2.4 Integração de funções complexas e espaço
|
|
- Eugénio Cortês Santarém
- 3 Há anos
- Visualizações:
Transcrição
1 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs. Definição 2.4. Define-se L 1 (µ) o conjunto de tods s funções complexs mensuráveis f : C tis que f <. Observção Segue d Proposição 2.7 que f : [0, [ é um função mensurável. Logo, fz sentido f. Um função f L 1 (µ) diz-se um função integrável em no sentido de Lebesgue, reltivmente à medid µ. Neste cso, tomndo f = u + iv, onde u, v : R são funções mensuráveis, define-se o integrl de Lebesgue d função complex f em, reltivo à medid µ como sendo o número f dµ = u + dµ u dµ + i v + dµ i v dµ onde u +, v + e u, v são prte positiv e negtiv de u, v respectivmente. Note-se que f é integrável em sse u± dµ e v± dµ são finitos. Teorem 2.28 (Proprieddes). Sejm f, g L 1 (µ) e α, β C. ntão 1. αf + βg L 1 (µ). 2. (αf + βg) dµ = α f dµ + β g dµ. 3. f dµ f dµ. Demonstrção. Deix-se como exercício. Observção L 1 (µ) é um espço liner. xemplo Tome-se o espço de medid (R, B(R), µ) onde µ é medid de contgem. Considere-se o Borelino = { 2, 1, 1, 2} e g : R R função mensurável g(x) = x. ntão, pel definição de integrl de Lebesgue g dµ = g + dµ g dµ = χ g + dµ χ g dµ. 27
2 Note-se que χ g + é um função simples, de fcto χ g + = g + ( 2)χ { 2} + g + ( 1)χ { 1} + g + (1)χ {1} + g + (2)χ {2}. Logo, χ g + dµ = g + (1)µ({1}) + g + (2)µ({2}) = = 3. De mneir nálog tem-se χ g dµ = 3. Logo, g dµ = 0. Como já menciondo nteriormente, do ponto de vist d teori d medid e integrção, os conjuntos de medid nul são desprezáveis. De fcto, se f = g excepto num conjunto de medid nul N então f dµ = g dµ. Portnto, diz-se que um função f stisfz propriedde (P) quse certmente (q.c.) em se f stisfizer ess propriedde pr todos os pontos em à excepção de um conjunto de medid nul. Teorem Sej (, F, µ) um espço de medid. ntão 1. Se f : [0, ] é mensurável e f dµ = 0 pr lgum F então f = 0 q.c. em. 2. Se f L 1 (µ) e f dµ = 0 pr todo F então f = 0 q.c. em. Demonstrção. 1. Tome-se o conjunto mensurável n = {x : f(x) 1/n}. ntão 0 = f dµ n f dµ n 1/n dµ = µ( n )/n. Logo µ( n ) = 0. Um vez que µ( n n) = 0, segue que f > 0 pr um conjunto de medid nul, ou sej, f = 0 q.c. 2. Deix-se como exercício. 2.5 Integrl de Lebesgue-Stieltjes Num secção nterior, construirim-se medids de Lebesgue-Stieltjes em R, isto é, dd um função de distribuição F existe um espço de medid completo (R, M F, m F ) onde m F é designd por medid de Lebesgue-Stieltjes. Tome-se um função g : R R mensurável reltivmente à σ-álgebr M F. Ao integrl de g reltivmente à medid m F design-se por integrl de Lebesgue-Stieltjes e é usul escrever-se g dm F = g df. 28
3 2.6 Teorem d convergênci domind No contexto ds funções mensuráveis não negtivs o teorem d convergênci monóton grnte que pr um sucessão de funções que convergem monotonmente pr um função então o integrl d função limite é igul o limite dos integris ds respectivs funções. Nest secção enuncimos um teorem semelhnte o d convergênci monóton. O teorem que se segue, estbelece um conjunto de condições suficientes pr se proceder à troc de limites com integrl qundo s funções integrr tomm vlores complexos. Teorem 2.32 (d convergênci domind). Sej f n : C um sucessão de funções mensuráveis e g : [0, ) um função integrável, isto é g L 1 (µ), tl que pr todo n 1 se tem f n g. Se