de etti-xwe. 7 4 dos: mm, / mm, I 44 mm mm, 4 v / / / / ϕ Soução: - Pr obter o desocmento vertic em, v, produzido peo pr de momentos, picdo em, consider-se mesm vig sujeit um forç virtu unitári em. Tem-se, ssim, dois sistems, o re e o virtu, cujos respectivos momentos fetores estão ddos n figur seguinte. UL TU eprtmento de struturs TRU ecânic ds struturs II Prof. Roberto uchim

7 7 omentos reis / / / / /4 omentos virtuis picndo o PTV, tem-se o trbho virtu reizdo pe forç virtu unitári (do segundo sistem) o ongo do desocmento re v (do primeiro sistem) ddo por: v dx + dx dx Tbe K: ( +, ) ( ) 4 v 8, ou ( ) v mm b- os dois sistems de forçs ds figurs iniciis dest questão, um dees pode ser considerdo virtu, e o outro re. forç do segundo sistem reiz um trbho virtu o ongo do desocmento v do primeiro, enqunto o pr de momentos do primeiro sistem reiz um trbho virtu o ongo d rotção retiv ϕ do segundo, e estes trbhos são iguis entre si (teorem de etti-xwe). Logo: 4 v ϕ, donde ϕ v rd mrd É mis fáci compreender o teorem de etti-xwe trvés do PTV, como segue ( é o momento fetor do primeiro sistem, produzido peo pr, é o momento fetor do segundo sistem, produzido por ): () O sistem é re, enqunto o sistem é virtu: τ e ϕ dx τ i. (b) O sistem é re, enqunto o sistem é virtu: τ e v dx τ i. omo estrutur é eástic iner, s dus integris τ i que representm os trbhos internos são iguis. Portnto, v ϕ. ote-se que o PTV foi picdo vezes. UL TU eprtmento de struturs TRU ecânic ds struturs II Prof. Roberto uchim

Esforços internos em vigas com cargas transversais

Esforços internos em vigas com cargas transversais Esforços internos Esforços internos em um estrutur crcterizm s igções interns de tensões, isto é, esforços internos são integris de tensões o ongo de um seção trnsvers de um rr. Esforços internos representm

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1 ME-50 MECÂNICA DOS SÓLIDOS II AULA #1: FUNÇÕES DE MACAULAY 1 11 Motição e objetios N náise estátic de estruturs formds por igs desej-se conhecer, ém ds tensões e deformções nos pontos mis soicitdos, os

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica PME 100 MEÂNI ecuperção 03 de fevereiro de 009 urção d Prov: 10 inutos (não é peritido o uso de ccudors) 1ª Questão (30 pontos): N estrutur esquetizd bixo brr é rticud nos pontos e brr é rticud e e e brr

Leia mais

CAPÍTULO VIII VIGAS ESTATICAMENTE INDETERMINADAS E ENCURVADURA

CAPÍTULO VIII VIGAS ESTATICAMENTE INDETERMINADAS E ENCURVADURA PÍTULO VIII VIGS ESTTIETE IDETERIDS E EURVDUR 8.. RESUO D TEORI 8... Introdução os pítuos V e VI form borddos os probems d determinção ds tensões e ds deformções em vigs pr vários tipos de crregmento e

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física.

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física. Ministério d Educção Fundção Universidde Feder de Mto Grosso do Su Instituto de Físic Curso de Licencitur em Físic O fio infinito Um exempo de obtenção do cmpo eetrostático por dois métodos: integrção

Leia mais

VII - ADERÊNCIA, ANCORAGEM E EMENDAS DAS ARMADURAS LONGITUDINAIS TRACIONADAS DE PEÇAS FLETIDAS

VII - ADERÊNCIA, ANCORAGEM E EMENDAS DAS ARMADURAS LONGITUDINAIS TRACIONADAS DE PEÇAS FLETIDAS VII - DERÊNCI, NCORGEM E EMENDS DS RMDURS LONGITUDINIS TRCIONDS DE EÇS FLETIDS - DERÊNCI Concreto rmdo soidriedde entre concreto e ço derênci ) derênci por desão: igção físico-químic n interfce ço/concreto

