5(6,67Ç1&,$(&$3$&,7Æ1&,$
|
|
|
- Eric Gusmão Sabrosa
- 10 Há anos
- Visualizações:
Transcrição
1 59 5(6,67Ç&,$(&$3$&,7Æ&,$ ÃÃ5(6,67Ç&,$Ã(Ã/(,Ã'(Ã+0 No pítulo 6 efinimos ução J σ omo seno um ensie e oente e onução. Multiplino mos os los po um áe S, el fiá: J.S σs (A (8. σs (A (8. Se o mpo elétio fo unifome, ele poe se efinio omo seno o quoiente ifeenç e potenil ente ois pontos, pel istâni ente eles. ntão: σs L (A (8.3 O temo σ S é o inveso esistêni o mteil. Potnto, ução 8.3 n mis é o L que onhei lei e Ohm: (A ; (8.4 ução J σ tmém poe se efini omo lei e Ohm n fom pontul. O temo σ S pemite lul esistêni e um most e mteil, em função e sus L teístis elétis e e su geometi. A ução 8.4 efine esistêni eléti omo seno o quoiente ente us gnezs esles, e. Se sustituimos ifeenç e potenil pel integl o longo e um minho o veto intensie e mpo elétio, e oente po um integl e supefíie o ensie e oente (tmém expesso em temos o veto intensie e mpo elétio, teemos um expessão p esistêni eléti em temos o mpo elétio. ss expessão é muito útil p o álulo e esistêni e onfiguções mis omplexs, omo veemos nos exemplos 8., 8., 8.3.
2 60.L σ.s (8.5 L[DGÃHÃ0HPUL]DGÃ Antes e possegui, efç em seu eno e estuos s pssgens p ote ução 8.5, ptino expessão p oente e onução. ([HPSOÃ Consiee ois ilinos onutoes onêntios e ios m e m (o oxil, onfome figu 8.. xiste um ifeenç e potenil ente eles, e em onsueni estelee-se-á um oente e fug ente o onuto inteno e o onuto exteno. Se oente e fug fo A/m, e onutivie o mteil igul σ, lule o vlo esistêni e fug. 6OXom figu 8. - Co Co-xil Pel simeti o polem, oente ente os ois onutoes se istiui ilmente. mos iniilmente lul ensie e oente J em um ponto istnte o ento o o. P um meto e o, oente e fug totl seá: J O mpo elétio potnto: J.S (A J.π. (A A m π. ( / $ em um ponto seá, J σ.â πσ ( / m ( / m A ifeenç e potenil ente os ois ilinos onutoes é:. (. ( πσ
3 6 πσ ( Potnto, esistêni e fug po meto seá: πσ ([HPSOÃ Consiee go que o ielétio ente os ois onutoes é fomo po ois meios, onfome figu 8.. lule esistêni e fug po meto e o o-xil. 6OXom σ σ figu 8. - Co o-xil om ielétios em plelo A oente se istiui ilmente. Como há ois meios ifeente, poemos onsie que el é som e us oentes e. + (A A ifeenç e potenil ente os ois onutoes é onstnte. Potnto: ; Po nlogi om o exemplo nteio poemos eseve s expessões p e : ; πσ πσ A esistêni uivlente seá: π( σ +σ ([HPSOÃ Consiee go onfigução most n figu 8.3. Clul esistêni e fug. 6OXom σ σ
4 6 figu Co o-xil om ielétios em séie As oentes nos meios e são iguis : (A A ifeenç e potenil ente os onutoes é: + (. ( ;. ( ( πσ. ( πσ πσ (. ( ( ; πσ ( Ω + π σ σ ÃÃ&$3$&,7Æ&,$ Sejm ois onutoes imesos em um ielétio homogêneo. O onuto M é ego om um g e Couloms positivos. Consuentemente, o um g e mesm mgnitue, poém e sinl ontáio seá inuzi no onuto M. Potnto um ifeenç e potenil seá estelei ente esses ois onutoes. A pitâni C este sistem é efini omo : C (F (8.6 Ou, temos o veto intensie e mpo elétio: C ε.s sup inf.l (F (8.7 ntene-se po pitâni pie e um sistem em mzen enegi em um mpo eletostátio. M M