f = lim n f n então f L 1 (µ) e lim f n dµ = f dµ. Demonstrção. Tomndo prte rel e imginári, pode-se supor que f n e f são funções reis. Logo g f n g. Como f = lim n f n temos que f é mensurável e g f g. Aplicndo o lem de Ftou à sucessão f n + g 0 obtém-se f + g dµ lim inf f n + g dµ. Segue do fcto de g ser integrável que f dµ lim inf f n dµ. Aplicndo mis um vez o lem de Ftou, ms gor à sucessão g f n 0, obtém-se g f dµ lim inf g f n dµ, ou escrito de form equivlente lim sup f n dµ f dµ. xercício 34. Considere-se o espço mensurável (, P()). Sej A = {x 1, x 2, x 3,...} um subconjunto numerável de e µ : P() [0, ] seguinte função µ() = x i α i, onde α i, i = 1, 2,... são números reis não negtivos. Mostre que 29
4 1. µ é um medid, designd por medid discret. 2. µ = i=1 α iδ xi onde δ xi é medid de Dirc. 3. Dd um função mensurável f : [0, ], f dµ = f(x i )α i. x i 2.7 Relção com integrl de Riemnn Nest secção relcionmos o integrl de Riemnn com o recém definido integrl de Lebesgue. Relembremos o conceito de integrl de Riemnn. Sej f : [, b] R um função rel limitd onde < b. Um prtição do intervlo [, b] é um conjunto finito P = { 0, 1,..., n } onde = 0 < 1 <... < n = b. Dd um prtição P pode-se definir s soms inferior e superior de Riemnn d função f reltivs à prtição P, Σ(f, P ) = n m i ( i i 1 ) e Σ(f, P ) = i=1 n M i ( i i 1 ), onde m i = inf {f(x) : i 1 < x < i } e M i = sup {f(x) : i 1 < x < i }. Um vez que f é limitd estes números existem. Por fim define-se b b i=1 f = inf { Σ(f, P ) : P é um prtição de [, b] }, f = sup {Σ(f, P ) : P é um prtição de [, b]}. Finlmente, diz-se que f é integrável à Riemnn sse b f = b e é comum denotr-se este número por b f(x) dx. O seguinte teorem permite relcionr o integrl de Riemnn com o integrl de Lebesgue. Teorem Sej f : [, b] R um função limitd. Se f for integrável à Riemnn então f é integrável reltivmente à medid de Lebesgue e os integris coincidem, b f(x) dx = f dm. [,b] f 30
5 Demonstrção. Ver demonstrção em [1]. xemplo Se f : [, b] R é contínu então é integrável à Riemnn. Pr lém disso, se tiver um primitiv, isto é, existir um função F : [, b] R tl que F = f então F (b) F () = b f(x) dx. 2. Há funções simples que não são integráveis à Riemnn, como é o cso d função crcterístic χ Q : [0, 1] R. De fcto, Σ(χ Q, P ) = 0 e Σ(χ Q, P ) = 1 pr tod prtição P. Logo 1 0 χ Qq 1 0 χ Q. xemplo Considere-se medid de Borel m no espço mensurável ([0, 1], B([0, 1]) e seguinte sucessão de funções reis f n (x) = n sin x 1 + n 2 x 1/2 n = 1, 2,... pr x [0, 1]. É clro que lim n f n = 0. Pr concluir que lim n [0,1] f n dm = 0 bst, usndo o teorem d convergênci domind, encontrr um função integrável g 0 tl que f n g. Mjorndo f n obtém-se n sin x 1 + n 2 x 1/2 n 1 + n 2 x 1/2 1 nx 1/2 1 x 1/2. 1 Por outro ldo, é integrável à Riemnn no intervlo [0, 1]. Logo x 1/2 f n é mjord por um função integrável (no sentido de Lebesgue). Segue do teorem d convergênci domind que lim n [0,1] f n dm = 0. xercício 35. Use o teorem d convergênci domind pr clculr x lim 1 + nx 3 dx Continuidde bsolut e Teorem de Rdon- Nikodym Sej (, F, µ) um espço de medid e f : [0, ] um função mensurável. Como foi visto, função ν : F [0, ] definid por ν() = f dµ, é um medid no espço mensurável (, F). A medid ν tem seguinte propriedde: se µ() = 0 então ν() = 0. st propriedde é de fundmentl importânci pr teori de probbiliddes como veremos dinte. 31