Leia mais

TC 071 PONTES E ESTRUTURAS ESPECIAIS II

TC 071 PONTES E ESTRUTURAS ESPECIAIS II TC 071 PONTES E ESTRUTURAS ESPECIAIS II 7ª AULA (09/09/2.010) Vmos nlisr o comportmento ds longrin e o cminhmento ds crgs trvés d estrutur em grelh, pr: ) crgs plicds n longrin em estudo, b) crgs plicds

Leia mais

Capítulo 3 Diagramas de esforços em vigas isostáticas

Capítulo 3 Diagramas de esforços em vigas isostáticas Digrms de esforços em vigs rofessor Eine Toscno pítuo 3 Digrms de esforços em vigs isostátics 3.1 Digrms de esforços d esforço secion em um seção trnsvers de um estrutur sumetid um sistem de forçs ou crgs

Leia mais

Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2

Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2 Profª Gbriel Rezende Fernndes Disciplin: Análise Estruturl 2 INCÓGNITAS = ESFORÇOS HIPERESTÁTICOS (reções de poio e/ou esforços em excesso que estrutur possui) N 0 TOTAL DE INCÓGNITAS = g =gru de hiperestticidde

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítulo 5 Vigs sobre bse elástic Este cpítulo vi presentr s bses pr o estudo estático e elástico d fleão simples de vigs suportds diretmente pelo terreno (ue constitui, então, num poio elástico contínuo

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço

2º. Teste de Introdução à Mecânica dos Sólidos Engenharia Mecânica 25/09/ Pontos. 3 m 2 m 4 m Viga Bi Apoiada com Balanço 2º. Teste de Introdução à Mecânic dos Sólidos Engenhri Mecânic 25/09/2008 25 Pontos 1ª. Questão: eterminr os digrms de esforços solicitntes d Vig i-poid com blnço bixo. 40kN 30 0 150 kn 60 kn/m 3 m 2 m

Leia mais

Capítulo 5 Vigas sobre base elástica

Capítulo 5 Vigas sobre base elástica Cpítuo 5 Vigs sobre bse eástic Este cpítuo vi presentr s bses pr o estudo estático e eástico d fexão simpes de vigs suportds diretmente peo terreno (ue constitui, então, num poio eástico contínuo pr ests

Leia mais

C A P Í T U L O 5 Vigas sobre base elástica

C A P Í T U L O 5 Vigas sobre base elástica C Í T U L O 5 Vigs sobre bse elástic Este cpítulo vi presentr s bses pr o estudo estático e elástico d flexão simples de vigs suportds diretmente pelo terreno (que constitui, então, num poio elástico contínuo

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps que vmos recordr: Representr o

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Acesse: http://fuvestibur.com.br/ Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

Teoria Elementar de Barra Prismática

Teoria Elementar de Barra Prismática Teori Eementr de Brr rismátic EF- ecânic d Estrtrs Teori Eementr de Brr rismátic rof. ige L. Bcem Hipóteses Teori eementr de rr prismátic Seções pns originmente ortogonis o eio d rr permnecem pns e ortogonis

Leia mais

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014

Física III Escola Politécnica GABARITO DA P1 2 de abril de 2014 Físic III - 430301 Escol Politécnic - 014 GABARITO DA P1 de bril de 014 Questão 1 Um brr semi-infinit, mostrd n figur o longo do ldo positivo do eixo horizontl x, possui crg positiv homogenemente distribuíd

Leia mais

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Estruturas e Geotécnica PROBLEMAS DE RESISTÊNCIA DOS MATERIAIS

Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Estruturas e Geotécnica PROBLEMAS DE RESISTÊNCIA DOS MATERIAIS Escol Politécnic d Universidde de São Pulo Deprtmento de Engenhri de Estruturs e Geotécnic PROLEMAS DE RESISTÊNCIA DOS MATERIAIS H. ritto 008 PREFÁCIO Este texto tem finlidde de prover s disciplins PEF-0

