APÊNDICE. Revisão de Trigonometria

Tamanho: px
Começar a partir da página:

Download "APÊNDICE. Revisão de Trigonometria"

Transcrição

1 E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio é chamada de lado inicial do ângulo, a posição final é chamada de lado teminal do ângulo e o ponto onde se cuzam os lados inicial e final é chamado de vétice do ângulo. Vamos admiti a possibilidade de que o aio possa faze mais de uma evolução completa. Os ângulos são consideados positivos se geados no sentido anti-hoáio e negativos se geados no sentido hoáio (Figua E. ). teminal Vétice inicial adiano Figua E. Um ângulo positivo Um ângulo negativo Ângulos geados po mais uma evolução Eistem dois sistemas padão de medida paa desceve o tamanho de um ângulo: medida em gaus e medida em adianos. Na medida em gaus, um gau (esceve-se ) é a medida de um ângulo geado po /6 de uma evolução. Assim, há 6 em um ângulo de uma evolução, 8 em um ângulo de meia evolução, 9 em um ângulo de /4 de evolução (ângulo eto) e assim po diante. Os gaus são divididos em 6 pates iguais, chamadas de minutos e os minutos são divididos em 6 pates iguais, chamadas de segundos. Assim, um minuto (esceve-se ' ) é / 6 de um gau, e um segundo (esceve-se '') é /6 de um minuto. Menoes subdivisões de um gau são epessas como fações de segundo. Na medida em adianos, os ângulos são medidos pelo compimento do aco que o ângulo subentende sobe um cículo de aio quando o vétice está no cento. Uma unidade de aco sobe um cículo de aio é chamada de adiano (esceve-se ad) (Figua E. ), e, potanto, a cicunfeência inteia de um cículo de aio tem adianos. Tem-se que um ângulo 6 subentende um aco de adianos, um ângulo de 8 subentende um aco de adianos, um ângulo de 9 subentende um aco de / adianos, e assim po diante. A Figua E. e a Tabela mostam a elação ente as medidas em gaus e em adianos paa alguns ângulos positivos impotantes. Figua E. OBSERVAÇÃO. Note que, na Tabela,os ângulos em gaus são designados pelo símbolo de gau, mas os ângulos em adianos não têm unidades especificadas. Isto é uma pática padão deve-se entende que as unidades são adianos quando não houve unidade especificada paa um ângulo.

2 A4 REVISÃO DE TRIGONOMETRIA Figua E. Tabela Gaus Radianos A pati do fato de que adianos coespondem a 8, obtemos as fómulas a segui, as quais são úteis paa convete gaus em adianos e vice-vesa. ad, 745ad 8 8 ad 57 7' 44, 8'' () () Eemplo (a) Epesse 46 em adianos (b) Epesse adianos em gaus. Solução (a). A pati de (), os gaus podem se convetidos em adianos multiplicando-se po um fato de convesão de /8. Assim, RELAÇÕES ENTRE COMPRIMENTO DE ARCO, ÂNGULO, RAIO E ÁREA ad ad, 548 ad 9 Solução (b). De (), adianos podem se convetidos em gaus multiplicando-se po um fato de convesão de 8/. Assim, ad , 9 Há um teoema em geometia plana o qual estabelece que, paa dois cículos concênticos, a azão ente os compimentos de aco subentendidos po um ângulo cental é igual à azão dos aios coespondentes (Figua E. 4). Em paticula, se s fo o compimento de aco subentendido sobe um cículo de aio po um ângulo cental de adianos, então, compaando-se com o compimento de aco subentendido pelo mesmo ângulo sobe um cículo de aio, obtém-se s

3 HOWARD ANTON CÁLCULO A4 de onde obtemos as seguintes elações ente o ângulo cental, o aio, e o compimento de aco subentendido s quando estive em adianos (Figua E.5): s/ e s ( - 4) s s s s s Se estive em adianos, então s/. Figua E. 4 Figua E. 5 A egião sombeada na Figua E. 5 é chamada de seto. É um teoema na geometia plana que a azão ente a áea A deste seto e a áea de todo o cículo é a mesma que a azão ente o ângulo cental do seto e o ângulo do cículo inteio; assim, se os ângulos estiveem em adianos, temos A Resolvendo-se paa A, esulta a seguinte fómula paa a áea de um seto em temos do aio e do ângulo em adianos : (5) A FUNÇÕES TRIGONOMÉTRICAS PARA TRIÂNGULOS RETÂNGULOS Figua E.6 O seno, o cosseno, a tangente, a cotangente, a secante e a cossecante de um ângulo agudo positivo podem se definidos como azões ente os lados de um tiângulo etângulo. Usando a notação da Figua E.6, estas definições tomam a seguinte foma: cateto oposto a hipotenusa sen, cossec hipotenusa cateto oposto a cateto adjacente a hipotenusa cos, sec hipotenusa cateto adjacente a cateto oposto a cateto adjacente a tg, cotg cateto adjacente a cateto oposto a Vamos chama sen, cos, tg, cotg, sec, cossec de funções tigonométicas. Como os tiângulos similaes têm lados popocionais, os valoes das funções tigonométicas dependem somente do tamanho de e não do tiângulo etângulo paticula usado paa calcula as azões. Além disso, nestas definições não impota se estive medido em gaus ou em adianos. (6) Eemplo Lembe-se da geometia que dois lados de um tiângulo de ângulos de 45, 45 e 9 são iguais e que a hipotenusa de um tiângulo de ângulos, 6 e 9 é duas vezes o lado meno, o qual é oposto ao ângulo de. Estes fatos e o Teoema de Pitágoas dão luga à Figua E.7. A pati da figua, obtemos os esultados na Tabela.

4 A4 REVISÃO DE TRIGONOMETRIA Figua E.7 Tabela sen 45 /, cos 45 /, tg 45 cossec 45, sec 45, cotg 45 sen /, cos /, tg / cossec, sec /, cotg sen 6 /, cos 6 /, tg 6 cossec 6 /, sec 6, cotg 6 / ÂNGULOS EM SISTEMAS RETANGULARES DE COORDENADAS Como os ângulos de um tiângulo etângulo estão ente e 9, as fómulas em (6) não são dietamente aplicáveis a ângulos negativos ou maioes do que 9. Paa estende as funções tigonométicas a estes casos, seá conveniente considea ângulos em sistemas etangulaes de coodenadas. Dizemos que um ângulo está na posição padão em um sistema de coodenadas se o seu vétice estive na oigem e o seu lado inicial sobe o eio positivo (Figua E. 8). teminal inicial inicial teminal Um ângulo positivo na posição padão Um ângulo negativo na posição padão Figua E.8 Paa defini as funções tigonométicas de um ângulo na posição padão, constuímos um cículo de aio, cento na oigem, e seja P(, ) a intesecção do lado teminal de com este cículo (Figua E. 9). Fazemos a seguinte definição. P(, ) E. DEFINIÇÃO. sen, cos, tg cossec, sec, cotg Figua E.9

5 HOWARD ANTON CÁLCULO A4 (cos, sen ) Note que as fómulas desta definição estão de acodo com aquelas dadas em (6), logo não há conflito com a definição anteio de funções tigonométicas paa tiângulos. Poém, esta definição se aplica a todos os ângulos (eceto quando ocoe um zeo no denominado). No caso especial onde, temos que sen e cos, desta foma o lado teminal do ângulo intecepta o cículo unitáio no ponto (cos, sen ) (Figua E. ). Tem-se a pati da Definição E. que as funções tigonométicas emanescentes de são epessas po sen cos tg, cotg, sec, cossec cos sen tg cos sen (7-) Figua E. Estas obsevações sugeem o seguinte pocedimento paa o cálculo de funções tigonométicas de ângulos usuais: Constua o ângulo na posição padão de um sistema de coodenadas (, ). Ache as coodenadas da intesecção do lado teminal do ângulo com o cículo unitáio; as coodenadas (, ) desta intesecção são, espectivamente, os valoes de cos e sen. Use as fómulas (7) () paa enconta os valoes das funções tigonométicas emanescentes a pati dos valoes de cos e de sen. Eemplo P (, ) A O 5 Calcule as funções tigonométicas de 5. Solução. Constua um cículo unitáio e coloque o ângulo 5 na posição padão (Figua E.). Uma vez que o ângulo AOP é e o tiângulo OAP tem ângulos, 6 e 9, o lado AP tem compimento (metade da hipotenusa) e o lado OA, pelo teoema de Pitágoas, tem um compimento de /. Assim, as coodenadas de P são ( /, / ), de onde obtemos Figua E. sen5 / sen5, cos 5, tg5 cos5 / cossec5, sec5 sen5 cos5 cotg5 tg5 Eemplo 4 Calcule as funções tigonométicas de 5/6. Solução. Como 5/6 5, este poblema é equivalente ao do Eemplo. Daquele eemplo, obtemos sen, cos, tg cossec, sec, cotg Eemplo 5 Figua E. (, ) Calcule as funções tigonométicas de /. Solução. De acodo com a Figua E., o lado teminal de / intecepta o cículo unitáio no ponto (, ), logo sen( /), cos( /)

6 A44 REVISÃO DE TRIGONOMETRIA e das fómulas (7) () tem-se sen( / ) tg( / ) (indefinido) cos( / ) cos ( / ) cotg( / ) sen( / ) sec ( / ) (indefinido) cos( / ) cossec ( / ) sen( / ) Pelos métodos ilustados nos tês últimos eemplos, o leito deve se capaz de obte todos os esultados da Tabela. Os taços indicam quantidades que são indefinidas. Tabela /6 /4 / / / /4 5 /6 / ( ) ( ) (45 ) (6 ) (9 ) ( ) (5 ) (5 ) (8 ) (7 ) (6 ) sen / / / / / / cos / / / / / / tg / / cossec / / sec / / cotg / / sen cossec + tg cotg + Figua E. Todas + cos sec + OBSERVAÇÃO. Somente em casos especiais os valoes eatos das funções tigonométicas podem se obtidos; nomalmente, uma calculadoa ou um pogama computacional é necessáio. Os sinais das funções tigonométicas de um ângulo são deteminados pelo quadante no qual cai o lado teminal do ângulo. Po eemplo, se o lado teminal cai no pimeio quadante, então e são positivos na Definição E.. Assim sendo, todas as funções tigonométicas têm valoes positivos. Se o lado teminal cai no segundo quadante, então é negativo e positivo, logo seno e cossecante são positivos, mas todas as demais funções tigonométicas são negativas. O diagama na Figua E. mosta quais funções tigonométicas são positivas nos váios quadantes. O leito achaá instutivo veifica que os esultados na Tabela estão de acodo com a Figua E.. IDENTIDADES TRIGONOMÉTRICAS Uma identidade tigonomética é uma equação envolvendo funções tigonométicas vedadeias paa todos os ângulos paa os quais ambos os lados da equação estão definidos. Uma das identidades mais impotantes em tigonometia pode se deduzida aplicando-se o teoema de Pitágoas ao tiângulo na Figua E. 9 paa obte + Dividindo-se ambos os lados po e usando-se as definições de sen e cos (Definição E. ), obtemos o seguinte esultado fundamental: sen + cos () As seguintes identidades podem se obtidas de () dividindo-se ambos os membos po cos e

7 HOWARD ANTON CÁLCULO A45 sen, espectivamente, então aplicando as Fómulas (7) (): tg + sec + cotg cossec () () Se (, ) fo um ponto sobe o cículo unitáio também estaão sobe ele os pontos (, ), (, ) e (, ) (po quê?), e os quato pontos fomam vétices de um etângulo com os lados paalelos aos eios coodenados (Figua E.4a). As coodenadas e de cada vétice epesentam o seno e o cosseno de um ângulo na posição padão, cujo lado teminal passa pelo vétice; assim, obtemos as identidades nas pates (b), (c) e (d) da Figua E.4 paa o seno e o cosseno. Dividindose aquelas identidades, obtém-se identidades paa a tangente. Em suma: sen ( ) sen, sen ( + ) sen, sen ( ) sen cos ( ) cos, cos ( + ) cos, cos ( ) cos tg ( ) tg, tg ( + ) tg, tg ( ) tg (4-6) (7-9) (-) (, ) (, ) (, ) (, ) + (, ) (, ) (, ) (, ) (, ) (, ) Figua E.4 sen ( ) sen cos ( ) cos sen ( + ) sen cos ( + ) cos sen ( ) sen cos ( ) cos (a) (b) (c) (d) Dois ângulos na posição padão que tenham o mesmo lado teminal devem te os mesmos valoes paa as suas funções tigonométicas, pois seus lados teminais inteceptam o cículo unitáio no mesmo ponto. Em paticula, dois ângulos cujas medidas em adianos difeem po um múltiplo de têm o mesmo lado teminal e, potanto, as suas funções tigonométicas têm os mesmos valoes. Isto dá luga às identidades sen sen ( + ) sen( ) cos cos ( + ) cos( ) () (4) e mais geneicamente, sen sen ( ± n), n,,,... cos cos ( ± n), n,,,... (5) (6) As identidades () () implicam que tg tg ( + ) e tg tg ( ) (7-8) A identidade (7) é pecisamente a () com os temos da soma em odem invesa, e a identidade (8) segue de () e () (veifique). Estas duas identidades estabelecem que soma ou subtai de um ângulo não afeta o valo de sua tangente. Tem-se que o mesmo é vedadeio paa todo

Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio Mateial Teóico - Cículo Tigonomético Radiano, Cículo Tigonomético e Conguência de acos Pimeio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto de setembo de

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Áreas de Figuras Planas: Resultados Básicos - Parte 2. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M.

Áreas de Figuras Planas: Resultados Básicos - Parte 2. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Mateial Teóico - Módulo Áeas de Figuas Planas Áeas de Figuas Planas: Resultados ásicos - Pate Nono no uto: Pof. Ulisses Lima Paente Reviso: Pof. ntonio aminha M. Neto 8 de outubo de 08 xemplos Nesta segunda

Leia mais

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C.

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C. 13 Geometia I - GRITO VLIÇÃO - 01/ Questão 1. (pontuação: ) o seto O de cento O, aio O = 3 e ângulo O = 60 o está inscita uma cicunfeência como mosta a figua. a) alcule o aio dessa cicunfeência. b) alcule

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume J. SEBASTAO E SLVA. 3. ntepetação geomética da multiplicação de númeos compleos. Comecemos pelo seguinte caso paticula: Poduto do númeo i po um númeo compleo qualque, z = + iy (, y e R).,------- *' "--

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

Extensão da trigonometria a ângulos retos e obtusos e resolução de triângulos

Extensão da trigonometria a ângulos retos e obtusos e resolução de triângulos UNIDADE Etensão da tigonometia a ângulos etos e obtusos e esolução de tiângulos TAREFAS E AVALIAR CONHECIMENTOS. Razões tigonométicas de ângulos agudos () Taefa Apesente uma justificação paa cada uma das

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Matemática D Extensivo V. 7

Matemática D Extensivo V. 7 Matemática D Extensivo V. 7 Execícios 0) D V V g Potanto, temos que o volume do tonco do cone é dado pelo volume total do cone menos o volume da pate supeio do cone. π.. 6 π.. 8π 6 π... π 8 π 7 6 8 7 7

Leia mais

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya UFSCa Cálculo 2. Quinta lista de eecícios. Pof. João C.V. Sampaio e Yolanda K. S. Fuua Rega da cadeia, difeenciais e aplicações. Calcule (a 4 w (0,, π/6, se w = 4 4 + 2 u (b (c 2 +2 (, 3,, se u =. Resposta.

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

Matemática B. Bannafarsai_Stock / Shutterstock

Matemática B. Bannafarsai_Stock / Shutterstock Matemática annafasai_stock / Shuttestock Matemática aula 1 1 9 1 1 8 F eteminando a natueza do tiângulo F: 1 = < (é um tiângulo acutângulo) 1 + 8 = omo o tiângulo ÊF é acutângulo, o ângulo ÊF é agudo.

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

Plano de Aulas. Matemática. Módulo 20 Corpos redondos

Plano de Aulas. Matemática. Módulo 20 Corpos redondos Plano de Aulas Matemática Módulo 0 Copos edondos Resolução dos execícios popostos Retomada dos conceitos 8 CAPÍTULO 1 1 No cilindo equiláteo, temos: ] 6 ] cm A lateal s ] A lateal s 6 ] ] A lateal.704s

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Mecânica Vetoial paa Engenheios: Está

Leia mais

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it UFRG INTITUTO DE MATEMÁTICA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma C - 14/1 Pimeia avaliação - Gupo 1 1 3 4 Total Nome: Catão: Regas a obseva: eja sucinto, completo e clao. Justifique

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

Matemática D Extensivo V. 4

Matemática D Extensivo V. 4 Matemática Etensivo V. Eecícios 0) 0) 0 0) Neste eecício, basta subtai a áea do cícuo meno da do cícuo maio. S M m π R ² π ² π 9π π asta substai a áea do seto cicua da áea do tiânguo O. s 0 π R 0 R sen0

Leia mais

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito.

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito. ículos MÓDUL 1 - UL 7 ula 7 ículos bjetivos pesenta as posições elativas ente etas e cículos. pesenta as posições elativas ente dois cículos. Detemina a medida de um ângulo inscito. Intodução cículo é

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

A área do círculo. que as rodas das bicicletas seriam pintadas com a cor da camisa de cada competidor. A pintura foi feita como na figura abaixo:

A área do círculo. que as rodas das bicicletas seriam pintadas com a cor da camisa de cada competidor. A pintura foi feita como na figura abaixo: Acesse: http://fuvestibula.com.b/ A UUL AL A A áea do cículo Em uma competição de ciclismo, foi decidido que as odas das bicicletas seiam pintadas com a co da camisa de cada competido. A pintua foi feita

Leia mais

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/2.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/2.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO EXAME FINAL NACINAL D ENSIN SECUNDÁRI Pova Escita de Matemática A 1.º Ano de Escolaidade Deceto-Lei n.º 19/01, de 5 de julho Pova 65/.ª Fase 15 Páginas Duação da Pova: 150 minutos. Toleância: 0 minutos.

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /1 Prova da área I UFRG - INTITUTO DE MATEMÁTIA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma - 19/1 Pova da áea I 1-6 7 8 Total Nome: Ponto exta: Wikipédia Apesentação Nenhum Tópico: atão: Regas Geais: Não é pemitido

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática 11. N DE ESLRIDDE Duação: 90 minutos Data: adeno 1 (é pemitido o uso de calculadoa) Na esposta aos itens de escolha múltipla, selecione a opção coeta. Esceva, na olha de espostas, o númeo do

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2)

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2) UFABC - Física Quântica - Cuso 2017.3 Pof. Gemán Lugones Aula 14 A equação de Schödinge em 3D: átomo de hidogénio (pate 2) 1 Equação paa a função adial R() A equação paa a pate adial da função de onda

Leia mais

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$ Ã Ã $Ã /(,Ã '(Ã *$866Ã $/,&$'$Ã $Ã 8Ã (/((17 ',)(5(1&,$/Ã'(Ã9/8( 17 ',9(5*Ç1&,$')/8;(/e75,& (7(5($'$',9(5*Ç1&,$ Ao final deste capítulo você deveá se capa de: ½ Entende o que é a Divegência de um veto

Leia mais

ATIVIDADES PARA SALA PÁG. 50

ATIVIDADES PARA SALA PÁG. 50 GTI esoluções apítulo ojeções, ângulos e distâncias estacando o tiângulo, tem-se o 8 0 TIIS SL ÁG. 0 0 0 onte luminosa cm 7 cm 4 7 I. = 7 + II. tg = = 6 49 = + d = 76 4 7 = = = 4 + d 4 + d = 48 d = d 4

Leia mais

f (x) (1 + (f (x)) 2 ) 3/2. κ(x) = f(x) = log x, f(x) = a cosh x a, a 0 (catenaria), f(x) = sen ax 2,

f (x) (1 + (f (x)) 2 ) 3/2. κ(x) = f(x) = log x, f(x) = a cosh x a, a 0 (catenaria), f(x) = sen ax 2, Univesidade Fedeal do Rio de Janeio INSTITUTO DE MATEMÁTICA Depatamento de Métodos Matemáticos Pimeia Lista de Execícios - Geometia Difeencial 010/0 1. Calcula o veto tangente unitáio, a nomal pincipal

Leia mais

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A Pepaa o Eame 03 07 Matemática A Página 84. A taa de vaiação instantânea da função f em c é igual a f c e é dada po: c f f c f c h f c f lim lim c c ch h0 h Resposta: D... Como g é deivável em tem um máimo

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070 PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época de ecuso) 11/0/003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Diga, numa fase, o que entende po Cento Instantâneo de Rotação (CIR). Sabendo

Leia mais

ELECTROMAGNETISMO. EXAME Época Especial 8 de Setembro de 2008 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME Época Especial 8 de Setembro de 2008 RESOLUÇÕES ELETROMAGNETISMO EXAME Época Especial 8 de Setemo de 8 RESOLUÇÕES a Paa que a patícula esteja em equíio na posição ilustada, a foça eléctica tem de te o mesmo sentido que E A caga tem de se positiva T

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

Aula 6: Aplicações da Lei de Gauss

Aula 6: Aplicações da Lei de Gauss Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/009 RESOLUÇÕES E RESPOSTAS QUESTÃO : a) De f(3) =, temos a + = e, de f() = 0, temos a + = 0. Subtaindo 3 b b membo a membo, temos a + a =, ou = e 3 b b 3 b b ( b) (3 b) = ( b)(3 b),

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática B 11.º Ano de Escolaidade Deceto-Lei n.º 139/01, de 5 de julho Pova 735/.ª Fase Citéios de Classificação 1 Páginas 016 Pova 735/.ª F.

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

Análise Vectorial (revisão)

Análise Vectorial (revisão) nálise ectoial (evisão) OpE - MIB 7/8 Pogama de Óptica e Electomagnetismo nálise ectoial (evisão) aulas Electostática e Magnetostática 7 aulas ampos e Ondas Electomagnéticas 7 aulas Óptica Geomética aulas

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Deceto-Lei n.º 74/2004, de 26 de maço Pova Escita de Matemática A 12.º Ano de Escolaidade Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2012 COTAÇÕES GRUPO I

Leia mais

raio do disco: a; carga do disco: Q.

raio do disco: a; carga do disco: Q. Uma casca hemisféica de aio a está caegada unifomemente com uma caga Q. Calcule o veto campo elético num ponto P no cento da base do hemisféio. Dados do poblema aio do disco: a; caga do disco: Q. Esquema

Leia mais

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

Experimento 2 Espectro de potência e banda essencial de um sinal. Exercício preliminar. o gráfico de X(f).

Experimento 2 Espectro de potência e banda essencial de um sinal. Exercício preliminar. o gráfico de X(f). UnB - FT ENE Epeimento Especto de potência e banda essencial de um sinal Eecício pelimina O eecício deve se manuscito ou impesso em papel A4. As epessões matemáticas básicas e os passos pincipais do desenvolvimento

Leia mais

DE ONDE VEM A UNIDADE RADIANO E POR QUE SEU USO É NECESSÁRIO?

DE ONDE VEM A UNIDADE RADIANO E POR QUE SEU USO É NECESSÁRIO? DE ONDE VEM A UNIDADE RADIANO E POR QUE SEU USO É NECESSÁRIO? Welleson Quintaneio wellesonsilva@ig.com.b CEFET - RJ / Pogama de Pós-Gaduação em Ensino de Matemática - UFRJ Victo Gialdo Instituto de Matemática

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

o anglo resolve a prova da 2ª fase da FUVEST

o anglo resolve a prova da 2ª fase da FUVEST o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA... DISTÂNCIA ENTRE DOIS PONTOS... 5 RAZÃO DE SECÇÃO... DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 4 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

78

78 0 As medianas taçadas dos ângulos agudos de um tiângulo etângulo medem medida da mediana taçada do ângulo eto é : (A) 5 cm (B) cm (C) cm (D) cm (E) cm 7 cm e cm. A 0 Os lados de um tiângulo medem AB 0,

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 139/2012, de 5 de julho Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2015 Pova 635/2.ª

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10

Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10 Pova final Pova final 6 Soluções das 0 Pova final ESCOLA: NOME: N. O : TURMA: DATA: Cadeno (com calculadoa) 5 minutos Gupo I Paa cada uma das questões deste gupo, selecione a opção coeta de ente as altenativas

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA ecânica PE 00 Pova de Recupeação /07/014 Duação da Pova: 100 minutos (Não é pemitido o uso de calculadoas, celulaes, tablets e/ou outos equipamentos similaes) 1ª uestão (4,0 pontos) No sistema indicado

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível α (6 o e 7 o anos do Ensino Fundamental) Gabaritos

XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível α (6 o e 7 o anos do Ensino Fundamental) Gabaritos XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Pova da Pimeia Fase (3 de agosto de 0) Nível α ( o e 7 o anos do Ensino Fundamental) Gabaitos www.opm.mat.b PROBLEMA a) Na sequência esnúfica, 3,, 3, o quinto temo

Leia mais

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE 1 1 Genealidades Consideemos o caso epesentado na figua, em que o copo 2 contacta com o copo 1, num ponto Q. Teemos então, sobepostos neste instante, um ponto Q 2 e um ponto Q 1, petencentes, espectivamente

Leia mais

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:

Leia mais