6 Definição 2.5. Sej (, F) um espço mensurável e µ, λ dus medids definids neste espço. Diz-se que λ é bsolutmente contínu reltivmente µ e escreve-se λ µ sse pr todo F tl que µ() = 0 então λ() = 0. A definição nterior diz que λ µ sse todos os conjuntos de medid nul de µ forem tmbém conjuntos de medid nul pr λ. No entnto, λ pode ter mis conjuntos de medid nul que µ. Acbámos de ver que tods medids ν construíds trvés do integrl f dµ são bsolutmente contínus reltivmente µ. A questão que se coloc é: será que tods medids bsolutmente contínus reltivmente µ podem ser obtids dess mneir? A respost est questão é dd pelo teorem de Rdon-Nikodym. Teorem 2.36 (de Rdon-Nikodym). Sejm λ e µ dus medids finits definids em (, F) tl que λ µ. ntão existe um únic função h L 1 (µ) tl que λ() = h dµ, F. Demonstrção. A demonstrção pode ser encontrd em [1]. A função h design-se por derivd no sentido de Rdon- Nikodym de λ e escreve-se formlmente h = dλ dµ. Observção A unicidde de h no teorem de Rdon-Nikodym deve ser entendid no seguinte sentido: se f é outr função em L 1 (µ) tl que λ() = f dµ então f = h q.c. Observção O teorem de Rdon-Nikodym é válido pr o cso mis gerl de λ e µ serem dus medids σ-finits, como é o cso d medid de Lebesgue. Um medid µ de (, F) diz-se σ-finit sse existirem conjuntos mensuráveis A n F, n = 1, 2,... tl que n=1 A n = e µ(a n ) < pr todo n = 1, 2,.... Definição 2.6. Sej (, F, µ) um espço de medid e A F. Diz-se que µ está concentrd em A sse µ() = µ( A), F. Definição 2.7. Dus medids µ e λ definids em (, F) dizem-se mutumente singulres e escreve-se µ λ sse existem dois conjuntos disjuntos A, B F tl que µ está concentrd em A e λ está concentrd em B. 32
Elementos de Análise - Lista 6 - Solução
Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2013/2014 Exercício 1. Seja (, F) um espaço mensurável. Mostre que 1. F. 2. se A i F, i = 1, 2,... então n i=1 A i F. 3. se A i F,
Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões
Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl
1 Definição de integral (definida) de Riemann
1 Definição de integrl (definid) de Riemnn Sej seguir sempre f : [, b] R limitd (com [, b] limitdo); logo existem m, M tis que m f(x) M. Definição: chmmos Prtição de [, b] um conjunto finito de pontos
1 A Integral de Riemann
Medid e Integrção. Deprtmento de Físic e Mtemátic. USP-RP. Prof. Rfel A. Rosles 22 de mio de 27. As seguintes nots presentm lgums limitções d integrl de Riemnn com o propósito de justificr construção d
SÉRIES DE FOURIER. 1. Uma série trigonométrica e sua sequência das somas parciais (S N ) N são dadas por
SÉRIES DE FOURIER 1. Um série trigonométric e su sequênci ds soms prciis (S N ) N são dds por (1) c n e inx, n Z, c n C, x R ; S N = n= c n e inx. Tl série converge em x R se (S N (x)) N converge e, o
(x, y) dy. (x, y) dy =
Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores
Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo
Cálulo 1 - Cálulo Integrl Teorem Fundmentl do Cálulo Prof. Fbio Silv Botelho November 17, 2017 1 Resultdos Preliminres Theorem 1.1. Sej f : [,b] R um função ontínu em [,b] e derivável em (,b). Suponh que
MTDI I /08 - Integral de nido 55. Integral de nido
MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude
ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1.
