O ROTACIONAL E O TEOREMA DE STOKES
|
|
|
- Isadora Antas Clementino
- 7 Há anos
- Visualizações:
Transcrição
1 14 O ROTACONAL E O TEOREMA DE STOKES O ROTACONAL A equção:. dl ( A) (14.1) ecion integ de inh do veto intensidde de cmpo mgnético fechdo L com coente tot envovid po esse cminho. o ongo de um cminho Embo eções envovendo cminhos finitos sejm úteis em teoi de cicuitos, é fequentemente desejáve, n teoi de cmpos, eções que envovm gndes em um ponto no espço. O Rotcion é um eção pontu que pode se utiid p pic ei de Ampée em um ponto. Considee um áe incement, em um meio conduto, tvessd pependicumente po um coente (figu 14.1) figu Supefície incement tvessd po coente Apicndo ei de Ampée, e dividindo po :. dl (14.) Pssndo o imite, com tendendo eo: im. d im 0 0 (14.3) O segundo membo d equção 14.3 é densidde de coente J. O pimeio membo epesent um opeção vetoi sobe um cmpo vetoi, denomind otcion. Assim, podemos esceve: ot J (14.4) n â n indic que ot é um veto pependicu e n dieção de J.
2 94 Vmos go encont epessão p ot em temos ds coodends, e. Considee inicimente um áe incement fomd peos dos e, e componente em do veto J, J, pependicu. + ( /) J + ( /) Apicndo ei de Ampée: figu Cicução de em um supefície.. dl ( A) (14.5) ( ) + ( ) J (14.6) Dividindo po : ot J (14.7) Semehntementente, ns dieções e teemos: ot ot J J (14.8) (14.9) Assim: ot + + J + J + J (14.10) ou: ot J (14.11) Lembndo que: 94
3 (14.1) e: + + ( A / m) (14.13) vmos fe opeção : (14.14) (14.15) ou: J (14.16) Est é ei de Ampée n fom pontu. Conceito A cicuitção do veto intensidde de cmpo mgnético em um supefície que tende eo (ccteindo um ponto no espço), dividid pe áe dess supefície, é o veto densidde de coente J neste ponto. O conceito do otcion pode tmbém se picdo o cmpo eetosático: E. dl 0 (14.17) E 0 (14.18) Eempo 14.1 Um intepetção físic do otcion - Um cg etngu ev águ n dieção do eio. gu d ch é b m. Ach o otcion d veocidde d águ, que é epess po: V π k sen( b ) ( m / s ) Soução O otcion d veocidde seá: figu Ch etngu V V ( m / s ) As demis deivds são nus, poque veocidde só possui componente em, e só vi n dieção. V kπ π V cos b b ( m / s ) Um intepetção físic p o otcion d veocidde neste eempo pode conseguid com o uíio de de um pequeno peho medido de 95
4 96 otcion, que denominemos "otcionâmeto", mostdo n figu Se coocmos este peho dento d ch, com seu eio vetic o ongo do eio, ee giá no sentido hoáio qundo estive à esqued do cento d ch, e no sentido nti-hoáio qundo estive à dieit do cento d ch, coespondendo voes positivos e negtivos do otcion. Qundo estive no cento d ch ee não giá, visto que s foçs que tum ns pás estão em equiíbio. Tmbém podemos dedui que ee giá mis pidmente qundo estive ns bods d ch, decindo veocidde té eo no cento d ch. pequeno peho, detemin veocidde d águ em cd ponto d ch. V V pás figu medido de otcion Sbendo que veocidde d águ é nu ns pedes d ch, é possíve, com jud desse figu gáficos d veocidde e otcion no eempo 14.1 Eempo 14. Considee um conduto ciíndico com io R m, pecoido po um coente A, unifomemente distibuíd. Enconte dento e fo do conduto. Soução ( A / m) π figu conduto pecoido po coente O veto intensidde de cmpo mgnético seá epesso em coodendds ciíndics: R ( A / m) A epessão ge p o otcion em coodends ciíndics é: Potnto, dento do conduto: 1 R A m ( / ) π dento do conduto ve: e fo: R ( π A / m ) ou: R A m ( / ) π J Fo do conduto: 96
5 97 1 A m ( / ) π O TEOREMA DE STOKES Considee supefície S, dividid em supefícies incementis, mostdo n figu n figu Supefície dividid em supefícies incementis.. dl (14.19) ( ) n ou n.. dl S S (14.0) Reindo um cicução p tods s áes incementis, e somndo os esutdos, mioi dos temos se cncem, com eceção dos que estão no contono d supefície S. Potnto: ( ) dl ds A.. S (14.1) A equção cim é chmd de Teoem de Stokes, e é váid p quque cmpo vetoi. Utiindo-o n ei de Ampée: ( ) ds J ds dl A... S S (14.) Pes identiddes cim pecebemos que podemos fcimente pti d ei de Ampée n fom integ e cheg n su fom pontu e vice-ves, utiindo o teoem de Stokes. EXERCÍCOS 1) - Ddo o veto genéico ( 0,8; π/3; 0,5). A e sen em coodends ciíndics, ccue o otcion de 1 A em ) - Ddo o veto genéico espço. A cosθ senθ θ, moste que o otcion de A é nuo p todo o 97
6 98 3) - Enconte J se () cos θ. θ (b) e (c) 98
Ondas Eletromagnéticas Interferência
Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul
Análise Vetorial. Prof Daniel Silveira
nálise Vetoil Pof Dniel Silvei Intodução Objetivo Revisão de conceitos de nálise vetoil nálise vetoil fcilit descição mtemátic ds equções encontds no eletomgnetismo Vetoes e Álgeb Vetoil Escles Vetoes
TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela
TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400
Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1
esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se
75$%$/+2(327(1&,$/ (/(75267È7,&2
3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético
Lista 3 de CF368 - Eletromagnetismo I
Lista de CF68 - Eetomagnetismo I Fabio Iaeke de dezembo de 2. Um ane de feo ecozido, de compimento médio de 5 cm, é enoado com uma bobina tooida de espias. Detemine a intensidade magnética
PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:
UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão
DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA
ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo
9. Fontes do Campo Magnético
9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos. 9.3. A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo. 9.6. O Cmpo Mgnético dum Solenóide.
Soluções do Capítulo 9 (Volume 2)
Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,
)25d$0$*1e7,&$62%5( &21'8725(6
73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,
QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:
QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB
2- FONTES DE CAMPO MAGNÉTICO
- FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas
Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v
Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos
E = E ds. o fluxo de campo elétrico através da superfície B do paralelepípedo da figura seria 2m 2m. Cm 2 C (2.3.3) <x=4m,y=1m,z=1m>
.3 A dedução d lei de Guss A lei de Guss desceve um popiedde de integis de fluxo do cmpo elético tvés de supefícies fechds. Então o objeto de inteesse do nosso estudo são gndezs do tipo Φ E = E ds (.3.1)
CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS
4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
VETORES GRANDEZAS VETORIAIS
VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma
Lista de Exercícios - Geometria Métrica Espacial
UNEMAT Univesidde do Esdo de Mo Gosso Cmpus Univesiáio de inop Fcudde de Ciêncis Exs e Tecnoógics Cuso de Engenhi Civi Discipin: Fundmenos de Memáic Lis de Execícios - Geomei Méic Espci ) A es de um cuo
carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
3. Lei de Gauss (baseado no Halliday, 4a edição)
3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom que poss simplific os csos que envolvem elevdo gu
Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas
Fuldde de Engenhi Mgnetostáti OpE - M 7/8 Pogm de Ópti e Eletomgnetismo Fuldde de Engenhi Análise Vetoil (evisão) uls Eletostáti e Mgnetostáti 8 uls mpos e Onds Eletomgnétis 6 uls Ópti Geométi 3 uls Fis
/(,'(%,276$9$57()/8;2 0$*1e7,&2
67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés
Cálculo III-A Módulo 3 Tutor
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,,
Solução da segunda lista de exercícios
UESPI Cmpu Pof. Alende Alve de Olve Cuo: ch. em Cênc d Computção Dcpln: Fíc 9h Pof. Olímpo Sá loco: Aluno: Dt: 9// Solução d egund lt de eecíco Quetão : N fgu, um fo eto de compmento tnpot um coente. Obte:
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO
ESCL PLITÉCNIC D UNIVERSIDDE DE SÃ PUL venid Pofesso Mello Moes, nº 31. cep 05508-900, São Pulo, SP. Deptento de Enenhi Mecânic PME 00 MECÂNIC B Pov Substitutiv 05 de julho de 005 Dução d Pov: 110 inutos
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
DINÂMICA ATRITO E PLANO INCLINADO
AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes
CÁLCULO DIFERENCIAL E INTEGRAL II 014.2
CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do
Coordenadas cartesianas Triedro direto
Coordends crtesins Triedro direto Coordends crtesins Loclizção de pontos (P e Q) Coordends crtesins Elemento de volume diferencil Coordends crtesins Componentes,, z do vetor r Coordends crtesins Vetores
Aula 6: Aplicações da Lei de Gauss
Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica
S PIÉNI NIVSI SÃ P epatamento de ngenhaia ecânica P 100 ÂNI Pova P1 1 de agosto de 010 uação da Pova: 100 minutos (não é pemitido o uso de cacuadoas) z a 1 a a QSÃ 1 ( pontos). onsideando-se a estutua
RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB
Pobles Resolvidos de ísic Pof. Andeson Cose Gudio Depto. ísic UES RESNICK, HALLIDAY, KRANE, ÍSICA,.ED., LTC, RIO DE JANEIRO, 996. ÍSICA CAPÍTULO CARGA ELÉTRICA E LEI DE COULOMB. ul deve se distânci ente
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça
Energia no movimento de uma carga em campo elétrico
O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.