5 63 figu Dois onutoes egos, imesos em um ielétio ([HPSOÃ O pito e pls plels. Dus pls plels iguis e áe S, são seps po um istâni. O ielétio ente els tem pemissivie ε. Clul pitâni C. 6OXom + σ s - σ s C (F figu Cpito e pls plels ρ s ε ( sup inf ρ s.s (C 0 s.l ρ.z ( ε C ρss εs ( ρ ε inepenente e e. s (F ([HPSOÃ Suponh go que ielétio tenh onfigução most n figu 8.6. Clul pitâni C. 6OXom figu Cpito om ielétios em plelo. Pels onições e fontei: t t
6 64 D D ε ε Pel lei e Guss: s s s ε (C / m ε (C / m D.S (C D.S (C D.S (C s + D.S D.S (C s D S + D S (C ε.s +ε.s (C ( ε +ε S (C S εs εs + C + C (F C (F + (C ([HPSOÃ Suponh go que o ielétio tenh onfigução figu 8.7. Clul C. 6OXom D figu Cpito om ielétios em séie Pels onições e fontei : D D n ε ε n D (C / m ( ; ( + ( Pel lei e Guss: D.S (C D.S (C D Sε S + Sε (C / m ( D D + ε ε ( + ε S ε S
7 65 C C + C (/ F (;(5&Ë&,6 - Clule esistêni ente us supefíies uvs onentis, um e io 0. m, out e io 0.4 m, limits po um ângulo e 30º, se o mteil ente els possui onutivie σ 6,7 0 7 S/m. - Clule esistêni e um onuto e lumínio e m e ompimento, seção et qu, seno S mm em um extemie, e umentno linemente té S 4 mm n out extemie. 3 - Po um efeito e fição, um o oxil possui um eslomento ente os entos os onutoes inteno e exteno onfome mosto n figu. Detemine esistêni e isolção po meto esse o. O ielétio possui pemissimive eltiv igul. 4 - esolve o polem nteio, onsieno os os onêntios. Compe os esultos. 5 - nonte pitâni ente s supefíies onutos exten e inten most n figu. 0.8 m m 4 m figu - figu o polem Clule pitâni po unie e ompimento ente um onuto ilinio e 6 m e iâmeto e um po onuto, plelo o eixo esse ilino, istnte 0 m o mesmo. ε 5,5 30º 60 mm 5 mm
8 66 figu - figu o polem Um pito e pls plels om áe e 0,30 m e sepção 6 mm ontém tês ielétios ssim istiuíos : ε 3.0, om espessu e mm. ε 4.5 om espessu e mm e ε 3 6,0 om espessu e 3 mm. Aplino-se um p e 00 soe o pito, enonte ifeenç e potenil e o giente o potenil (intensie o mpo elétio em ielétio. 8 - A figu 3 most um o oxil ujo onuto inteno possui io e 0,6 mm e o onuto exteno io e 6 mm. Clule pitâni po unie e ompimento om os espçoes omo inio.5mm 50 mm figu 3 - figu o polem Um o e potêni lino ope num tensão e,5 k no onuto inteno em elção à p ilíni. xistem us isolções: pimei tem pemeilie eltiv igul 6,0, e é o onuto inteno em 0,8 m,0 m, enqunto que segun tem pemeilie eltiv igul 3,0 e vi e,0 m 3,0 m, que oespone à supefíie inten p exten. nonte o máximo giente e tensão em isolção empeg. 0 - Um eto o e potêni lino tem isolção e polietileno p o qul ε 3,6 e igiez ieléti 8, M/m. ul é o limite supeio soe o onuto inteno em elção à lingem quno o onuto inteno possui io e m e o lo inteno lingem onênti pesent io e 8,0 m?
O atrito de rolamento.
engengens. Obseve-se que s foçs de tito de olmento epesentds n figu (F e f ) têm sentidos opostos. (Sugeimos que voê, ntes de possegui, poue i um modelo que pemit expli s foçs de tito de olmento). "Rffiniet
Geometria Plana 04 Prof. Valdir
pé-vestiul e ensino médio QUILÁTS TÁVIS 1. efinição É o polígono que possui quto ldos. o nosso estudo, vmos onside pens os qudiláteos onveos. e i Sendo:,,, véties do qudiláteo; i 1, i, i 3, i 4 ângulos
HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES
Polems Resolvios e Físi Pof. Aneson Cose Guio Depto. Físi UFES HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 008. FÍSICA 1 CAPÍTULO 3 VETORES 16. N som A + = C, o veto A
)25d$0$*1e7,&$62%5( &21'8725(6
73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,
/(,'(%,276$9$57()/8;2 0$*1e7,&2
67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés
Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga
onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule
Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais
Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:
Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas
Fuldde de Engenhi Mgnetostáti OpE - M 7/8 Pogm de Ópti e Eletomgnetismo Fuldde de Engenhi Análise Vetoil (evisão) uls Eletostáti e Mgnetostáti 8 uls mpos e Onds Eletomgnétis 6 uls Ópti Geométi 3 uls Fis
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ
ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A
Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas
Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície
Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência
Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA. LISTA 3 Teorema de Tales
INSTITUTO PLIÇÃO RNNO RORIUS SILVIR Pofeo: Mello mdeo luno(): Tum: LIST Teoem de Tle Teoem de Tle hmmo de feie de plel um onjunto de et plel de um plno, ou ej, // // //. Ret plel otd po um tnvel: onidee
Soluções do Capítulo 9 (Volume 2)
Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,
Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1
esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se
GABARITO. 2 Matemática D 06) 11 = = = 01. Correto. Do enunciado temos que: h = 4r. Portanto, V cilindro. Portanto, por Pitágoras:
Mtemáti D Extensivo V. 8 Exeíios 0) ) 96 dm b) ) (x) p x : () 5. + 8. 6 dm Potnto: V b... 6 96 dm b) Os vloes de x devem stisfze s seguintes equções. Sendo V. b. então π.. (x 5x + 8x) 6π dm Potnto x 5x
Questão 1. Questão 2. Questão 3. alternativa C. alternativa E
Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa
LISTA COMPLETA PROVA 03
LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8
Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1
Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano
AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv
4ª Unidade: Geometria Analítica no Espaço
Geoeti Anlíti Engenhi Quíi/Quíi Industil 5 ª Unidde: Geoeti Anlíti no Espço Equções d et no IR Seos que dois pontos define u et Co pens u dos pontos té é possível defini posição de u et desde que tenhos
DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE
DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de
RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse
Semelhança e áreas 1,5
A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.
Matemática D Extensivo V. 3
GRITO Mtemátic tensivo V. ecícios 1) β 5 7º ) Note que.. o 8 o. Logo o. omo Δ é isósceles, 8 o ; po som dos ângulos intenos do, temos que α o. 18º Note que 7 o e 18 o. otnto o meno co 5 o. Logo β 5 15o.
Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +
Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto
ATIVIDADES PARA SALA PÁG. 14
Resoluções pítulo 5 Poliedos 01 = 1 dos: F 6 = 8 = 6 F8 TIVIES PR SL PÁG. 14 eve-se te: I. F = 1 + 8 + 6 F = 6 II. = 1 4 + 8 6 + 6 8 = 144 = 144 = 7 III. V + F = + V + 6 = 7 + V= 74 6 V = 48 0 dos: = 8;
75$%$/+2(327(1&,$/ (/(75267È7,&2
3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético
Exame Recuperação de um dos Testes solução abreviada
Exme Recupeção de um dos Testes solução evid 5 de Junho de 5 (h3) Mestdo em Eng Electotécnic e de Computdoes (MEEC) Electomgnetismo e Óptic º semeste de 4-5 Pof João Pulo Silv (esponsável) Pof Pedo Aeu
PARTE IV COORDENADAS POLARES
PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta
Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.
Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades
EM423A Resistência dos Materiais
UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de
CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA
ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala
Cilindros de Paredes Grossas (Solução de Lamé)
Deptmento de Engenhi Mecânic Mecânic dos Sólidos II Cilindos de Pedes Gosss (Solção de Lmé) Pof. Ath Bg eoi d Elsticidde Polem F Copo sjeito ção de esfoços extenos (foçs, momentos, etc.) F 7 F 8 F F 3
Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;
O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de
Notas de Aula de Física
Veão peliin 4 e noveo e Not e Aul e íic 4. AVIAÇÃO... O UNIVEO E A OÇA AVIACIONA... AVIAÇÃO E O PINCÍPIO DA UPEPOIÇÃO... AVIAÇÃO PÓXIO À UPEÍCIE DA EA... 4 OÇA ENE UA HAE E UA AA PONUA CAO... 5 OÇA ENE
CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS
4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções
EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA
UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da
QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:
QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB
ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS
ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível
Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA
Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado
1 a) O que é a pressão atmosférica? No S.I. em que unidades é expressa a pressão?
Escol Secundái Anselmo de Andde Ciêncis Físico - Químics 8º Ano Ano Lectivo 07/08 ACTIVIDADES: Execícios de plicção Pof. Dulce Godinho 1 ) O que é pessão tmosféic? No S.I. em que uniddes é expess pessão?
Vedação. Fig.1 Estrutura do comando linear modelo ST
58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas
3. Elementos de Sistemas Elétricos de Potência
Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:[email protected]
MECÂNICA GERAL PARA ENGENHEIROS
MEÂNI GER R ENGENHEIRS apítulo rofª: cilayne Freitas de quino Forças no lano sobre um orpo Rígido R RGID Em mecânica elementar assumimos que a maior parte dos corpos são rígidos, isto é, as deformações
9. Fontes do Campo Magnético
9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos. 9.3. A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo. 9.6. O Cmpo Mgnético dum Solenóide.
1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.
COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:
PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON
Pofa Stela Maia de Cavalho Fenandes 1 PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Dinâmica estudo dos movimentos juntamente com as causas que os oiginam. As teoias da dinâmica são desenvolvidas com base no conceito
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO
M 100 MÂNI ov Sustitutiv 1 de deemo de 009 ução d ov: 100 minutos (não é pemitido uso de luldos) 1ª Questão (3,0 pontos) pl tinul de mss está lid às s e, d um de mss m, e à de mss m. Todos os sólidos são
3 Como os coeficientes angulares de ambas as retas são iguais (de valor 4), as retas são paralelas.
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Pofessoes: Luis Mzzei e Min Duo Acêmicos: Mcos Vinícius e Diego Mtinelli
Análise de Algoritmos Gabarito da Primeira Prova
Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções
Conversão de Energia I
Deprtmento de ngenhri létric Aul 5.3 Gerdores de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGRALD, A.., KINGSLY Jr. C. UMANS, S. D. Máquins létrics: com Introdução à letrônic De Potênci.
Interbits SuperPro Web
1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque
Transporte de solvente através de membranas: estado estacionário
Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo
Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling
Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica
Resolvendo problemas com logaritmos
A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar
Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação
1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm
INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.
INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo
PROVA MATRIZ DE MATEMÁTICA EFOMM-2009
PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e
ESTIMATIVAS DOS TERMOS RADIATIVOS E AERODINÂMICOS E EVAPOTRANSPIRAÇÃO EM CULTURA DE SOJA NA AMAZÔNIA.