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA SC PITÉCNIC UNISI SÃ PU ecânic P ª Prov 4/6/4 urção d Prov: inutos (Nã é peritido o uso de ccudors, ceures, tets e/ou outros uipentos siires) ª Questão (, ponto) - efere-se à pestr de /6/4. Considere o

Leia mais

MÉTODO DOS DESLOCAMENTOS EXAME DE ÉPOCA NORMAL /2014

MÉTODO DOS DESLOCAMENTOS EXAME DE ÉPOCA NORMAL /2014 DEPARTAMENTO DE ENGENHARA CV CENCATURA EM ENGENHARA CV TEORA DE ESTRUTURAS MÉTODO DOS DESOCAMENTOS EXAME DE ÉPOCA NORMA - / mm V c H Q d b e P knm kn SABE AVM TEES TEORA DE ESTRUTURAS DEPARTAMENTO DE ENGENHARA

Leia mais

FLEXÃO E TENSÕES NORMAIS.

FLEXÃO E TENSÕES NORMAIS. LIST N3 FLEXÃO E TENSÕES NORMIS. Nos problems que se seguem, desprer o peso próprio (p.p.) d estrutur, menos qundo dito explicitmente o contrário. FÓRMUL GERL D FLEXÃO,: eixos centris principis M G N M

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Propost de teste de vlição Mtemátic A. O ANO DE ESOLARIDADE Durção: 90 minutos Dt: derno (é permitido o uso de clculdor) N respost o item de escolh múltipl, selecione opção corret. Escrev, n olh de resposts,

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Resolução do exercício proposto na experiência da associação em paralelo das bombas hidráulicas

Resolução do exercício proposto na experiência da associação em paralelo das bombas hidráulicas Resolução do exercício proposto n experiênci d ssocição em prlelo ds bombs hidráulics. equção d CCI pr ssocição em prlelo, onde tudo o que or considerdo deve ser devidmente justiicdo. ( γ Q ) + entrm γ

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 Eletricidde I 2 List de exercícios 1. N figur bixo, s crgs estão loclizds nos vértices de um triângulo equilátero. Pr que vlor de Q (sinl e módulo) o cmpo elétrico resultnte se nul no ponto C,

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

FERRAMENTA GRÁFICA PARA TRAÇADO DE LINHAS DE INFLUÊNCIA

FERRAMENTA GRÁFICA PARA TRAÇADO DE LINHAS DE INFLUÊNCIA PIBIC 00/0 Nome do Deprtmento: Engenhri Civi Nome do Auno: André Chn Nunes Nome do Orientdor: Luiz Fernndo Cmpos Rmos Mrth Títuo do Projeto: Ferrment Gráfic pr Trçdo de Linhs de Infuênci FERRAMENTA GRÁFICA

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Resistência de Materiais 2

Resistência de Materiais 2 Resistênci de Mteriis Ano ectivo 0/04 º Exme 8 de Jneiro de 04 Durção: hors Oservções: Não podem ser consultdos quisquer elementos de estudo pr lém do formulário fornecido. Resolver os prolems em grupos

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Integrais Duplas em Regiões Limitadas

Integrais Duplas em Regiões Limitadas Cálculo III Deprtmento de Mtemátic - ICEx - UFMG Mrcelo Terr Cunh Integris Dupls em egiões Limitds Ou por curiosidde, ou inspirdo ns possíveis plicções, é nturl querer usr integris dupls em regiões não

Leia mais

O Teorema de Tales. A massa de um bloco de gelo é de 13 kg. Se 10% do gelo derreter, de quanto passará a ser a sua massa?