Revist d Mtemátic UFOP, Vol I, 2011 - X Semn d Mtemátic e II Semn d Esttístic, 2010 ISSN 2237-8103 ESTUDO SOBRE A INTEGRAL DE DARBOUX Aln Cvlcnte Felippe 1, Júlio Césr do Espírito Snto 1 Resumo: Este trblho
f(x) dx for um número real. (1) x = x 0 Figura A
FFCLRP-USP Integris Imprópris - CÁLCULO DIFERENCIAL E INTEGRAL I Professor Dr Jir Silvério dos Sntos Integris Imprópris Definição Sej f : ; x ) R um função Suponh ret x = x é um Assíntot Verticl o gráfico
1 Integral de Riemann-Sieltjes
Cálulo Avnçdo - 2009 Referêni: Brtle, R. G. The Elements of Rel Anlysis, Seond Edition, Wiley. 1 Integrl de Riemnn-Sieltjes 1.1 Definição No que segue vmos onsiderr f e g funções reis definids em J = [,
MAT Complementos de Matemática para Contabilidade - FEAUSP 1 o semestre de 2011 Professor Oswaldo Rio Branco de Oliveira INTEGRAL
MAT 103 - Complementos de Mtemátic pr Contbilidde - FEAUSP 1 o semestre de 011 Professor Oswldo Rio Brnco de Oliveir INTEGRAL Suponhmos um torneir bert em um recipiente e com velocidde de escomento d águ
Interpretação Geométrica. Área de um figura plana
Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric
UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA
UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm
Notas de Teoria da Probabilidade e Processos Estocásticos
Notas de Teoria da Probabilidade e Processos Estocásticos José Pedro Gaivão Resumo Estas notas destinam-se à disciplina de Teoria da Probabilidade e Processos Estocásticos do Mestrado de Matemática Financeira
Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1
Instituto Superior Técnico Deprtmento de Mtemátic Secção de Álgebr e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-ALAMEDA o SEM. 7/8 6 FICHA DE EXERCÍCIOS I. Treino Complementr de Primitivs. CÁLCULO INTEGRAL
Notas de Teoria da Probabilidade e Processos Estocásticos
Notas de Teoria da Probabilidade e Processos Estocásticos José Pedro Gaivão Resumo Estas notas destinam-se à disciplina de Teoria da Probabilidade e Processos Estocásticos do Mestrado de Matemática Financeira
Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i
Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos
Integrais Impróprios
Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de
3. CÁLCULO INTEGRAL EM IR
3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo
Aspectos do Teorema Fundamental do Cálculo
Aspectos do Teorem Fundmentl do Cálculo Luis Aduto Medeiros Conferênci proferid n Fculdde de Mtemátic - UFPA (Belém Mrço de 2008) Então porque pint? Por nd. Procuro simplesmente reproduzir o que vejo W.
A integral de Riemann e Aplicações Aula 28
A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de
Teorema Fundamental do Cálculo - Parte 2
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver
Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas
Assunto: Integris Dupls UNIVESIDADE FEDEAL DO PAÁ CÁLCULO II - POJETO NEWTON AULA 24 Plvrs-hves: integris dupls,soms de iemnn, teorem de Fubini Integris dupls Sej o retângulo do plno rtesino ddo por {(x,
Teorema Fundamental do Cálculo - Parte 1
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como
INTRODUÇÃO A MEDIDA E INTEGRAÇÃO
INTRODUÇÃO A MEDIDA E INTEGRAÇÃO Prof. Ktrin Gelfert Nots de curso IM-UFRJ 2018-2 Conteúdo 1. Prelude 1 1.1. Integrção vs. diferencição 1 1.2. Limites de funções contínus 2 1.3. Séries de Fourier 2 1.4.
Aula 27 Integrais impróprias segunda parte Critérios de convergência
Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:
fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:
Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo
Integrais Duplas em Regiões Limitadas
Cálculo III Deprtmento de Mtemátic - ICEx - UFMG Mrcelo Terr Cunh Integris Dupls em egiões Limitds Ou por curiosidde, ou inspirdo ns possíveis plicções, é nturl querer usr integris dupls em regiões não
1.3 Conjuntos de medida nula
1.3 Conjuntos de medida nula Seja (X, F, µ) um espaço de medida. Um subconjunto A X é um conjunto de medida nula se existir B F tal que A B e µ(b) = 0. Do ponto de vista da teoria da medida, os conjuntos
f(x) dx. Note que A é a área sob o gráfico
FFCLRP-USP AULA-INTEGRAL - CÁLCULO II- ECONOMIA Professor: Jir Silvério dos Sntos PROPRIEDADES DA INTEGRAL Sejm f,g : [,b] R funções integráveis. Então (i) [f(x) + g(x)]dx = (ii) Se λ é um número rel,
Resposta: Basta fazer integração por partes. Seja j = 1 (para j 1, o argumento é o mesmo). Logo. i x 1. lim. lim. (R n ), temos.