ESTIMATIVAS DOS TERMOS RADIATIVOS E AERODINÂMICOS E EVAPOTRANSPIRAÇÃO EM CULTURA DE SOJA NA AMAZÔNIA. COSTA, J. P. R, MORAES, D. S. dos S. 2, RIBEIRO, A. 3, ROCHA, E. J. P. 4, PINHEIRO, N. D. F. 5. Pof.
Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013
Aula-9 ampos Magnétcos Poduzdos po oentes uso de Físca Geal F-38 o semeste, 13 Le de Bot - Savat Assm como o campo elétco de poduzdo po cagas é: 1 dq 1 dq db de ˆ, 3 ε ε de manea análoga, o campo magnétco
Ondas Eletromagnéticas Interferência
Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul
GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.
GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua
- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F
LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função
Plano de Aulas. Matemática. Módulo 8 Geometria plana
Plno de uls Mtemátic Módulo 8 Geometi pln Resolução dos eecícios popostos Retomd dos conceitos 1 PÍTULO 1 1 h 100 cm O esquem epesent escd, e h é ltu d escd. h 0 cm h 0 cm d d d d cm e codo com o teoem
Torção Deformação por torção de um eixo circular
Torção Deformação por torção de um eixo irular Torque é um momento que tende a torer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o omprimento e o raio do eixo permaneerão
DENÚNCIAS DE CORRUPÇÃO CONTRA O GOVERNO LULA E O PT
DENÚNCIAS DE CORRUPÇÃO CONTRA O GOVERNO LULA E O PT GOVERNO FEDERAL COM MAIS CASOS DE CORRUPÇÃO, em Mrço de 2006 - [estimuld e únic, em %] Em 1º lugr Som ds menções Bse: Totl d mostr Collor Lul FHC 11
Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é
Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um
O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE)
Depatamento de ngenhaa lectotécnca (D) O tanssto de junção bpola (J) pola dos tpos de cagas, electões e buacos, enoldos nos fluxos de coente Junção duas junções pn. Junção base/emsso e junção base/colecto
Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa
Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção
MÓDULO II POTENCIAÇÃO RADICIAÇÃO
MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO
Resistência dos Materiais
Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,
Interações Eletromagnéticas 1
Inteações Eletomagnéticas 1 I.H.Hutchinson 1 I.H.Hutchinson 1999 Capítulo 1 Equações de Maxwell e Campos Eletomagnéticos 1.1 Intodução 1.1.1 Equações de Maxwell (1865) As equações que govenam o eletomagnetismo
DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA
DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA LIMA, Nélio Neves; CUNHA, Ygho Peteson Socoo Alves MARRA, Enes Gonçalves. Escola de Engenhaia Elética
GERADORES, RECEPTORES E POTÊNCIA
AULA 22 GERADORES, RECEPTORES E POTÊNCIA 1- GERADORES ELÉTRICOS Gerador elétrico é todo elemento que transforma energia não elétrica em energia elétrica. Observe que o gerador não gera energia e sim transforma
SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL
SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo
CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger
CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /
Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica
Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte
, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]
Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej
PME 3200 MECÂNICA II Primeira Prova 31 de março de 2016 Duração da Prova: 120 minutos (não é permitido uso de calculadoras)
PME 3 MECÂNICA II Piei Pov 31 de ço de 16 Dução d Pov: 1 inutos (não é peitido uso de clculdos) A B g 1ª Questão (3, pontos). Dois discos A e B, de sss, ios R e espessus despeíveis, estão fidos o eio de
Notas de Aula - Prof. Dr. Marco Antonio Pereira
Ecol de Engenhi de Loen - UP - inétic Químic pítulo 7 Intodução etoe Químico 1 - Intodução cinétic químic e o pojeto de etoe etão no coção de que todo o poduto químico indutii. É, pinciplmente, o conhecimento