O Teorema de Tales. A massa de um bloco de gelo é de 13 kg. Se 10% do gelo derreter, de quanto passará a ser a sua massa? A UUL AL A 48 O Teorem de Tes A estc tem 1,50 m e su sombr 2,20 m. A sombr do poste mede 4,90 m. Qu é tur do poste? Pr pensr A mss de um boco de geo é de 13 kg. Se 10% do geo derreter, de qunto pssrá ser

Leia mais

AULA 8. Equilíbrio Ácido Base envolvendo soluções de ácidos polipróticos e bases poliácidas

AULA 8. Equilíbrio Ácido Base envolvendo soluções de ácidos polipróticos e bases poliácidas Fundmentos de Químic nlític, Ione M F liveir, Mri José F ilv e imone F B Tófni, urso de Licencitur em Químic, Modlidde Distânci, UFMG 00 UL 8 Equilíbrio Ácido Bse Equilíbrio Ácido Bse envolvendo soluções

Leia mais

O Teorema de Tales. A massa de um bloco de gelo é de 13 kg. Se 10% do gelo derreter, de quanto passará a ser a sua massa?

O Teorema de Tales. A massa de um bloco de gelo é de 13 kg. Se 10% do gelo derreter, de quanto passará a ser a sua massa? Acesse: http://fuvestibur.com.br/ A UUL AL A O Teorem de Tes A estc tem 1,50 m e su sombr 2,20 m. A sombr do poste mede 4,90 m. Qu é tur do poste? Pr pensr A mss de um boco de geo é de 13 kg. Se 10% do

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

FACULDADES OSWALDO CRUZ ESCOLA SUPERIOR DE QUÍMICA

FACULDADES OSWALDO CRUZ ESCOLA SUPERIOR DE QUÍMICA ULDDES OSWLDO RUZ ESOL SUERIOR DE QUÍMI DIÂMI ) rofessor: João Rodrigo Esclri Quintilino escl R b D figur: R 3 6 lterntiv e. x x v t t 4 x t 4t 8 m/s Se m 4 kg: R m 4 8 R 3 7 R v? v b) omo c R: b R, 9

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 07 GABARITO COMENTADO 1) Se o resto d divisão de 47 por x é 7, então x divide 47 7 = 40 D mesm mneir, x divide

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

Matemática B Extensivo V. 8

Matemática B Extensivo V. 8 Mtemátic B Extensivo V. 8 Resolv Aul 9 9.01) = ; b = c = + b c + 9 c = Distânci focl = c 0 9.0) x = 0 0 x = ; b = c = + b c = + c = Como o eixo rel está sobre o eixo e o centro é (0, 0), então F 1 (0,

Leia mais

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação:

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação: . Determine os vores reis e x que stisfzem inequção: x IR e X og x og 9 x² x og x og Fzeno x og, temos: ( ) ( ) ( ) ² ² ² ² + + + + + + - - - - - - - - - - - - - - - - - - + + + - + + + - - - + + + + +

Leia mais

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações Universidde de São Pulo Escol Politécnic - Engenhri Civil PEF - Deprtmento de Engenhri de Estruturs e Fundções Estruturs de Concreto II PILARES DE CONTRAVENTAMENTO ESTABILIDADE GLOBAL Professor: Túlio

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores 4.4 - Acelerômetros ombindos Montgem: G θ x x x ircuito: reerênci R R v R R R R R - + 0 + v R - + R 0-7 rcterístics de ensores Deslocmento liner médio: x x + x && x + Deslocmento ngulr médio: θ && θ x

Leia mais

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

10/09/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Prof. lvro Muriel Lim Mchdo justmento de Observções Qundo s medids não são feits diretmente sobre s grndezs procurds, ms sim

Leia mais

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x

Leia mais

fct - UNL ESTRUTURAS DE BETÃO ARMADO I 10 ESTADO LIMITE DE DEFORMAÇÃO ESTRUTURAS DE BETÃO ARMADO I PROGRAMA

fct - UNL ESTRUTURAS DE BETÃO ARMADO I 10 ESTADO LIMITE DE DEFORMAÇÃO ESTRUTURAS DE BETÃO ARMADO I PROGRAMA ESTRUTURAS DE BETÃO ARADO I ESTRUTURAS DE BETÃO ARADO I 0 ESTADO LIITE DE DEFORAÇÃO 0 ESTADO LIITE DE DEFORAÇÃO PROGRAA.Introdução o betão rmdo 2.Bses de Projecto e Acções 3.Proprieddes dos mteriis: betão

