Cálculo III-A Módulo 3 Tutor
|
|
|
- Guilherme Rocha Braga
- 9 Há anos
- Visualizações:
Transcrição
1 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo III-A Módulo Tutor Eercício 1: Clcule mss totl M, o centro d mss, de um lâmin tringulr, com vértices,, 1, e, se função densidde é δ, 1++. Solução: O esboço d lâmin está representdo n figur que se segue., si em , entr em escrição de como tipo I: { 1 Temos que :. A mss d lâmin é dd por: ] M δ, da 1++ dd [ + + d [ d [ ] 1 8. ] d 1 +d O centro de mss, é tl que M δ, da e M 1++ δ, da. d 1 d Cálculo de δ, da :
2 Cálculo III-A Módulo Tutor Temos, δ, da 1++ da + + da + + dd [ d 1 1+ d [ + + ] d 1 d ] 1 d 1 + d + + d [ ] 1 d Cálculo de δ, da : Temos, δ, da [ + ] da d 1 [ d dd ] + d d d d [ ] Substituindo cim temos: 8 1 e portnto e Logo, o centro de mss é o ponto /8,11/
3 Cálculo III-A Módulo Tutor Eercício : A densidde em qulquer ponto de um lâmin semicirculr é proporcionl à distânci do centro do círculo. etermine o centro de mss d lâmin. Solução: Vmos considerr lâmin como metde superior do disco +. Então, distânci do ponto, o centro do disco origem é +. Portnto, função densidde é: δ, k + onde k > é um constnte. A mss d lâmin é: M δ, da k + da k + da Pssndo pr coordends polres temos + r, da rdrdθ e rθ : Então, M k r r drdθ k r drdθ k rθ rθ r π dθdr kπ r dr kπ { r θ π. [ r ] kπ. O centro de mss, é tl que M δ, da e M δ, da. Cálculo de δ, da : Temos que δ, da k + da pois função + é ímpr n vriável e tem simetri em relção o eio. Assim,. Cálculo de δ, da :
4 Cálculo III-A Módulo Tutor Temos que Assim logo k δ, da k π r senθ dθdr k + da k r [ cosθ kπ rθ rsenθ r r drdθ ] π k dr k π. Portnto, o centro de mss está loclizdo no ponto, /π. [ r r dr k ] k. Eercício : etermine os momentos de inérci I, I e I do disco homogêneo, com densidde δ, δ, centro n origem e rio. Solução: O esboço d região está representdo n figur que se segue. O momento de inérci I é ddo por: I δ, da δ da. { r Temos rcosθ, rsenθ, da rdrdθ e rθ : θ π. Então, π [ I δ r sen θ r drdθ δ sen θ r r ] drdθ δ rθ δ 1 [ θ senθ ] π δπ. O momento de inérci I é ddo por: I δ, da δ δ π cos θ da δ r drdθ δ 1 [ θ+ senθ π rθ r cos θ r drdθ ] π δπ. sen θ dθ
5 Cálculo III-A Módulo Tutor 5 Como I I +I então: I δπ. Eercício : Um lâmin delgd tem form d região, que é interior à circunferênci + e eterior à circunferênci +. Clcule mss d lâmin se densidde é dd por δ,,z + 1/. Solução: e + ou + e + temos portnto 1. Logo, 1, e 1, são s interseções. Assim, o esboço d lâmin está representdo n figur que se segue. α 1 tgα α π/ A mss d lâmin é dd por: M δ,da + 1/ da. Pssndo pr coordends polres temos + r e da rdrdθ. escrição de em coordends polres: Efetundo um vrredur em, no sentido nti-horário, prtir d ret, onde θ π/ té ret, onde θ π/, vemos que θ vri de π/ té π/. Trnsformndo s equções ds circunferêncis pr coordends polres temos, + r r + r rcosθ r r cosθ
6 Cálculo III-A Módulo Tutor 6 Então r cosθ, isto é, rθ é ddo por rθ : M π/ π/ cosθ π/ π/ cosθ dθ sen π π r 1/ rdrdθ π/ { π/ θ π/ r cosθ. Assim, π/ cosθ [ ] π/ senθ θ π/ sen π π + π π + π π π u.m. 1 r rdrdθ Eercício 5: Um plc fin está limitd pel circunferênci + etem densidde δ, + +. Mostre que o seu momento de inérci polr é ddo por: I M 1 ln, onde ln M é su mss. Solução: O esboço d plc está representdo n figur que se segue. A mss M d plc é dd por: M δ,da + + da. Pssndo pr coordends polres teremos + r, da rdrdθ e rθ, que é descrição de
7 Cálculo III-A Módulo Tutor 7 nesss coordends é rθ : M π rθ { θ π r. Então, π +r rdrdθ r dθdr +r r +r dr π[ ln +r ] π ln + ln π ln ln π ln+ln ln π lnu.m. O momento de inérci polr é ddo por: I + δ,da como querímos mostrr da da 1 da + + da da + + da A M π π ln π 1 ln π 1 ln ln ln π 1 ln ln M 1 ln ln ln Eercício 6: Um lâmin tem form semicirculr +, com. A densidde é diretmente proporcionl à distânci do eio. Ache o momento de inérci em relção o eio. Solução: O esboço d lâmin está representdo n figur que se segue.
8 Cálculo III-A Módulo Tutor 8 Por hipótese, temos que densidde em, é δ, k. O momento de inérci em relção o eio é ddo por: I δ, dd k dd k dd onde, como tipo I, é ddo pels desigulddes : I k k [ dd k [ + d k k k5 15. ] {. Então, d k ] + 5 k 5 d Eercício 7: Um lâmin tem form de um triângulo retângulo isósceles, com ldos iguis de comprimento. Ache mss, se densidde em um ponto P é diretmente proporcionl o qudrdo d distânci de P o vértice oposto à hipotenus. Solução: É conveniente considerr o sistem de eios coordendos, pssndo pelos ctetos com o vértice n origem. si em entr em
9 Cálculo III-A Módulo Tutor 9 Por hipótese, densidde em, é δ, k + k + onde k > é um constnte. Como M δ, da, então M k + da, onde, como tipo I, é dd { por :. Logo, M k + ] ] dd k [ + d k [ + d ] k [ + + d k 6 + d k ] [ + k + k u.m. 6
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 2.
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic eprtmento de Mtemátic Aplicd Cálculo A List Eercício :Usemudnçu + ev eclculeintegrldef,) +) sen ) sobre região : + π. Solução: O esboço d
Cálculo III-A Módulo 2 Tutor
Eercício : Calcule Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor + e +. + da onde é a região compreendida pelas retas,,
Cálculo III-A Módulo 3
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 3 Aula 5 Aplicações da Integrais uplas Objetivo Estudar algumas aplicações
Cálculo IV EP2 Tutor
Eercício : Calcule + e +. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor da
Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia.
Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP3 Aula Aplicações da Integrais uplas
Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2
Eercício : Seja a integral iterada Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo A Lista 4 I = ddd. a) Esboce o sólido cujo volume é
Cálculo III-A Módulo 4
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 7.
Eercício : ada a integral dupla I Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista 7 f,)dd + f,)dd. a) Esboce a região. b) Inverta
Cálculo III-A Módulo 6
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir
Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.
Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo
Cálculo III-A Lista 10
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : eja a parte do cilindro + entre os planos e +. a) Parametrie e esboce.
CÁLCULO I. Denir e calcular o centroide de uma lâmina.
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr
Cálculo III-A Lista 5
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Lista 5 Eercício : Calcule + dv onde é a região contida dentro do cilindro + = 4
Cálculo III-A Módulo 9 Tutor
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Tutor Eercício : alcule a integral de linha diretamente e, também, pelo teorema
Matemática B Superintensivo
GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen
Cálculo III-A Lista 14
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Eercício : Mostre que álculo III-A Lista 4 I + +ln) d+ d é independente do caminho e calcule o valor
4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe
4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n
Cálculo III-A Módulo 9
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 9 Aula 17 Teorema de Green Objetivo Estudar um teorema que estabelece uma ligação
Cálculo III-A Módulo 10 Tutor
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor Eercício : eja a superfície parametriada por ϕ(u,v) = (u,v, v ), com
IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:
IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três
Cálculo IV EP10 Tutor
Fundação entro de iências e Educação Superior a istância do Estado do Rio de Janeiro entro de Educação Superior a istância do Estado do Rio de Janeiro álculo IV EP Tutor Eercício : alcule a integral de
Cálculo IV EP5 Tutor
Eercício : Calcule esfera + + =. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.
CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A
Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019
Físic III - 4323203 Escol Politécnic - 2019 GABARITO DA P2 09 de mio de 2019 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio 2. A esfer e csc esféric são concêntrics
Coordenadas cartesianas Triedro direto
Coordends crtesins Triedro direto Coordends crtesins Loclizção de pontos (P e Q) Coordends crtesins Elemento de volume diferencil Coordends crtesins Componentes,, z do vetor r Coordends crtesins Vetores
Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim
Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh
Seu pé direito nas melhores faculdades
MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo
Simulado EFOMM - Matemática
Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,
Vestibular UFRGS 2013 Resolução da Prova de Matemática
Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo
Cálculo IV EP11 Tutor
Fundação Centro de Ciências e Educação uperior a istância do Estado do Rio de Janeiro Centro de Educação uperior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor Eercício : eja a superfície parametriada
4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.
EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /
a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =
List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (
PROVA DE MATEMÁTICA DA FUVEST-2017 FASE 2 RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA.
PROVA DE MATEMÁTICA DA FUVEST-7 FASE RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA. Di 9 de jneiro de 7. Um cminhão deve trnsportr, em um únic vigem, dois mteriis dierentes, X e Y, cujos volumes em m
5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:
MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics
Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017
Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics
MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações:
MATEMÁTICA Considere os conjuntos S = {0,,, 6}, T = {,, } e U = {0, } e s firmções: I. {0} S e S U. II. {} S \ U e S T U = {0,}. III. Eiste um função f : S T injetiv. IV. Nenhum função g: T S é sobrejetiv.
Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano
Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano
f, da, onde R é uma das regiões mostradas na
Integrais Duplas em Coordenadas Polares Bibliografia básica: THOMAS, G. B. Cálculo. Vol. Capítulo 1. Item 1.3. STEWAT, J. Cálculo. Vol.. Capítulo 15. Item 15.4. Sabemos que o cálculo da área de uma região
V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.
António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro
Matemática. Resolução das atividades complementares. M13 Progressões Geométricas
Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto
Unidade 8 Geometria: circunferência
Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P
REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.
NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms
xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0
EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e
TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: [email protected] PROPOSTA DE RESOLUÇÃO
Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008
P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ
GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C
GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
Cálculo Diferencial e Integral II Prof. Ânderson Vieira
CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são
Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.
Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde
CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre
CURSO de FÍSICA - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES
Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME
Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0
Adriano Pedreira Cattai
Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos
CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).
PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc
Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.
MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função
Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros
Relções Métrics e Rzões Trigonométrics no Triângulo Retângulo - bombeiros Os ctetos de um triângulo retângulo medem cm e 8cm Nesss condições determine: ) medid "" d ipotenus b) medid "" d ltur reltiv à
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e
8.1 Áreas Planas. 8.2 Comprimento de Curvas
8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região
Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016
Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no
Aula 5 Plano de Argand-Gauss
Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - o Ano 08 - Fse Propost de resolução Cderno... Como eperiênci se repete váris vezes, de form independente, distribuição de probbiliddes segue o modelo binomil P X k n C k p
Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13
Mtemátic UNICAMP QUESTÃO 1 Em 1 de outubro de 01, Felix Bumgrtner quebrou o recorde de velocidde em qued livre. O slto foi monitordo oficilmente e os vlores obtidos estão expressos de modo proximdo n tbel
x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,
- Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor
