Solução da segunda lista de exercícios
|
|
|
- Armando Luiz Silva Nobre
- 8 Há anos
- Visualizações:
Transcrição
1 UESPI Cmpu Pof. Alende Alve de Olve Cuo: ch. em Cênc d Computção Dcpln: Fíc 9h Pof. Olímpo Sá loco: Aluno: Dt: 9// Solução d egund lt de eecíco Quetão : N fgu, um fo eto de compmento tnpot um coente. Obte: O cmpo mgnétco podudo po ete egmento em P, um dtânc do egmento o longo d bet pependcul o memo; b O cmpo mgnétco podudo po ete egmento em P, um dtânc pependcul de um d etemdde do fo; c O cmpo mgnétco podudo em um ponto dtnte do fo p o co em que. P θ epot. dl O elemento nfnteml dl podu em P um cmpo nfnteml d ddo po: dl ˆ dl ˆ en ˆ co ˆ dl co d ˆ. Pel fgu cm, temo que dl d e: tn tn d d. co Além do: tn. 3 co Subttundo 3 e em, encontmo: co d co d ˆ co d ˆ. co
2 Encont o cmpo mgnétco podudo pelo egmento de compmento em qulque ponto do epço, coeponde v dede té coepondente. Am, de um fom gel, o cmpo eá: co d ˆ en en ˆ. 5 Pel fgu, ch o vlo do cmpo mgnétco em P gnfc femo e en en n equção 5. Potnto: en ˆ ˆ. 6 b Nete co, vção de n equção 5 eá dede té. Além do, en. Am: en ˆ ˆ. 7 c Nete co,. Subttundo n equção 5 : en en ˆ. 8 Quetão : O fo de etvdde motdo n fgu tnpot um coente. Qul é o cmpo mgnétco unfome no cento do emcículo podudo utle o tem efeencl ddo: Po cd egmento eto de compmento jutfc; b Pelo egmento emccul de o ; c Pelo fo nteo; d Se completmo o co com um fo de etvdde = e de mem áe tnvel, qul eá o vlo do novo cmpo em C? o tem d não é unto p pme vlção C
3 epot. Sejm I, II e III, b d equed, o co e b d det, epectvmente. Um elemento nfnteml dl d b ge em C um cmpo mgnétco ddo po: dl d 3. No entnto, n du b d l // contbução nulp, ou ej: I III. b No egmento cuvo, dl e : d dl ˆ. 3 Integndo o longo do compmento do emcículo, temo: dl ˆ ˆ. c No fo nteo, o cmpo mgnétco totl eá om do cmpo ndvdu. Am: I II III III ˆ 5 d Se completmo o co com um fo de etvdde = e de mem áe tnvel, ão ente etênc do fo eá: A A 6 Utlndo equção 6 e le de Kchoff p o nó, temo: Subttundo 7 em 6 : 8 3 Subttundo 7 e 8 em, encontmo o cmpo mgnétco em C devdo o do fo: ˆ ˆ 6 9
4 ˆ ˆ ˆ E o cmpo totl em C eá: T ˆ ˆ ˆ 6 Quetão 3: Um compmento de fo é confomdo em um cículo fechdo com o e, como motdo n fgu, e tnpot um coente. Qu ão ntendde, deção e o entdo de, no ponto C; b Detemne o momento de dpolo mgnétco do ccuto. epot. Um elemento nfnteml de compmento dl pecodo po um coente ge em eu entono um cmpo mgnétco d ddo po: d dl ˆ. No techo AH e JD, dl // ˆ, e contbução dee p o cmpo mgnétco em C é nul. Potnto, O cmpo mgnétco nee ponto deve-e omente o techo HJ e DA. No techo HJ temo que dl ˆ dl ˆ dl. Am: d Integndo po todo o compmento de co HJ: dl ˆ. dl ˆ ˆ. 3 De mne nálog, no techo DA, temo:
5 ˆ ˆ dl. E o cmpo mgnétco totl em C eá: ˆ ˆ C. 5 b O momento de dpolo mgnétco μ popocondo po um ep é ddo po: An N ˆ. 6 Como temo du em-ep de o dfeente, o momento de dpolo mgnétco em C eá om vetol do momento ndvdu. Am: ˆ ˆ ˆ. 7 Quetão : Um tubo ccul longo, com o eteno, tnpot coente unfomemente dtbuíd p fo d págn. Um fo de o muto meno que, p plelo o tubo um dtânc de 3, de cento cento ve fgu. Detemne: O veto cmpo mgnétco ntendde, deção e entdo podudo pelo tubo no ponto P, tudo um dtânc do fo, o longo d lnh que une o fo o cento do tubo; b A ntendde e o entdo d coente elétc no fo p que ej nulo o cmpo mgnétco eultnte no ponto P; c O veto cmpo mgnétco eultnte ntendde, deção e entdo no cento do tubo; d Aumndo que coente no fo é gul fo, obtd nteomente no tem b, clcule o veto foç F po undde de compmento do fo. Cno Fo P
6 epot. Se condemo um upefíce mpen concêntc com o cno, pndo pelo ponto P, pel le de Ampèe, temo: d C. Onde C é coente que p pelo cno. Como e d têm mem deção e entdo: C C C O cmpo mgnétco em P teá deção vetcl e entdo potvo de, de codo com fgu. b De mne nálog, e condemo um upefíce mpen concêntc com o fo, pndo pelo ponto P, pel le de Ampèe, temo: d F. 3 Como e d têm mem deção e entdo: F F F P que o cmpo mgnétco eultnte em P ej nulo, o veto cmpo mgnétco gedo pelo fo deve te entdo opoto o cmpo mgnétco gedo pelo cno, ou ej, coente no fo deve te mem deção e entdo que coente no cno. Já o eu módulo eá tl que: C C F F 5 c No cento do tubo, o cmpo mgnétco eultnte coeponde o cmpo mgnétco gedo pen pelo fo qulque cuv mpen concêntc com o cno, cujo o é meno que o o nteno do cno teá env. Am, d equção : Deção: vetcl; Sentdo: negtvo de. F F d O elemento nfnteml de foç popcdo pelo fo df Fo é tl que:
7 df Fo F d dˆ ˆ d ˆ 7 Integndo o longo do compmento do fo, o veto foç po undde de compmento eá: F Fo ˆ 8 Quetão 5: A fgu bo mot um clndo conduto longo de o, pecodo po um coente de dendde unfome J, pontndo p dento d págn. Nele ete um cvdde tmbém clíndc, de o, cujo eo dt b do eo do clndo. Condendo-e que o eo do clndo é plelo o eo, clcule o veto cmpo mgnétco : No cento do clndo; b No cento d cvdde; c Em =. P dento b epot. Condeemo o clndo mcço em cvdde de o. Pel le de Ampèe, p um upefíce mpen de o, concêntc com o clndo, teemo: d env. Onde env é coente envolvd pel egão mpen. Como dtbução de coente é unfome, devemo te: env env. Sbendo que e d têm mem deção e entdo e ubttundo em, temo:
8 . 3 A dendde de coente J no clndo conduto é dd po: A J. Pelo pncípo d upepoção de cmpo mgnétco, o cmpo mgnétco num ponto qulque do epço eá om do cmpo devdo du dtbuçõe de coente. O pmeo devdo o óldo clíndco em cvdde, com dendde de coente dd pel equção e o egundo cmpo devdo o óldo clíndco que peenche cvdde, cuj dendde de coente tem mem mgntude, poém, entdo opoto à do clndo conduto. Se e du tuçõe ão upepot, coente totl n egão d cvdde é eo. De fom, coente no conduto e n cvdde ão: A J. 5 A J. 6 O cmpo mgnétco devdo o conduto num ponto nteno do conduto, dtnte do eu cento eá:. 7 De mne ml, o cmpo mgnétco devdo à cvdde num ponto nteno d cvdde, dtnte do eu cento eá:. 8 O cmpo mgnétco no cento do conduto é devdo omente à contbução d cvdde. Aplcndo le de Ampèe obe um upefíce mpen centd em =b e de o =b, temo: ˆ, b b. 9