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Integrção Numéric Métodos Numéricos e Esttísticos Prte I-Métodos Numéricos Integrção numéric Luís Morgdo Lic. Eng. Biomédic e Bioengenhri-009/010 Luís Morgdo Integrção numéric Integrção Numéric Recorrendo

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

PROVA COMENTADA. Dimensionamento das armaduras de flexão no vão e no apoio da viga contínua. m - momento fletor de cálculo

PROVA COMENTADA. Dimensionamento das armaduras de flexão no vão e no apoio da viga contínua. m - momento fletor de cálculo téchne educção PROVA COMENTADA Q1) RESPOSTA Dimensionmento ds rmdurs de flexão no vão e no poio d vig contínu. Vão - M 39,4 kn. m - momento fletor crcterístico k - M M 1,4 39,4 55,16 kn. m - momento fletor

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

. Estas equações são equações paramétricas da curva C.

. Estas equações são equações paramétricas da curva C. Universidde Federl d Bhi -- UFBA Deprtmento de Mtemátic, Cálculo IIA, Prof. Adrino Ctti Cálculo de áres de figurs plns (curvs sob equções prmétrics) (por Prof. Elin Prtes) Exemplo : Sej o círculo C de

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019 Físic III - 4323203 Escol Politécnic - 2019 GABARITO DA P2 09 de mio de 2019 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio 2. A esfer e csc esféric são concêntrics

Leia mais

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017

Física III Escola Politécnica GABARITO DA P1 20 de abril de 2017 Físic III - 4323203 Escol Politécnic - 2017 GABARITO DA P1 20 de ril de 2017 Questão 1 O cmpo elétrico sore o eixo de simetri (eixo z) de um nel de rio r e crg totl Q > 0 é ddo por z E nel = 1 Qz k. (r

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 1ª LISTA DE EXERCÍCIOS PME2200 MECÂNICA B DINÂMICA DO CORPO RÍGIDO MARÇO DE Resp.

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 1ª LISTA DE EXERCÍCIOS PME2200 MECÂNICA B DINÂMICA DO CORPO RÍGIDO MARÇO DE Resp. ES PITÉNI UNIVESIE E SÃ PU ª IST E EXEÍIS PME00 MEÂNI INÂMI P ÍI MÇ E 00 ) fiur o do ostr u eio de ss 3 e copriento 3 o qu estão press dus brrs onitudinis idêntics, de copriento e ss. Pede-se: ) s coordends

Leia mais

Aula 20 Hipérbole. Objetivos

Aula 20 Hipérbole. Objetivos MÓDULO 1 - AULA 20 Aul 20 Hipérbole Objetivos Descrever hipérbole como um lugr geométrico. Determinr su equção reduzid no sistem de coordends com origem no ponto médio entre os focos e eixo x como o eixo

Leia mais

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas Análise de Circuitos Trifásicos Desequilibrdos Utilizndo-se Componentes Simétrics Prof. José Rubens Mcedo Jr. Exercício: Um determind crg trifásic, ligd em estrel flutunte, é limentd pels seguintes tensões

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mis Aprov n GV FGV ADM 04/dezembro/016 MATEMÁTICA APLICADA 01. ) Represente grficmente no plno crtesino função: P(t) = t 4t + 10 se t 4 1 t se t > 4 Se função P(t), em centens de reis,

Leia mais

se vai Devagar Devagar se vai longe longe...

se vai Devagar Devagar se vai longe longe... Compelm M et e tn át os de M ic Devgr Devgr se se vi vi o o longe... longe 130 ) Describe the pttern by telling how ech ttribute chnges. A c) Respost possível: b B B B A b b... A b) Drw or describe the

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais