Ondas Eletromagnéticas Interferência
|
|
|
- Osvaldo Regueira Cavalheiro
- 9 Há anos
- Visualizações:
Transcrição
1 Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul ente si e tmbém pependicul à dieção de popgção d ond (esse tipo de ond é chmd ond tnsvesl), como está colocdo n figu 1. Ness figu o cmpo B oscil no eixo z, o cmpo E oscil no eixo y e ond se popg n dieção x. Figu 1: Existe um elção ente os módulos de B e E 8 dd po: E = c. B onde c = 3x10 m / s, sendo c velocidde de popgção d ond eletomgnétic (OEM) no vácuo. Esse tipo de ond pode integi com mtéi, po exemplo, o cmpo elético intege com nuvem de elétons dos átomos que constituem mtéi e fz mesm oscil. Dess inteção podemos te dois fenômenos difeentes, sendo eles esplhmento e bsoção. A equção de um ond que cminh n dieção x: E( x, t) = E0sen( kx ωt) y B( x. t) = B0sen( kx ωt) z Onde E oscil n dieção y e B oscil n dieção z. E e B oscilm com o mesmo k e ω, e estão em fse. Em 1855, Mxwell esceve equção de onds eletomgnétics, que são constituíds po cmpos eléticos e mgnéticos, que cminhm com velocidde c. Algums popieddes ds OEM, que sem ds equções escits po Mxwell: E é pependicul B E e B são pependicules velocidde v, sendo ssim um ond tnsvesl. E B // v E e B tem mesm fse, mesm feqüênci, mesmo e mesm velocidde v. No vácuo v 8 = c = 3x10 m / s.
2 Intefeênci Antes de Mxwell, Huygens, em 1679, popõe que luz sej um ond, ms não é ceito. Poém Young, em 1801, most que luz é um ond, com expeimentos de intefeênci. A intefeênci contece com qulque tipo de ond. Qundo temos mis de um ond cminhndo no mesmo espço, els se somm e fomm um figu de intefeênci. Vej s figus bixo. Onds em fse Onds defsds de / A A B B A + B A + B Figu Onds n águ, oigináis de dus fontes pontuis A e B: A B Figu 3 Um fente de ond ou supefície de ond é o lug geomético de todos os pontos em que fse de vibção ou vição hmônic de um quntidde físic é mesm. Po exemplo, posição de todos os máximos. As onds eletomgnétics dids po um pequen fonte de luz podem se epesentds po fentes de ond que são supefícies esféics concêntics (centos coincidentes) à fonte e um distânci gnde d fonte, como supefícies plns. Figu 4
3 Pincípio de Huygens Cd ponto em um fente de ond tu como fonte de onds esféics secundáis, de tl mnei que fente de ond seguinte é fomd po um envelope desss onds secundáis com mesm feqüênci. Ve figu bixo. Com esse pincipio pode-se explic efção e eflexão (ve site Figu 5 Intefeênci de dus fends P vemos intefeênci, pecismos de fontes coeentes de luz. Onds coeentes são quels com mesm feqüênci e difeenç de fse definid. N montgem bixo, s onds que chegm ns dus fends estão em fse. Podemos us um lâmpd tás ds dus fends, ms não dus lâmpds, pois s lâmpds incndescentes emitem com fses letóis, sendo potnto incoeentes. Em 1801, Thoms Young fez um expeimento de intefeênci com luz e mostou que el é um ond, n figu bixo temos um esquem desse expeimento. Onds incidentes Fends Antepo Figu 6 Como sbemos se no ntepo teemos um ponto clo ou um ponto escuo? Isso depende de como s onds se somm nesse ponto. P temos um ponto clo, que chmmos de máximo, s onds pecism se encont em fse no ntepo.
4 Figu 7 Escevendo s equções p s dus onds, em um detemindo ponto do ntepo, temos: E( 1, t) = E0 cos( k1 ωt) E(, t) = E cos( k ωt) 0 Sendo 1 e os cminhos pecoidos pels onds que sem ds dus fends té o ntepo. A difeenç de fse ente els é dd po: δ ( k ωt) ( k1 ωt) = k( 1 ) P que els cheguem em fse no ponto do ntepo, é peciso que k( ) 1 = πn, sej um múltiplo de π. Colocndo que k = π /, temos: ( 1 ) = n, onde n = 0,1,,.... Isso define os pontos clos. P os pontos escuos, pecismos que difeenç de fse sej um múltiplo imp de π, ou sej, ( ) k 1 = (n + 1)π. Do mesmo modo temos, ( 1) = (n + 1). Po exemplo, p te um idéi ilusttiv, olhem o site: Apoximção de Funhofe A distânci ente s fends (d) é muito meno que distânci d fend té o ntepo (D). A difeenç 1 pode se poximd po dsen θ. Então temos: Máximos: dsen θ = n Minimos: dsen θ = (n + 1), onde n=0,1,, Se soubemos distânci ente um ponto no ntepo e o cento do mesmo, ponto O n Figu 7. Podemos clcul distânci y, usndo poximção p ângulos pequenos,
5 y tgθ = senθ e tmbém usndo o fto que o 1º máximo contece qundo D y D isso temos, = y =. D d d senθ =. Com d N figu bixo temos um gáfico d intensidde d luz obsevd em um ntepo como esultdo d intefeênci: I (/d) (/d) -(1/d) (1/d) (3/d) senθ Figu 8 Com isso podemos ve que qunto mio d em elção, mis se poximm os máximos. Se d >>, os máximos e mínimos são muito póximos, só enxegmos um continuo, não distinguimos um figu de intefeênci. Se d <, o pimeio zeo não contece, pois = senθ d > 1, potnto luz é esplhd em todo o ntepo. Difção A difção po um únic fend, dependendo d lgu d fend, pode se consided como intefeênci de muits fontes, com isso no ntepo tmbém são obsevdos clos e escuos. Figu 9 No 1º escuo do ntepo, todos os ios que sem d fend devem se nul. Isso conteceá se o io que si do ponto supeio ( ), nul o que si do meio d fend ( ), desse
6 modo pte supeio nulá pte infeio. P que os ios se nulem é peciso que ( ) = /. Apoximção de Funhofe Qundo lgu d fend é muito meno que distânci ente fend e o ntepo (D), difeenç ( ), pode se poximd po: ( ) = senθ. Como colocdo n Figu 10. Igulndo equção do item nteio, ( ) = /, com ess temos: senθ =. Se θ fo muito y y pequeno, temos que sen θ tgθ =. Com isso o pimeio zeo contece em: =. A figu D D de difção depende d elção ente e. P Figu 10. >>, temos senθ = << 1. A luz fic concentd no cento, como mostdo n Figu 11. Figu 11: gáfico d intensidde obsevd no ntepo.
7 P >, temos senθ > 1 e com isso não temos o pimeio mínimo, luz é esplhd em todo o ntepo. Se enxeg-lo. = é dimensão de um objeto e <, não conseguimos Se tivemos dus fends com lgu, sepds po um distânci d. Vemos um figu de intefeênci moduld po um figu de difção, como colocdo n figu bixo. Difção de um fend cicul: 1º zeo: equivlente à pesenç de um obstáculo. Figu 1 senθ = 1,, onde é o diâmeto d fend. O efeito é Figu 13
O ROTACIONAL E O TEOREMA DE STOKES
14 O ROTACONAL E O TEOREMA DE STOKES 14.1 - O ROTACONAL A equção:. dl ( A) (14.1) ecion integ de inh do veto intensidde de cmpo mgnético fechdo L com coente tot envovid po esse cminho. o ongo de um cminho
Soluções do Capítulo 9 (Volume 2)
Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,
Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1
esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se
Matemática D Extensivo V. 3
GRITO Mtemátic tensivo V. ecícios 1) β 5 7º ) Note que.. o 8 o. Logo o. omo Δ é isósceles, 8 o ; po som dos ângulos intenos do, temos que α o. 18º Note que 7 o e 18 o. otnto o meno co 5 o. Logo β 5 15o.
CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS
4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções
TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela
TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400
9. Fontes do Campo Magnético
9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos. 9.3. A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo. 9.6. O Cmpo Mgnético dum Solenóide.
Análise Vetorial. Prof Daniel Silveira
nálise Vetoil Pof Dniel Silvei Intodução Objetivo Revisão de conceitos de nálise vetoil nálise vetoil fcilit descição mtemátic ds equções encontds no eletomgnetismo Vetoes e Álgeb Vetoil Escles Vetoes
3. Lei de Gauss (baseado no Halliday, 4a edição)
3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom que poss simplific os csos que envolvem elevdo gu
Prof. A.F.Guimarães Questões Eletricidade 2 Lei de Coulomb
Questão 1 of. A..Guimães Questões Eleticidde Lei de Coulomb (EI) Dus cgs puntifomes 1 + µ C e 6µ C estão fixs e sepds po um distânci de 6 mm no ácuo. Um tecei cg µ C é colocd no ponto médio do segmento
O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50).
Cpítuo : O dipoo infinitsim O dipoo infinitsim (tzino) é um mnto d cont d compimnto t qu
GEO046 Geofísica. Amplitude & fase. Amplitude & fase. Amplitudes & fase
GEO46 Geofísic Aul n o MÉTODOS ELETROMAGNÉTICOS Foms de medição Métodos fontes distntes Amplitude & fse Qundo se tem um cmpo vetoil viável (e. g. cmpo mgnético), cd componente é descito po su mplitude
a) A energia potencial em função da posição pode ser representada graficamente como
Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >
Exame Recuperação de um dos Testes solução abreviada
Exme Recupeção de um dos Testes solução evid 5 de Junho de 5 (h3) Mestdo em Eng Electotécnic e de Computdoes (MEEC) Electomgnetismo e Óptic º semeste de 4-5 Pof João Pulo Silv (esponsável) Pof Pedo Aeu
Teste Final 11. o ano
1 Teste inl 11. o no 1. Obsee o gáfico efeente à posição do cento de mss de um co que se moe em linh ect. Admit que, qundo ele se moe, o moimento é unifomemente ido. x/m 50 00 150 100 50 0 10 0 30 40 t/s
QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:
QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB
RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB
Pobles Resolvidos de ísic Pof. Andeson Cose Gudio Depto. ísic UES RESNICK, HALLIDAY, KRANE, ÍSICA,.ED., LTC, RIO DE JANEIRO, 996. ÍSICA CAPÍTULO CARGA ELÉTRICA E LEI DE COULOMB. ul deve se distânci ente
1 a) O que é a pressão atmosférica? No S.I. em que unidades é expressa a pressão?
Escol Secundái Anselmo de Andde Ciêncis Físico - Químics 8º Ano Ano Lectivo 07/08 ACTIVIDADES: Execícios de plicção Pof. Dulce Godinho 1 ) O que é pessão tmosféic? No S.I. em que uniddes é expess pessão?
Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016
Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr
3. Lei de Gauss (baseado no Halliday, 4a edição)
3. Lei de Guss (bsedo no Hllidy, 4 edição) Um Nov Fomulção d Lei de Coulomb 1.) A Lei de Coulomb é lei básic d letostátic, ms não está expesso num fom ue poss simplific os csos ue envolvem elevdo gu de
Rede recíproca. Cap 2 KITTEL Cap 5 ASHCROFT- MERMIN Cap 4 IVAN
Rede ecípoc Cp KITTEL Cp 5 ASHCROFT- MERMIN Cp 4 IVAN Algums definições Definição ede ecípoc Plnos de Bgg Zons de Billouin Plnos de ede; índices de Mille Rede ecípoc difção em cistis cálculo de estutus
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de
Cinemática dos Corpos Rígidos
Sebent de Disciplin DR, Zuzn Dimitooá, DE/FT/UNL, 016 inemátic dos opos Rígidos Neste cpítulo seão considedos pens moimentos plnos dos copos ou conjuntos de copos ígidos. Os moimentos clssificm-se em:
CÁLCULO I. 1 Funções denidas por uma integral
CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por
Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008
P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ
NÚMEROS COMPLEXOS. z = a + bi a é a parte real e escreve-se a=re(z);
CMPLEXS º AN NÚMERS CMPLEXS Evolução do conceto de númeo: Ntus Inteos Rcons Icons gnáos Defn como undde mgná Númeo compleo é todo o númeo d fom + sendo e númeos es e undde mgná + é pte el e esceve-se ();
Conversão de Energia I
Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?
N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),
Cap014 - Campo magnético gerado por corrente elétrica
ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate
5.12 EXERCÍCIO pg. 224
9 5 EXERCÍCIO pg Um fio de compimento l é cotdo em dois pedços Com um deles se fá um cículo e com o outo um quddo Como devemos cot o fio fim de que som ds dus áes compeendids pels figus sej mínim? S sendo
carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi
outras apostilas de Matemática, Acesse:
Acesse: http://fuvestibulr.com.br/ N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um
Aula de solução de problemas: cinemática em 1 e 2 dimensões
Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é
As forças traduzem e medem interações entre corpos e essas interações podem ser de contacto ou à distância (FQ A ano 1). de contacto.
Suáio Unidde I MECÂNIC 1- Mecânic d ptícul Moviento de copos sujeitos ligções. - Foçs plicds e foçs de ligção. - Moviento du siste de copos ligdos nu plno hoizontl, plno veticl e plno inclindo, despezndo
Atividades para classe
RESLUÇÃ DE TIIDDES pítulo 5 Módulo 1: Áes de egiões poligonis Em cd item bio está indicdo o nome do polígono e lgums medids. Detemine áe de cd polígono. PÁGIN 1 oe Desfio ) tiângulo c) losngo áe do polígono
Campo Magnético produzido por Bobinas Helmholtz
defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.
NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As
Física D Extensivo V. 2
GITO Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm =
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas
Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017
Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,
E = E ds. o fluxo de campo elétrico através da superfície B do paralelepípedo da figura seria 2m 2m. Cm 2 C (2.3.3) <x=4m,y=1m,z=1m>
.3 A dedução d lei de Guss A lei de Guss desceve um popiedde de integis de fluxo do cmpo elético tvés de supefícies fechds. Então o objeto de inteesse do nosso estudo são gndezs do tipo Φ E = E ds (.3.1)
Aula 7-1 Campos Magnéticos produzidos por Correntes Lei de Biot-Savart Física Geral e Experimental III Prof. Cláudio Graça Capítulo 7
Aul 7-1 Cmps Mgnétics pduzids p Centes Lei de Bit-Svt Físic Gel e Expeimentl III Pf. Cláudi Gç Cpítul 7 Cmp B p cente elétic Expeiênci de Oested Fi n iníci d sécul XIX (em 180) que físic dinmquês Hns Chistin
Área entre curvas e a Integral definida
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções
Plano de Aulas. Matemática. Módulo 8 Geometria plana
Plno de uls Mtemátic Módulo 8 Geometi pln Resolução dos eecícios popostos Retomd dos conceitos 1 PÍTULO 1 1 h 100 cm O esquem epesent escd, e h é ltu d escd. h 0 cm h 0 cm d d d d cm e codo com o teoem
PME 3200 MECÂNICA II Primeira Prova 31 de março de 2016 Duração da Prova: 120 minutos (não é permitido uso de calculadoras)
PME 3 MECÂNICA II Piei Pov 31 de ço de 16 Dução d Pov: 1 inutos (não é peitido uso de clculdos) A B g 1ª Questão (3, pontos). Dois discos A e B, de sss, ios R e espessus despeíveis, estão fidos o eio de
3 Como os coeficientes angulares de ambas as retas são iguais (de valor 4), as retas são paralelas.
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Pofessoes: Luis Mzzei e Min Duo Acêmicos: Mcos Vinícius e Diego Mtinelli
Física D Extensivo V. 2
Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm = 1,4.
- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F
LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função
O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico
O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa
Geometria Plana 04 Prof. Valdir
pé-vestiul e ensino médio QUILÁTS TÁVIS 1. efinição É o polígono que possui quto ldos. o nosso estudo, vmos onside pens os qudiláteos onveos. e i Sendo:,,, véties do qudiláteo; i 1, i, i 3, i 4 ângulos
Física II Aula A08. Prof. Marim
Físic II Aul A8 Prof. Mrim FÍSICA 2 A8 POTENCIAL ELÉTRICO Trlho relizdo por um forç: W = F.d L = F.c o s.d L Trlho relizdo por um forç conservtiv: W = U - U = - U - U = - ΔU Prof. Mrim Energi Potencil