9 b O cmpo mgnétco no cento d cvdde coeponde o cmpo mgnétco devdo omente o conduto. Am d equção 7 : b b, c O cmpo mgnétco em é tl que: ˆ., ˆ ˆ b Subttundo em o vloe de e ddo pel equçõe 5 e 6, temo:, ˆ b
Eletromagnetismo. 3 a lista de exercícios. Prof. Carlos Felipe. Campos magnéticos devido a correntes Dado: µ o =4π.10-7 Tm/A
Eletomgnetsmo. 3 lst de execícos. of. Clos Felpe Cmpos mgnétcos dedo coentes Ddo: o =4π.10-7 Tm/A 1) Esce s equções de Mxwell do eletomgnetsmo e elcone equção que nclu ou é equlente : ) As lnhs de foç
NÚMEROS COMPLEXOS. z = a + bi a é a parte real e escreve-se a=re(z);
CMPLEXS º AN NÚMERS CMPLEXS Evolução do conceto de númeo: Ntus Inteos Rcons Icons gnáos Defn como undde mgná Númeo compleo é todo o númeo d fom + sendo e númeos es e undde mgná + é pte el e esceve-se ();
Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013
Aula-9 ampos Magnétcos Poduzdos po oentes uso de Físca Geal F-38 o semeste, 13 Le de Bot - Savat Assm como o campo elétco de poduzdo po cagas é: 1 dq 1 dq db de ˆ, 3 ε ε de manea análoga, o campo magnétco
Física. Unidades fundamentais: -unidade de massa: Kg -unidade de comprimento: m -unidade de tempo: s
ísc Unddes fundments: -undde de mss: Kg -undde de compmento: m -undde de tempo: s Unddes usus mecns e undde I equvlente Undde devd: - Undde de foç: N nlse Dmensonl: -mss: Kg------------M -compmento: m-----l
O ROTACIONAL E O TEOREMA DE STOKES
14 O ROTACONAL E O TEOREMA DE STOKES 14.1 - O ROTACONAL A equção:. dl ( A) (14.1) ecion integ de inh do veto intensidde de cmpo mgnético fechdo L com coente tot envovid po esse cminho. o ongo de um cminho
9. Fontes do Campo Magnético
9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos. 9.3. A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo. 9.6. O Cmpo Mgnético dum Solenóide.
ATIVIDADES PARA SALA PÁG. 75
esoluções 01 pítulo 4 studo de tângulos e polígonos TIVIS SL ÁG. 7 onsdendo s ets // s // //, tem-se os ângulos ltenos ntenos gus. 1 s III. eg de tês: Medd do co ompmento do (em gus) co (m) 360 40000 (qudo)
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales
INSTITUTO PLIÇÃO RNNO RORIUS SILVIR Pofeo: Mello mdeo luno(): Tum: LIST Teoem de Tle Teoem de Tle hmmo de feie de plel um onjunto de et plel de um plno, ou ej, // // //. Ret plel otd po um tnvel: onidee
F m a m. I P Q dm. Notas de Aula 2 Dinâmica dos Sólidos Prof. Dr. Cláudio S. Sartori. F m a. Rotação em torno de eixo fixo
Not de ul Dnâc do Sóldo of. D. Cláudo S. Sto otção e tono de exo fxo M Dnâc do ovento plno: euo: TCM: Teoe do Cento de : ext CM TCM e TM: Ext M u M TM: Teoe do oento nul: Q M Q Q Q d ólo Q petence o óldo:
QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:
QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB
F m a m. I P Q dm. Notas de Aula 2 Dinâmica dos Sólidos Prof. Dr. Cláudio S. Sartori. F m a i. Rotação em torno de eixo fixo
Not de ul Dnâc do Sóldo of. D. Cláudo S. Sto otção e tono de exo fxo t t M Dnâc do ovento plno: euo: TCM: Teoe do Cento de : ext CM TCM e TM: Ext M u M TM: Teoe do oento nul: Q M Q Q Q d ólo Q petence
Notas de Aula - Prof. Dr. Marco Antonio Pereira
Ecol de Engenhi de Loen - UP - inétic Químic pítulo 7 Intodução etoe Químico 1 - Intodução cinétic químic e o pojeto de etoe etão no coção de que todo o poduto químico indutii. É, pinciplmente, o conhecimento
ELECTROMAGNETISMO E ÓPTICA Cursos: MEBiom + MEFT + LMAC 1 o TESTE (16/4/2016) Grupo I
ELECTROMAGNETIMO E ÓPTICA Cusos: MEBom + MEFT + LMAC o TETE (6/4/06) Gupo I A fgua epesenta um conensao esféco e um conuto eteo 3 também esféco. O conensao é consttuío po um conuto nteo e ao R cm e po
Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1
esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se
CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS
4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções
Ajuste de curvas por quadrados mínimos lineares
juste de cuvs o quddos mímos lees Fele eodo de gu e Wdele Iocêco oe Júo Egeh de s o. Peíodo Pofesso: ode Josué Bezue Dscl: Geomet lítc e Álgeb e. Itodução Utlzmos este método qudo temos um dstbução de
Lista de Exercícios Cálculo de Volumes por Cascas Cilíndricas
List de Eecícios Cálculo de olumes po Cscs Cilíndics ) Use o método ds cscs cilíndics p detemin o volume gedo pel otção o edo do eio y d egião limitd pels cuvs dds. Esoce egião e csc típic. ) y =, y =,
Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO III - Lei de Gauss
Eletogeto I Pof.. láudo. to - APÍTUO III - e de Gu A e de Gu: P copeedeo e de Gu, peco etede o gfcdo de fluo elétco. A e de Gu etá cetld o que cho hpotetcete de upefíce gu. Et upefíce pode e fod co fo
Análise Vetorial. Prof Daniel Silveira
nálise Vetoil Pof Dniel Silvei Intodução Objetivo Revisão de conceitos de nálise vetoil nálise vetoil fcilit descição mtemátic ds equções encontds no eletomgnetismo Vetoes e Álgeb Vetoil Escles Vetoes
Linhas de Campo Magnético
Linha de Campo Magnético Popiedade da Linha de Campo Magnético Não há evidência expeimental de monopolo magnético (pólo iolado) Etutua magnética mai imple: dipolo magnético Linha de Campo Magnético ão
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O
Os fundamentos da Física Volume 3 1. Resumo do capítulo
Os fundamentos da Físca Volume 3 1 Capítulo 13 Campo magnétco Ímãs são copos que apesentam fenômenos notáves, denomnados fenômenos magnétcos, sendo os pncpas: I. ataem fagmentos de feo (lmalha). o caso
GERADOR SÍNCRONO GERADOR SÍNCRONO
GERADOR SÍNCRONO Bmento de Potênci Infinit Inteligção de vái plnt de geção: etbilidde confibilidde Potênci Infinit: tenão contnte fequênci contnte independente d cg A máquin íncon ope à velocidde contnte
Ondas Eletromagnéticas Interferência
Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul
TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela
TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400
Consideremos uma distribuição localizada de carga elétrica, de densidade ρ(x), sob a ação de um potencial eletrostático externo ϕ E (x).