3. Lei de Gauss (baseado no Halliday, 4a edição)
3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom ue poss simplific os csos ue envolvem elevdo gu de
Cap014 - Campo magnético gerado por corrente elétrica
ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate
4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe
4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n
PME 3200 MECÂNICA II Primeira Prova 31 de março de 2016 Duração da Prova: 120 minutos (não é permitido uso de calculadoras)
PME 3 MECÂNICA II Piei Pov 31 de ço de 16 Dução d Pov: 1 inutos (não é peitido uso de clculdos) A B g 1ª Questão (3, pontos). Dois discos A e B, de sss, ios R e espessus despeíveis, estão fidos o eio de
Exame Recuperação de um dos Testes solução abreviada
Exme Recupeção de um dos Testes solução evid 5 de Junho de 5 (h3) Mestdo em Eng Electotécnic e de Computdoes (MEEC) Electomgnetismo e Óptic º semeste de 4-5 Pof João Pulo Silv (esponsável) Pof Pedo Aeu
Matemática D Extensivo V. 3
GRITO Mtemátic tensivo V. ecícios 1) β 5 7º ) Note que.. o 8 o. Logo o. omo Δ é isósceles, 8 o ; po som dos ângulos intenos do, temos que α o. 18º Note que 7 o e 18 o. otnto o meno co 5 o. Logo β 5 15o.
. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E
7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas
Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell
Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes
Equação do 2º grau. Sabemos, de aulas anteriores, que podemos
A UA UL LA Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps que vmos recordr: Representr o
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
NÚMEROS COMPLEXOS. z = a + bi a é a parte real e escreve-se a=re(z);
CMPLEXS º AN NÚMERS CMPLEXS Evolução do conceto de númeo: Ntus Inteos Rcons Icons gnáos Defn como undde mgná Númeo compleo é todo o númeo d fom + sendo e númeos es e undde mgná + é pte el e esceve-se ();
a) A energia potencial em função da posição pode ser representada graficamente como
Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >
- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F
LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função
Prof. A.F.Guimarães Questões Eletricidade 2 Lei de Coulomb
Questão 1 of. A..Guimães Questões Eleticidde Lei de Coulomb (EI) Dus cgs puntifomes 1 + µ C e 6µ C estão fixs e sepds po um distânci de 6 mm no ácuo. Um tecei cg µ C é colocd no ponto médio do segmento
MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO
AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de
Lista de Exercícios Cálculo de Volumes por Cascas Cilíndricas
List de Eecícios Cálculo de olumes po Cscs Cilíndics ) Use o método ds cscs cilíndics p detemin o volume gedo pel otção o edo do eio y d egião limitd pels cuvs dds. Esoce egião e csc típic. ) y =, y =,
SISTEMA DE COORDENADAS
ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos
APÊNDICE. Revisão de Trigonometria
E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO
M 100 MÂNI ov Sustitutiv 1 de deemo de 009 ução d ov: 100 minutos (não é pemitido uso de luldos) 1ª Questão (3,0 pontos) pl tinul de mss está lid às s e, d um de mss m, e à de mss m. Todos os sólidos são