LISTA DE EXECÍCIOS 5 - TEOIA DAS DISTIBUIÇÕES E ANÁLISE DE OUIE MAP 57-4 PO: PEDO T P LOPES WWWIMEUSPB/ PPLOPES/DISTIBUICOES Os eercícios seguir form seleciondos do livro do Duistermt e Kolk denotdo por
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois
O conceito de integral e suas propriedades básicas
17 O conceito de integrl e sus proprieddes básics Sumário 17.1 Introdução....................... 2 17.2 Integrl denid de f : [, b] R.......... 5 17.3 Soms de Riemnn.................. 6 17.4 A integrl denid
Aula 29 Aplicações de integrais Áreas e comprimentos
Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento
INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.
INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Prof. Dr. Amnd Liz Pcífico Mnfrim Perticrrri mnd.perticrrri@unesp.r DEFINIÇÃO. Se f é um função contínu definid em x, dividimos o intervlo, em n suintervlos de comprimentos iguis: x = n Sejm
3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos
3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição
Introdução ao estudo de equações diferenciais
MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral
Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro
Integral imprópria em R n (n = 1, 2, 3)
Universidde Federl do Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Integrl Imprópri Integrl imprópri em R n (n =,, 3) Autores: Angel Cássi Bizutti e Ivo Fernndez Lopez Introdução
Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso.
Proposição 2.39 (Propriedades de e.). Sejam µ, λ, λ 1, λ 2 medidas no espaço mensurável (X, F). Então 1. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 2. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 3. se λ 1 µ e λ
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]
6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior
x n dx = xn+1 n k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = tan(x) + k, k R
Algums primitivs Simples... c dt = cx + k, k R x n dx = xn+ n + + k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = rctn(x) + k, dx = SetSh(x)
Integrais Imprópias Aula 35
Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção
8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3
1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções
MAT Cálculo Avançado - Notas de Aula
MAT5711 - Cálulo Avnçdo - Nots de Aul 26 de mrço de 2010 1. INTEGRAL DE RIEMANN EM ESPAÇOS DE BANACH Definição 1.1 (Integrl de Riemnn). Sejm [, b] R e E um espço de Bn. A noção de Riemnn-integrbilidde
Exercício 18. Demonstre a proposição anterior. (Dica: use as definições de continuidade e mensurabilidade)
Proposição 2.7. Sejam Y e Z espaços métricos e X um espaço mensurável. Se f : X Y é uma função mensurável e g : Y Z é uma função contínua então g f : X Z é uma função mensurável. Exercício 18. Demonstre
CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).
Cálculo integral. 4.1 Preliminares
Cpítulo 4 Cálculo integrl 4. Preinres Considere um decomposição do intervlo [, ] R em su-intervlos d orm [x, x ], [x, x ],..., [x n, x n ], onde = x < x < < x n < x n = e n N. Por um questão de simplicidde,
Integrais impróprias - continuação Aula 36
Integris imprópris - continução Aul 36 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 06 de Junho de 204 Primeiro Semestre de 204 Turm 20406 - Engenhri Mecânic Alexndre Nolsco de
IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.
IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo
Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.
Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri
Diogo Pinheiro Fernandes Pedrosa
Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito
Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli
Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento
CÁLCULO I. 1 Funções denidas por uma integral
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por
META: Introduzir o conceito de integração de funções de variáveis complexas.
Integrção omplex AULA 7 META: Introduzir o conceito de integrção de funções de vriáveis complexs. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integrl de um função complex. lculr integrl
Capítulo III INTEGRAIS DE LINHA
pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo
Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..
Cálculo Infinitesimal. Gabriela Chaves
Cálculo Infinitesiml Gbriel Chves versão de Agosto de ii Índice Índice iii Proprieddes básics dos números. Operções de dição e multiplicção...................................... Relção de ordem.................................................
Teorema de Green no Plano
Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com
FÓRMULA DE TAYLOR USP MAT
FÓRMULA DE TAYLOR USP MAT 5 SEVERINO TOSCANO DO REGO MELO. Polinômios de Tylor A ret tngente o gráfico de um função f derivável em um ponto define função de primeiro gru que melhor proxim função em pontos
Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec
Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
Resumo com exercícios resolvidos do assunto: Aplicações da Integral
www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A
Cálculo de Limites. Sumário
6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............
Integral de Kurzweil para funções a valores em um espaço de Riesz - uma introdução. Giselle Antunes Monteiro
Integrl de Kurzweil pr funções vlores em um espço de Riesz - um introdução Giselle Antunes Monteiro DISSERTAÇÃO APRESENTADA AO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DA UNIVERSIDADE DE SÃO PAULO PARA OBTENÇÃO
INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?
Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região
x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,
- Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor
1. Sejam R e S duas relações entre os conjuntos não vazios E e F. Então mostre que
2 List de exercícios de Álgebr 1. Sejm R e S dus relções entre os conjuntos não vzios E e F. Então mostre que ) R 1 S 1 = (R S) 1, b) R 1 S 1 = (R S) 1. Solução: Pr primeir iguldde, temos que (, b) R 1
Matemática /09 - Integral de nido 68. Integral de nido
Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos
1 Limite - Revisão. 1.1 Continuidade
1 Limite - Revisão O conceito de limite de um função contribui pr nálise do comportmento d função n vizinhnç de um determindo ponto. Intuitivmente, dd um função f(x) e um ponto b que pertence o domínio
Termodinâmica e Estrutura da Matéria 2013/14
Termodinâmic e Estrutur d Mtéri 3/4 (LMAC, MEFT, MEBiom Responsável: João P Bizrro Prátics: Edurdo Cstro e ítor Crdoso Deprtmento de Físic, Instituto Superior Técnico Resolução de exercícios propostos
Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.
MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função
Mudança de variável na integral dupla
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 6 Assunto: Mudnç de Vriável n Integrl Dupl Plvrs-chves: mudnç de vriável, integris dupls, jcobino Mudnç de vriável n integrl dupl Vmos ntes
x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.
Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil
A integral definida. f (x)dx P(x) P(b) P(a)
A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo
e dx dx e x + Integrais Impróprias Integrais Impróprias
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris
1 Conjuntos Finitos e Infinitos
Conjuntos Finitos e Infinitos. Números Nturis Definição O conjunto N dos nturis é tl que Existe s : N N injetiv tl que Im (s) = N {}; } X N X = N s (X) X Teorem 2 (Princípio d Bo Ordenção) } A N A possui
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre
Comprimento de arco. Universidade de Brasília Departamento de Matemática
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr
Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2
Introdução o Cálculo Numérico 25 List de Exercícios 2 Observção importnte: Resolv o proplem pr o di d prov com função f(x) = cos(πx/2) e não com f(x) = sin(πx)! Problem 1. Sejm {x i, y i } n i= números
Aula 10 Estabilidade
Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser
Capítulo 4. Integral de Riemann. 4.1 Definição do integral de Riemann
Cpítulo 4 Integrl de Riemnn Os principis resultdos d teori do integrl de Riemnn pr funções limitds definids em [, b],, b R são presentdos neste cpítulo. Definem-se, no sentido de Riemnn, o integrl definido
Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;
Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões
Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1
Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é
CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2
Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido
Thomas Kahl 2008/2009
Análise Mtemátic Thoms Khl 2008/2009 Conteúdo 1 Cálculo diferencil em R 3 1.1 Preliminres................................... 3 1.1.1 Subconjuntos de R........................... 3 1.1.2 Funções.................................
16.4. Cálculo Vetorial. Teorema de Green
ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece
Cálculo em Computadores 2006 Integrais e volumes 1. Cálculo em Computadores Integrais de funções de duas variáveis reais 4
Cálculo em Computdores 2006 Integris e volumes 1 Contents Cálculo em Computdores 2006 Integris de funções de dus vriáveis 1 Áres no plno 2 1.1 exercícios...............................................
O Teorema de Radon-Nikodým
Universidade stadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema de Radon-Nikodým
Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes
Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd
Diferenciação Numérica
Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e
G.W. Leibniz ( ) I. Newton ( )
MAT 26 Cálculo diferencil e integrl 2 2 semestre de 25 Bchreldo em Mtemátic e Mtemátic Aplicd Docente: Prof. Dr. Pierluigi Benevieri Resumo ds uls e exercícios sugeridos - Atulizdo 27..25. Segund-feir,
Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo
Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção
Homero Ghioti da Silva. 9 de Junho de 2016 FACIP/UFU. Homero Ghioti da Silva (FACIP/UFU) 9 de Junho de / 16
Homero Ghioti d Silv FACIP/UFU 9 de Junho de 216 Homero Ghioti d Silv (FACIP/UFU) 9 de Junho de 216 1 / 16 Integrção Numéric Motivção Estudr métodos numéricos pr se resolver integris denids do tipo I =