pansão Multpola da nega de uma Dstbução de Caga sob a Ação de Potencal letostátco teno. Físca Nuclea e de Patículas Cesa Augusto Zen Vasconcellos Consdeemos uma dstbução localzada de caga elétca, de densdade
Física I. Aula 9 Rotação, momento inércia e torque
Físca º Semeste de 01 nsttuto de Físca- Unvesdade de São Paulo Aula 9 Rotação, momento néca e toque Pofesso: Vald Gumaães E-mal: [email protected] Fone: 091.7104 Vaáves da otação Neste tópco, tataemos da otação
Algumas Definições, Áreas, Perímetros e Fórmulas Especiais Polígono Figura Fórmulas Quadrado:
Geometi I (Pln) Pofesso Alessndo Monteio Algums Definições, Áes, Peímetos e Fómuls Especiis Polígono Figu Fómuls Quddo: plelogmo que possui dois ldos consecutivos conguentes e um ângulo eto. ) Áe: ) Peímeto:
Análise de Componentes Principais
PÓS-GRADUAÇÃO EM AGRONOMIA CPGA-CS Aálse Multvd Alcd s Cêcs Agás Aálse de Comoetes Pcs Clos Albeto Alves Vell Seoédc - RJ //008 Coteúdo Itodução... Mt de ddos X... 4 Mt de covâc S... 4 Pdoção com méd eo
Soluções do Capítulo 9 (Volume 2)
Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,
Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas
Fuldde de Engenhi Mgnetostáti OpE - M 7/8 Pogm de Ópti e Eletomgnetismo Fuldde de Engenhi Análise Vetoil (evisão) uls Eletostáti e Mgnetostáti 8 uls mpos e Onds Eletomgnétis 6 uls Ópti Geométi 3 uls Fis
ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.
LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m
02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R.
7 ATEÁTICA Prov Diuriv. Sej um mtriz rel. Defin um função n qul element mtriz e elo pr poição eguinte no entio horário, ej, e,impli que ( f. Enontre to mtrize imétri rei n qul = (. Sej um mtriz form e
arctg x y F q E q v B d F d q E q v B se y r sen sen
List Gomti Anlític Cálculo Vtoil Pof. D. Cláudio S. Stoi Poduto misto, Plnos ts, Mtis, Dtminnts Sistms Lins, Coodnds cilíndics sféics, Cônics Poduto misto, Plnos ts. Ach qução do plno contndo o ponto P
Aula 7-1 Campos Magnéticos produzidos por Correntes Lei de Biot-Savart Física Geral e Experimental III Prof. Cláudio Graça Capítulo 7
Aul 7-1 Cmps Mgnétics pduzids p Centes Lei de Bit-Svt Físic Gel e Expeimentl III Pf. Cláudi Gç Cpítul 7 Cmp B p cente elétic Expeiênci de Oested Fi n iníci d sécul XIX (em 180) que físic dinmquês Hns Chistin
Geradores elétricos. Antes de estudar o capítulo PARTE I
PART I ndade B 9 Capítulo Geadoes elétcos Seções: 91 Geado Foça eletomotz 92 Ccuto smples Le de Poullet 93 Assocação de geadoes 94 studo gáfco da potênca elétca lançada po um geado em um ccuto Antes de
Potencial Elétrico. Prof. Cláudio Graça 2012
Potencal Elétco Po. Cláudo Gaça Campo elétco e de potencal Campo e Potencal Elétcos E Potencal gavtaconal Potencal Elétco O potencal elétco é a quantdade de tabalho necessáo paa move uma caga untáa de
3 Como os coeficientes angulares de ambas as retas são iguais (de valor 4), as retas são paralelas.
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Pofessoes: Luis Mzzei e Min Duo Acêmicos: Mcos Vinícius e Diego Mtinelli
Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v
Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos
Fundamentos da Eletrostática Aula 15 Expansão Multipolar II
Fundamentos da Eletostátca Aula 5 Expansão Multpola II Pof Alex G Das Pof Alysson F Fea A Expansão Multpola Na aula passada, consdeamos uma dstbução de cagas muto especíca paa enconta o potencal do dpolo
MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO
Depatamento de Físca da Faculdade de Cêncas da Unvesdade de Lsboa Mecânca A 008/09 1. Objectvo MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Estudo do movmento de otação de um copo ígdo. Detemnação do momento
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO
ESCL PLITÉCNIC D UNIVERSIDDE DE SÃ PUL venid Pofesso Mello Moes, nº 31. cep 05508-900, São Pulo, SP. Deptento de Enenhi Mecânic PME 00 MECÂNIC B Pov Substitutiv 05 de julho de 005 Dução d Pov: 110 inutos
3 Teoria: O Modelo de Maxwell-Garnett
Teo: O Modelo de Mxwell-Gett.1. sfe coduto peseç de u cpo elétco A Teo de Mxwell-Gett do eo efetvo 19,,5 é utlzd p desceve s popeddes óptcs de u tefce etl-delétco peseç de u cpo elétco e ote-se u expessão
RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB
Pobles Resolvidos de ísic Pof. Andeson Cose Gudio Depto. ísic UES RESNICK, HALLIDAY, KRANE, ÍSICA,.ED., LTC, RIO DE JANEIRO, 996. ÍSICA CAPÍTULO CARGA ELÉTRICA E LEI DE COULOMB. ul deve se distânci ente
Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008
P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ
Teorema de Green e Aplicação
Teoem de Geen e Aplcção Alcm de Souz B Unvesdde tólc de Bsíl Deptmento de Mtemátc esumo: O teoem de een é um ement muto útl no cálculo de áes de us plns echds. Seu pncpo é utlzdo p demonstção de outos
5(6,67Ç1&,$(&$3$&,7Æ1&,$
59 5(6,67Ç&,$(&$3$&,7Æ&,$ ÃÃ5(6,67Ç&,$Ã(Ã/(,Ã'(Ã+0 No pítulo 6 efinimos ução J σ omo seno um ensie e oente e onução. Multiplino mos os los po um áe S, el fiá: J.S σs (A (8. σs (A (8. Se o mpo elétio fo
Plano de Aulas. Matemática. Módulo 8 Geometria plana
Plno de uls Mtemátic Módulo 8 Geometi pln Resolução dos eecícios popostos Retomd dos conceitos 1 PÍTULO 1 1 h 100 cm O esquem epesent escd, e h é ltu d escd. h 0 cm h 0 cm d d d d cm e codo com o teoem
Matemática D Extensivo V. 3
GRITO Mtemátic tensivo V. ecícios 1) β 5 7º ) Note que.. o 8 o. Logo o. omo Δ é isósceles, 8 o ; po som dos ângulos intenos do, temos que α o. 18º Note que 7 o e 18 o. otnto o meno co 5 o. Logo β 5 15o.
TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície
Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.
8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete
ATIVIDADES PARA SALA PÁG. 14
Resoluções pítulo 5 Poliedos 01 = 1 dos: F 6 = 8 = 6 F8 TIVIES PR SL PÁG. 14 eve-se te: I. F = 1 + 8 + 6 F = 6 II. = 1 4 + 8 6 + 6 8 = 144 = 144 = 7 III. V + F = + V + 6 = 7 + V= 74 6 V = 48 0 dos: = 8;
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas
Unidade 3 Geometria: triângulos
Sugeõe de ividde Unidde 3 Geomei: iângulo 8 MTEMÁTI 1 Memáic 1. No iângulo egui você deve deemin: ) medid do ângulo ; b) medid do ângulo ; c) medid do ângulo z; d) medid do ângulo eeno o ângulo z. 120
UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras.
UT 01 Vetore Oerve itução eguir: A prtícul vermelh etá e movendo num di quente, onde o termômetro indic tempertur de 41 gru Celiu! GRANDEZA ESCALAR É um grndez fíic completmente crcterizd omente com o
Conteúdos Exame Final e Avaliação Especial 2016
Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe
1 Assinale a alternativa verdadeira: a) < <
MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )
SÍNTESE. 1. Geometria analítica no plano. 2. Cálculo vetorial no plano. Inequações cartesianas de semiplanos
j h i TEMA III Geometi Anlíti 1. Geometi nlíti no plno Inequções tesins de semiplnos > < > + + < + + Sejm A( 1, ) e B( 1, ) dois pontos do plno: Distâni ente A e B. ( 1 1 ) + ( ) h 1 + 1 Ponto médio do
